1
|
Sun J, Teng M, Zhu W, Zhao X, Zhao L, Li Y, Zhang Z, Liu Y, Bi S, Wu F. MicroRNA and Gut Microbiota Alter Intergenerational Effects of Paternal Exposure to Polyethylene Nanoplastics. ACS NANO 2024; 18:18085-18100. [PMID: 38935618 DOI: 10.1021/acsnano.4c06298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Nanoplastics (NPs), as emerging contaminants, have been shown to cause testicular disorders in mammals. However, whether paternal inheritance effects on offspring health are involved in NP-induced reproductive toxicity remains unclear. In this study, we developed a mouse model where male mice were administered 200 nm polyethylene nanoparticles (PE-NPs) at a concentration of 2 mg/L through daily gavage for 35 days to evaluate the intergenerational effects of PE-NPs in an exclusive male-lineage transmission paradigm. We observed that paternal exposure to PE-NPs significantly affected growth phenotypes and sex hormone levels and induced histological damage in the testicular tissue of both F0 and F1 generations. In addition, consistent changes in sperm count, motility, abnormalities, and gene expression related to endoplasmic reticulum stress, sex hormone synthesis, and spermatogenesis were observed across paternal generations. The upregulation of microRNA (miR)-1983 and the downregulation of miR-122-5p, miR-5100, and miR-6240 were observed in both F0 and F1 mice, which may have been influenced by reproductive signaling pathways, as indicated by the RNA sequencing of testis tissues and quantitative real-time polymerase chain reaction findings. Furthermore, alterations in the gut microbiota and subsequent Spearman correlation analysis revealed that an increased abundance of Desulfovibrio (C21_c20) and Ruminococcus (gnavus) and a decreased abundance of Allobaculum were positively associated with spermatogenic dysfunction. These findings were validated in a fecal microbiota transplantation trial. Our results demonstrate that changes in miRNAs and the gut microbiota caused by paternal exposure to PE-NPs mediated intergenerational effects, providing deeper insights into mechanisms underlying the impact of paternal inheritance.
Collapse
Affiliation(s)
- Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunxia Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zixuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yunjie Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sheng Bi
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Fengchang Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
2
|
Sethi S, Mehta P, Pandey A, Gupta G, Rajender S. miRNA Profiling of Major Testicular Germ Cells Identifies Stage-Specific Regulators of Spermatogenesis. Reprod Sci 2022; 29:3477-3493. [PMID: 35715552 DOI: 10.1007/s43032-022-01005-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 12/14/2022]
Abstract
Spermatogenesis is tightly controlled at transcriptional, post-transcriptional, and epigenetic levels by various regulators, including miRNAs. This study deals with the identification of miRNAs critical to the three important stages of germ cell development (spermatocytes, round spermatids, and mature sperm) during spermatogenesis. We used high-throughput transcriptome sequencing to identify the differentially expressed miRNAs in the pachytene spermatocytes, round spermatids, and mature sperm of rat. We identified 1843 miRNAs that were differentially expressed across the three stages of germ cell development. These miRNAs were further categorized into three classes according to their pattern of expression during spermatogenesis: class 1 - miRNAs found exclusively in one stage and absent in the other two stages; class 2 - miRNAs found in any two stages but absent in the third stage; class 3 - miRNAs expressed in all the three stages. Six hundred forty-six miRNAs were found to be specific to one developmental stage, 443 miRNAs were found to be common across any two stages, and 754 miRNAs were common to all the three stages. Target prediction for ten most abundant miRNAs specific to each category identified miRNA regulators of mitosis, meiosis, and cell differentiation. The expression of each miRNA is specific to a particular developmental stage, which is required to maintain a significant repertoire of target mRNAs in the respective stage. Thus, this study provided valuable data that can be used in the future to identify the miRNAs involved in spermatogenic arrest at a particular stage of the germ cell development.
Collapse
Affiliation(s)
- Shruti Sethi
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Poonam Mehta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Aastha Pandey
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Gopal Gupta
- CSIR-Central Drug Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India
| | - Singh Rajender
- CSIR-Central Drug Research Institute, Lucknow, India.
