1
|
Mehta KJ. Iron-Related Genes and Proteins in Mesenchymal Stem Cell Detection and Therapy. Stem Cell Rev Rep 2023; 19:1773-1784. [PMID: 37269528 PMCID: PMC10238768 DOI: 10.1007/s12015-023-10569-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 06/05/2023]
Abstract
Mesenchymal stem cells (MSCs) are located in various tissues of the body. These cells exhibit regenerative and reparative properties, which makes them highly valuable for cell-based therapy. Despite this, majority of MSC-related studies remain to be translated for regular clinical use. This is partly because there are methodical challenges in pre-administration MSC labelling, post-administration detection and tracking of cells, and in retention of maximal therapeutic potential in-vivo. This calls for exploration of alternative or adjunctive approaches that would enable better detection of transplanted MSCs via non-invasive methods and enhance MSC therapeutic potential in-vivo. Interestingly, these attributes have been demonstrated by some iron-related genes and proteins.Accordingly, this unique forward-looking article integrates the apparently distinct fields of iron metabolism and MSC biology, and reviews the utility of iron-related genes and iron-related proteins in facilitating MSC detection and therapy, respectively. Effects of genetic overexpression of the iron-related proteins ferritin, transferrin receptor-1 and MagA in MSCs and their utilisation as reporter genes for improving MSC detection in-vivo are critically evaluated. In addition, the beneficial effects of the iron chelator deferoxamine and the iron-related proteins haem oxygenase-1, lipocalin-2, lactoferrin, bone morphogenetic protein-2 and hepcidin in enhancing MSC therapeutics are highlighted with the consequent intracellular alterations in MSCs. This review aims to inform both regenerative and translational medicine. It can aid in formulating better methodical approaches that will improve, complement, or provide alternatives to the current pre-transplantation MSC labelling procedures, and enhance MSC detection or augment the post-transplantation MSC therapeutic potential.
Collapse
Affiliation(s)
- Kosha J Mehta
- Centre for Education, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
2
|
Liu Y, Huang W, Wang H, Lu W, Guo J, Yu L, Wang L. Influence of SPIO labelling on the function of BMSCs in chemokine receptors expression and chemotaxis. PeerJ 2023; 11:e15388. [PMID: 37283891 PMCID: PMC10241165 DOI: 10.7717/peerj.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/19/2023] [Indexed: 06/08/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are increasingly being used in bone marrow transplantation (BMT) to enable homing of the allogeneic hematopoietic stem cells and suppress acute graft versus host disease (aGVHD). The aim of this study was to optimize the labelling of BMSCs with superparamagnetic iron oxide particles (SPIOs), and evaluate the impact of the SPIOs on the biological characteristics, gene expression profile and chemotaxis function of the BMSCs. The viability and proliferation rates of the SPIO-labeled BMSCs were analyzed by trypan blue staining and CCK-8 assay respectively, and the chemotaxis function was evaluated by the transwell assay. The expression levels of chemokine receptors were measured by RT-PCR and flow cytometry. The SPIOs had no effect on the viability of the BMSCs regardless of the labelling concentration and culture duration. The labelling rate of the cells was higher when cultured for 48 h with the SPIOs. Furthermore, cells labeled with 25 µg/ml SPIOs for 48 h had the highest proliferation rates, along with increased expression of chemokine receptor genes and proteins. However, there was no significant difference between the chemotaxis function of the labeled and unlabeled BMSCs. To summarize, labelling BMSCs with 25 µg/ml SPIOs for 48h did not affect their biological characteristics and chemotaxis function, which can be of significance for in vivo applications.
Collapse
Affiliation(s)
- Yuanchun Liu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wanyi Huang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huiyang Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wei Lu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Jiayu Guo
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Li Yu
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Lina Wang
- Department of Pediatrics, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Zhang L, Hajebrahimi S, Tong S, Gao X, Cheng H, Zhang Q, Hinojosa DT, Jiang K, Hong L, Huard J, Bao G. Force-Mediated Endocytosis of Iron Oxide Nanoparticles for Magnetic Targeting of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37145890 DOI: 10.1021/acsami.2c20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of magnetic targeting and retention of human muscle-derived stem cells (hMDSCs) in vitro through magnetic force-mediated internalization of magnetic iron oxide nanoparticles (MIONs) and the use of a micropatterned magnet. We found that the magnetic force-mediated cellular uptake of MIONs occurs through an endocytic pathway, and the MIONs were exclusively localized in the lysosomes. The intracellular MIONs had no detrimental effect on the proliferation of hMDSCs or their multilineage differentiation, and no MIONs were translocated to other cells in a coculture system. Using hMDSCs and three other cell types including human umbilical vein endothelial cells (HUVECs), human dermal fibroblasts (HDFs), and HeLa cells, we further discovered that the magnetic force-mediated MION uptake increased with MION size and decreased with cell membrane tension. We found that the cellular uptake rate was initially increased with MION concentration in solution and approached saturation. These findings provide important insight and guidance for magnetic targeting of stem cells in therapeutic applications.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Samira Hajebrahimi
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Xueqin Gao
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Haizi Cheng
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Daniel T Hinojosa
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Lin Hong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
4
|
Xu J, Zhang Y, Liu Y, You Y, Li F, Chen Y, Xie L, Tong S, Zhou S, Liang K, Huang Y, Jiang G, Song Q, Mei N, Ma F, Gao X, Wang H, Chen J. Vitality-Enhanced Dual-Modal Tracking System Reveals the Dynamic Fate of Mesenchymal Stem Cells for Stroke Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203431. [PMID: 36180405 DOI: 10.1002/smll.202203431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Mesenchymal stem cell (MSC) therapy via intravenous transplantation exhibits great potential for brain tissue regeneration, but still faces thorny clinical translation challenges as the unknown dynamic fate leads to the contentious therapeutic mechanism and the poor MSC viability in harsh lesions limits therapeutic efficiency. Here, a vitality-enhanced dual-modal tracking system is designed to improve engraftment efficiency and is utilized to noninvasively explore the fate of intravenous transplanted human umbilical cord-derived MSCs during long-term treatment of ischemic stroke. Such a system is obtained by bioorthogonally conjugating magnetic resonance imaging (MRI) contrast and near-infrared fluorescence (NIRF) imaging nanoparticles to metabolic glycoengineered MSCs with a lipoic acid-containing extracellular antioxidative protective layer. The dynamic fates of MSCs in multi-dimensional space-time evolution are digitally detailed for up to 28 days using MRI and NIRF imaging equipment, and the protective layer greatly shields MSCs from reactive oxygen spices (ROS) degradation, enhances MSC survival, and engraftment efficiency. Additionally, it is observed that the bioengineered MSCs exhibit dynamic intelligent responses corresponding to microenvironment remodeling and exert enhanced therapeutic effects. This dual-modal tracking system enables long-term tracking of MSCs while improving their viability at the lesion sites, which may serve as a valuable tool for expediting the clinical translation of MSC therapy.
Collapse
Affiliation(s)
- Jianpei Xu
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence & Department of Neurology, Zhongshan Hospital, Fudan University, 825 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Yipu Liu
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Yang You
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Fengan Li
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Yu Chen
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Laozhi Xie
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Shiqiang Tong
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Songlei Zhou
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Kaifan Liang
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Yukun Huang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P. R. China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P. R. China
| | - Qingxiang Song
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P. R. China
| | - Ni Mei
- Shanghai Center for Drug Evaluation and Inspection, 781 Cailun Road, Shanghai, 201203, P. R. China
| | - Fenfen Ma
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai, 200025, P. R. China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence & Department of Neurology, Zhongshan Hospital, Fudan University, 825 Zhangheng Road, Shanghai, 201203, P. R. China
| | - Jun Chen
- Department of Pharmaceutics, School of Pharmacy & Shanghai Pudong Hospital, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, 826 Zhangheng Road, Shanghai, 201203, P. R. China
| |
Collapse
|
5
|
Abstract
Mesenchymal stem cells (MSCs) exhibit regenerative and reparative properties. However, most MSC-related studies remain to be translated for regular clinical usage, partly due to challenges in pre-transplantation cell labelling and post-transplantation cell tracking. Amidst this, there are growing concerns over the toxicity of commonly used gadolinium-based contrast agents that mediate in-vivo cell detection via MRI. This urges to search for equally effective but less toxic alternatives that would facilitate and enhance MSC detection post-administration and provide therapeutic benefits in-vivo. MSCs labelled with iron oxide nanoparticles (IONPs) have shown promising results in-vitro and in-vivo. Thus, it would be useful to revisit these studies before inventing new labelling approaches. Aiming to inform regenerative medicine and augment clinical applications of IONP-labelled MSCs, this review collates and critically evaluates the utility of IONPs in enhancing MSC detection and therapeutics. It explains the rationale, principle, and advantages of labelling MSCs with IONPs, and describes IONP-induced intracellular alterations and consequent cellular manifestations. By exemplifying clinical pathologies, it examines contextual in-vitro, animal, and clinical studies that used IONP-labelled bone marrow-, umbilical cord-, adipose tissue- and dental pulp-derived MSCs. It compiles and discusses studies involving MSC-labelling of IONPs in combinations with carbohydrates (Venofer, ferumoxytol, dextran, glucosamine), non-carbohydrate polymers [poly(L-lysine), poly(lactide-co-glycolide), poly(L-lactide), polydopamine], elements (ruthenium, selenium, gold, zinc), compounds/stains (silica, polyethylene glycol, fluorophore, rhodamine B, DAPI, Prussian blue), DNA, Fibroblast growth Factor-2 and the drug doxorubicin. Furthermore, IONP-labelling of MSC exosomes is reviewed. Also, limitations of IONP-labelling are addressed and methods of tackling those challenges are suggested.