- Academy of Scientific and Innovative Research [AcSIR], Ghaziabad, India.
| |
Collapse
|
3
|
Donnellan EM, Perrier JP, Keogh K, Štiavnická M, Collins CM, Dunleavy EM, Sellem E, Bernecic NC, Lonergan P, Kenny DA, Fair S. Identification of differentially expressed mRNAs and miRNAs in spermatozoa of bulls of varying fertility. Front Vet Sci 2022; 9:993561. [PMID: 36277068 PMCID: PMC9581129 DOI: 10.3389/fvets.2022.993561] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/06/2022] [Indexed: 11/04/2022] Open
Abstract
Bulls used in artificial insemination, with apparently normal semen quality, can vary significantly in their field fertility. This study aimed to characterize the transcriptome of spermatozoa from high (HF) and low (LF) fertility bulls at the mRNA and miRNA level in order to identify potential novel markers of fertility. Holstein-Friesian bulls were assigned to either the HF or LF group (n = 10 per group) based on an adjusted national fertility index from a minimum of 500 inseminations. Total RNA was extracted from a pool of frozen-thawed spermatozoa from three different ejaculates per bull, following which mRNA-seq and miRNA-seq were performed. Six mRNAs and 13 miRNAs were found differentially expressed (P < 0.05, FC > 1.5) between HF and LF bulls. Of particular interest, the gene pathways targeted by the 13 differentially expressed miRNAs were related to embryonic development and gene expression regulation. Previous studies reported that disruptions to protamine 1 mRNA (PRM1) had deleterious consequences for sperm chromatin structure and fertilizing ability. Notably, PRM1 exhibited a higher expression in spermatozoa from LF than HF bulls. In contrast, Western Blot analysis revealed a decrease in PRM1 protein abundance for spermatozoa from LF bulls; this was not associated with increased protamine deficiency (measured by the degree of chromatin compaction) or DNA fragmentation, as assessed by flow cytometry analyses. However, protamine deficiency was positively and moderately correlated with the percentage of spermatozoa with DNA fragmentation, irrespective of fertility group. This study has identified potential biomarkers that could be used for improving semen quality assessments of bull fertility.
Collapse
Affiliation(s)
- Eimear M. Donnellan
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jean-Philippe Perrier
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kate Keogh
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Miriam Štiavnická
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland, Galway, Ireland
| | - Eli Sellem
- ALLICE, Innovation and Development, Paris, France
| | - Naomi C. Bernecic
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Patrick Lonergan
- School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - David A. Kenny
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Ireland
| | - Sean Fair
- Laboratory of Animal Reproduction, Department of Biological Sciences, Biomaterials Research Cluster, Faculty of Science and Engineering, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick, Ireland,*Correspondence: Sean Fair
| |
Collapse
|
4
|
Saget S, Kappeler L, Grandjean V, Leneuve P, Berthaut I, Faure C, Czernichow S, Racine C, Lévy R, Dupont C. Association between metabolic disorders and seminal plasma miRNA levels: a pilot study. Basic Clin Androl 2022; 32:9. [PMID: 35668388 PMCID: PMC9171949 DOI: 10.1186/s12610-022-00159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Excess weight and metabolic disorders have a negative impact on male reproductive functions. The mechanisms involved are numerous and complex and epigenetic mechanisms may also be involved, notably through the small non-coding RNAs. Among them, microRNAs (miRNAs) are of particular interest. This preliminary study aimed to identify the miRNAs differentially enriched in seminal plasma related to metabolic disorders and if some are also associated with spermatic parameters alterations. One hundred and sixty men between 18 to 45 years, partners of infertile couple, were included in this cohort. The miRNAs associated with metabolism were selected from the literature and assayed by quantitative real-time PCR using TaqMan gene expression assays. A subset of those with an interesting profile in seminal plasma were secondarily tested in blood. RESULTS Among the 11 selected miRNAs, seven were detected in seminal plasma (miR10b, miR19a, miR19b, miR34b, miR34c, miR133b, miRlet7c). A negative correlation was observed between seminal miR19a levels and metabolic syndrome, blood glucose and C-peptide. Seminal miR19b levels were also negatively correlated with metabolic syndrome. Seminal miR34c levels were negatively correlated with body mass index (BMI) and waist circumference. Seminal miR133b levels were positively correlated with BMI, waist circumference and leptin levels. Interestingly, modifications of miRNAs in seminal plasma seem specific since highlighted above correlations were not retrieved in the blood plasma for the miR19a, 19b, 10b, 34c. CONCLUSION Few metabolic and anthropometric disorders are correlated with the level of specific miRNAs in seminal plasma. Further studies will be required to decipher if other small non-coding RNAs may also be correlated with metabolic and anthropometric disorders and to assess their potential implication in the alteration of reproductive functions in men with obesity or metabolic disorders. CLINICAL STUDY Metabolic Syndrome and Male Infertility (Metasperme): Trial registration: NCT01974947 . Registered 18 July 2013.