Collapse
|
6
|
Krzyżak AT, Habina‐Skrzyniarz I, Mazur W, Sułkowski M, Kot M, Majka M. Nuclear magnetic resonance footprint of Wharton Jelly mesenchymal stem cells death mechanisms and distinctive in‐cell biophysical properties in vitro. J Cell Mol Med 2022; 26:1501-1514. [PMID: 35076984 PMCID: PMC8899161 DOI: 10.1111/jcmm.17178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/04/2021] [Accepted: 12/22/2021] [Indexed: 01/29/2023] Open
Abstract
The importance of the biophysical characterization of mesenchymal stem cells (MSCs) was recently pointed out for supporting the development of MSC‐based therapies. Among others, tracking MSCs in vivo and a quantitative characterization of their regenerative impact by nuclear magnetic resonance (NMR) demands a full description of MSCs’ MR properties. In the work, Wharton Jelly MSCs are characterized in a low magnetic field (LF) in vitro by using different approaches. They encompass various settings: MSCs cultured in a Petri dish and cell suspensions; experiments‐ 1D‐T1, 1D‐T2, 1D diffusion, 2D T1‐T2 and D‐T2; devices‐ with a bore aperture and single‐sided one. Complex NMR analysis with the aid of random walk simulations allows the determination of MSCs T1 and T2 relaxation times, cells and nuclei sizes, self‐diffusion coefficients of the nucleus and cytoplasm. In addition, the influence of a single layer of cells on the effective diffusion coefficient of water is detected with the application of a single‐sided NMR device. It also enables the identification of apoptotic and necrotic cell death and changed diffusional properties of cells suspension caused by compressing forces induced by the subsequent cell layers. The study delivers MSCs‐specific MR parameters that may help tracking MSCs in vivo.
Collapse
Affiliation(s)
- Artur T. Krzyżak
- Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology Cracow Poland
| | - Iwona Habina‐Skrzyniarz
- Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology Cracow Poland
| | - Weronika Mazur
- Faculty of Geology, Geophysics and Environmental Protection AGH University of Science and Technology Cracow Poland
- Faculty of Physics and Applied Computer Science AGH University of Science and Technology Cracow Poland
| | - Maciej Sułkowski
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics Jagiellonian University Medical College Cracow Poland
| | - Marta Kot
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics Jagiellonian University Medical College Cracow Poland
| | - Marcin Majka
- Department of Transplantation, Faculty of Medicine, Institute of Pediatrics Jagiellonian University Medical College Cracow Poland
| |
Collapse
|
7
|
Canese R, Vurro F, Marzola P. Iron Oxide Nanoparticles as Theranostic Agents in Cancer Immunotherapy. NANOMATERIALS 2021; 11:nano11081950. [PMID: 34443781 PMCID: PMC8399455 DOI: 10.3390/nano11081950] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/13/2021] [Accepted: 07/22/2021] [Indexed: 11/16/2022]
Abstract
Starting from the mid-1990s, several iron oxide nanoparticles (NPs) were developed as MRI contrast agents. Since their sizes fall in the tenths of a nanometer range, after i.v. injection these NPs are preferentially captured by the reticuloendothelial system of the liver. They have therefore been proposed as liver-specific contrast agents. Even though their unfavorable cost/benefit ratio has led to their withdrawal from the market, innovative applications have recently prompted a renewal of interest in these NPs. One important and innovative application is as diagnostic agents in cancer immunotherapy, thanks to their ability to track tumor-associated macrophages (TAMs) in vivo. It is worth noting that iron oxide NPs may also have a therapeutic role, given their ability to alter macrophage polarization. This review is devoted to the most recent advances in applications of iron oxide NPs in tumor diagnosis and therapy. The intrinsic therapeutic effect of these NPs on tumor growth, their capability to alter macrophage polarization and their diagnostic potential are examined. Innovative strategies for NP-based drug delivery in tumors (e.g., magnetic resonance targeting) will also be described. Finally, the review looks at their role as tracers for innovative, and very promising, imaging techniques (magnetic particle imaging-MPI).
Collapse
Affiliation(s)
- Rossella Canese
- MRI Unit, Core Facilities, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: (R.C.); (P.M.)
| | - Federica Vurro
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
| | - Pasquina Marzola
- Department of Computer Science, University of Verona, 37134 Verona, Italy;
- Correspondence: (R.C.); (P.M.)
| |
Collapse
|
8
|
Law ZK, Tan HJ, Chin SP, Wong CY, Wan Yahya WNN, Muda AS, Zakaria R, Ariff MI, Ismail NA, Cheong SK, S Abdul Wahid SF, Mohamed Ibrahim N. The effects of intravenous infusion of autologous mesenchymal stromal cells in patients with subacute middle cerebral artery infarct: a phase 2 randomized controlled trial on safety, tolerability and efficacy. Cytotherapy 2021; 23:833-840. [PMID: 33992536 DOI: 10.1016/j.jcyt.2021.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/09/2021] [Accepted: 03/29/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) are characterized by paracrine and immunomodulatory functions capable of changing the microenvironment of damaged brain tissue toward a more regenerative and less inflammatory milieu. The authors conducted a phase 2, single-center, assessor-blinded randomized controlled trial to investigate the safety and efficacy of intravenous autologous bone marrow-derived MSCs (BMMSCs) in patients with subacute middle cerebral artery (MCA) infarct. METHODS Patients aged 30-75 years who had severe ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score of 10-35) involving the MCA territory were recruited within 2 months of stroke onset. Using permuted block randomization, patients were assigned to receive 2 million BMMSCs per kilogram of body weight (treatment group) or standard medical care (control group). The primary outcomes were the NIHSS, modified Rankin Scale (mRS), Barthel Index (BI) and total infarct volume on brain magnetic resonance imaging (MRI) at 12 months. All outcome assessments were performed by blinded assessors. Per protocol, analyses were performed for between-group comparisons. RESULTS Seventeen patients were recruited. Nine were assigned to the treatment group, and eight were controls. All patients were severely disabled following their MCA infarct (median mRS = 4.0 [4.0-5.0], BI = 5.0 [5.0-25.0], NIHSS = 16.0 [11.5-21.0]). The baseline infarct volume on the MRI was larger in the treatment group (median, 71.7 [30.5-101.7] mL versus 26.7 [12.9-75.3] mL, P = 0.10). There were no between-group differences in median NIHSS score (7.0 versus 6.0, P = 0.96), mRS (2.0 versus 3.0, P = 0.38) or BI (95.0 versus 67.5, P = 0.33) at 12 months. At 12 months, there was significant improvement in absolute change in median infarct volume, but not in total infarct volume, from baseline in the treatment group (P = 0.027). No treatment-related adverse effects occurred in the BMMSC group. CONCLUSIONS Intravenous infusion of BMMSCs in patients with subacute MCA infarct was safe and well tolerated. Although there was no neurological recovery or functional outcome improvement at 12 months, there was improvement in absolute change in median infarct volume in the treatment group. Larger, well-designed studies are warranted to confirm this and the efficacy of BMMSCs in ischemic stroke.
Collapse
Affiliation(s)
- Zhe Kang Law
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Hui Jan Tan
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | | | | | - Wan Nur Nafisah Wan Yahya
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ahmad Sobri Muda
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Department of Radiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rozman Zakaria
- Department of Radiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Mohd Izhar Ariff
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nor Azimah Ismail
- Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Soon Keng Cheong
- Cytopeutics Sdn Bhd, Selangor, Malaysia; Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Selangor, Malaysia
| | - S Fadilah S Abdul Wahid
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia; Cell Therapy Centre, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Chowdhury S, Ghosh S. Nanoparticles and Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Application of Nanotechnology in Stem-Cell-Based Therapy of Neurodegenerative Diseases. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144852] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In addition to adverse health outcomes, neurological disorders have serious societal and economic impacts on patients, their family and society as a whole. There is no definite treatment for these disorders, and current available drugs only slow down the progression of the disease. In recent years, application of stem cells has been widely advanced due to their potential of self-renewal and differentiation to different cell types which make them suitable candidates for cell therapy. In particular, this approach offers great opportunities for the treatment of neurodegenerative disorders. However, some major issues related to stem-cell therapy, including their tumorigenicity, viability, safety, metastases, uncontrolled differentiation and possible immune response have limited their application in clinical scales. To address these challenges, a combination of stem-cell therapy with nanotechnology can be a solution. Nanotechnology has the potential of improvement of stem-cell therapy by providing ideal substrates for large scale proliferation of stem cells. Application of nanomaterial in stem-cell culture will be also beneficial to modulation of stem-cell differentiation using nanomedicines. Nanodelivery of functional compounds can enhance the efficiency of neuron therapy by stem cells and development of nanobased techniques for real-time, accurate and long-lasting imaging of stem-cell cycle processes. However, these novel techniques need to be investigated to optimize their efficiency in treatment of neurologic diseases.
Collapse
|
11
|
Leftin A, Rosenberg JT, Yuan X, Ma T, Grant SC, Frydman L. Multiparametric classification of sub-acute ischemic stroke recovery with ultrafast diffusion, 23 Na, and MPIO-labeled stem cell MRI at 21.1 T. NMR IN BIOMEDICINE 2020; 33:e4186. [PMID: 31797472 PMCID: PMC8170591 DOI: 10.1002/nbm.4186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2019] [Accepted: 07/22/2019] [Indexed: 05/05/2023]
Abstract
MRI leverages multiple modes of contrast to characterize stroke. High-magnetic-field systems enhance the performance of these MRI measurements. Previously, we have demonstrated that individually sodium and stem cell tracking metrics are enhanced at ultrahigh field in a rat model of stroke, and we have developed robust single-scan diffusion-weighted imaging approaches that utilize spatiotemporal encoding (SPEN) of the apparent diffusion coefficient (ADC) for these challenging field strengths. Here, we performed a multiparametric study of middle cerebral artery occlusion (MCAO) biomarker evolution focusing on comparison of these MRI biomarkers for stroke assessment during sub-acute recovery in rat MCAO models at 21.1 T. T2 -weighted MRI was used as the benchmark for identification of the ischemic lesion over the course of the study. The number of MPIO-induced voids measured by gradient-recalled echo, the SPEN measurement of ADC, and 23 Na MRI values were determined in the ischemic area and contralateral hemisphere, and relative performances for stroke classification were compared by receiver operator characteristic analysis. These measurements were associated with unique time-dependent trajectories during stroke recovery that changed the sensitivity and specificity for stroke monitoring during its evolution. Advantages and limitations of these contrasts, and the use of ultrahigh field for multiparametric stroke assessment, are discussed.
Collapse
Affiliation(s)
- Avigdor Leftin
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- Department of Radiology, Stony Brook Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jens T Rosenberg
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - Xuegang Yuan
- FAMU-FSU Chemical and Biochemical Engineering, Florida State University, Tallahassee, FL, USA
| | - Teng Ma
- FAMU-FSU Chemical and Biochemical Engineering, Florida State University, Tallahassee, FL, USA
| | - Samuel C Grant
- The National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
- FAMU-FSU Chemical and Biochemical Engineering, Florida State University, Tallahassee, FL, USA
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- FAMU-FSU Chemical and Biochemical Engineering, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
12
|
Abstract
Stem cell tracking is an essential prerequisite for effective stem cell therapy. Computed tomography (CT) imaging technique is an emerging quantitative tool to detect real time distribution of transplanted cells. Most of CT labels based on the high atomic number (Z) materials have concern over biocompatibility. The present book chapter describes a protocol for the use of biocompatible gold nanoparticles as a CT marker for efficient labeling of mesenchymal stem cells (MSCs) and subsequent cell tracking in rodent models.
Collapse
|
13
|
Yuan X, Rosenberg JT, Liu Y, Grant SC, Ma T. Aggregation of human mesenchymal stem cells enhances survival and efficacy in stroke treatment. Cytotherapy 2019; 21:1033-1048. [PMID: 31537468 DOI: 10.1016/j.jcyt.2019.04.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022]
Abstract
Human mesenchymal stem cells (hMSCs) have been shown to enhance stroke lesion recovery by mediating inflammation and tissue repair through secretion of trophic factors. However, low cell survival and reduced primitive stem cell function of culture-expanded hMSCs are the major challenges limiting hMSC therapeutic efficacy in stroke treatment. In this study, we report the effects of short-term preconditioning of hMSCs via three-dimensional (3D) aggregation on stroke lesion recovery after intra-arterial (IA) transplantation of 3D aggregate-derived hMSCs (Agg-D hMSCs) in a transient middle cerebral artery occlusion (MCAO) stroke model. Compared with two-dimensional (2D) monolayer culture, Agg-D hMSCs exhibited increased resistance to ischemic stress, secretory function and therapeutic outcome. Short-term preconditioning via 3D aggregation reconfigured hMSC energy metabolism and altered redox cycle, which activated the PI3K/AKT pathway and enhanced resistance to in vitro oxidative stress. Analysis of transplanted hMSCs in MCAO rats using ultra-high-field magnetic resonance imaging at 21.1 T showed increased hMSC persistence and stroke lesion reduction by sodium (23Na) imaging in the Agg-D hMSC group compared with 2D hMSC control. Behavioral analyses further revealed functional improvement in MCAO animal treated with Agg-D hMSCs compared with saline control. Together, the results demonstrated the improved outcome for Agg-D hMSCs in the MCAO model and suggest short-term 3D aggregation as an effective preconditioning strategy for hMSC functional enhancement in stroke treatment.
Collapse
Affiliation(s)
- Xuegang Yuan
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA
| | - Jens T Rosenberg
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA; The National High Magnetic Field Laboratory; Florida State University, Tallahassee, Florida, USA
| | - Yijun Liu
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA
| | - Samuel C Grant
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA; The National High Magnetic Field Laboratory; Florida State University, Tallahassee, Florida, USA.
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
14
|
Li X, Wei Z, Lv H, Wu L, Cui Y, Yao H, Li J, Zhang H, Yang B, Jiang J. Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites. Int J Nanomedicine 2019; 14:573-589. [PMID: 30666115 PMCID: PMC6336032 DOI: 10.2147/ijn.s184920] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Developing new methods to deliver cells to the injured tissue is a critical factor in translating cell therapeutics research into clinical use; therefore, there is a need for improved cell homing capabilities. Materials and methods In this study, we demonstrated the effects of labeling rat bone marrow-derived mesenchymal stem cells (MSCs) with fabricated polydopamine (PDA)-capped Fe3O4 (Fe3O4@PDA) superparticles employing preassembled Fe3O4 nanoparticles as the cores. Results We found that the Fe3O4@PDA composite superparticles exhibited no adverse effects on MSC characteristics. Moreover, iron oxide nanoparticles increased the number of MSCs in the S-phase, their proliferation index and migration ability, and their secretion of vascular endothelial growth factor relative to unlabeled MSCs. Interestingly, nanoparticles not only promoted the expression of C-X-C chemokine receptor 4 but also increased the expression of the migration-related proteins c-Met and C-C motif chemokine receptor 1, which has not been reported previously. Furthermore, the MSC-loaded nanoparticles exhibited improved homing and anti-inflammatory abilities in the absence of external magnetic fields in vivo. Conclusion These results indicated that iron oxide nanoparticles rendered MSCs more favorable for use in injury treatment with no negative effects on MSC properties, suggesting their potential clinical efficacy.
Collapse
Affiliation(s)
- Xiuying Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Zhenhong Wei
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Huiying Lv
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Liya Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Yingnan Cui
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Hua Yao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Jing Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, People's Republic of China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China,
| |
Collapse
|
15
|
Ghanekar S, Corey S, Stonesifer C, Lippert T, Diamandis Z, Sokol J, Borlongan CV. Current challenges in regenerative medicine for central nervous system disorders. Brain Circ 2016; 2:105-107. [PMID: 30276282 PMCID: PMC6126278 DOI: 10.4103/2394-8108.192516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 08/19/2016] [Accepted: 08/25/2016] [Indexed: 11/04/2022] Open
Affiliation(s)
- Shaila Ghanekar
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | - Sydney Corey
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | - Connor Stonesifer
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | - Trenton Lippert
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | - Zachary Diamandis
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | - Jake Sokol
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, Center of Excellence for Aging and Brain Repair, University of South Florida College of Medicine, Tampa, Florida, 33612, USA
| |
Collapse
|