Collapse
Affiliation(s)
- Sarah Saget
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, 75012, Paris, France
- IHU-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Laurent Kappeler
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, 75012, Paris, France
- IHU-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Valérie Grandjean
- Inserm U1065, Team Control of Gene Expression (10), Université Cote d'Azur, Nice, France
| | - Patricia Leneuve
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, 75012, Paris, France
- IHU-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Isabelle Berthaut
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, 75012, Paris, France
- Service de Biologie de La Reproduction CECOS, Hôpital Tenon, AP-HP.Sorbonne-Université, 75020, Paris, France
| | - Céline Faure
- Service de Biologie de La Reproduction CECOS, Hôpital Tenon, AP-HP.Sorbonne-Université, 75020, Paris, France
| | - Sébastien Czernichow
- Service de Nutrition, Université de Paris, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Chrystèle Racine
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, 75012, Paris, France
- IHU-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
| | - Rachel Lévy
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, 75012, Paris, France
- IHU-ICAN Institute of Cardiometabolism and Nutrition, Paris, France
- Service de Biologie de La Reproduction CECOS, Hôpital Tenon, AP-HP.Sorbonne-Université, 75020, Paris, France
| | - Charlotte Dupont
- Sorbonne Université, INSERM, Centre de Recherche St-Antoine, CRSA, 75012, Paris, France.
- IHU-ICAN Institute of Cardiometabolism and Nutrition, Paris, France.
- Service de Biologie de La Reproduction CECOS, Hôpital Tenon, AP-HP.Sorbonne-Université, 75020, Paris, France.
| |
Collapse
|
5
|
Gong J, Wang P, Liu JC, Li J, Zeng QX, Yang C, Li Y, Yu D, Cao D, Duan YG. Integrative Analysis of Small RNA and mRNA Expression Profiles Identifies Signatures Associated With Chronic Epididymitis. Front Immunol 2022; 13:883803. [PMID: 35634321 PMCID: PMC9130659 DOI: 10.3389/fimmu.2022.883803] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic epididymitis (CE) refers to a long-lasting inflammatory condition of the epididymis, which is considered the most common site of intrascrotal inflammation and an important aetiological factor of male infertility. Recent studies demonstrate that small RNAs secreted from epididymal epithelium modulate embryo development and offspring phenotypes via sperm transmission, and the resulting modifications may lead to transgenerational inheritance. However, to date, the genome-wide analysis of small RNA together with the transcriptomic expression profiles of human epididymis and CE is still lacking. In this study, we facilitated next-generation sequencing and bioinformatics to comprehensively analyze the small RNA and mRNA in an integrative way and identified signatures associated with CE. Both of the small RNA and mRNA expression data demonstrated relatively larger molecular differences among the segmental region of the epididymides, including caput, corpus, and cauda, than that of the inflammatory conditions. By comparing the inflamed caputs to the controls, a total of 1727 genes (1220 upregulated and 507 downregulated; 42 most significant genes, adjusted P <0.05) and 34 miRNAs (23 upregulated and 11 downregulated) were identified as differentially expressed. In silico functional enrichment analysis showed their roles in regulating different biological activities, including leukocyte chemotaxis, extracellular milieu reconstruction, ion channel and transporter-related processes, and nervous system development. Integrative analysis of miRNA and mRNA identified a regulatory network consisting of 22 miRNAs and 31 genes (miRNA-mRNA) which are strong candidates for CE. In addition, analysis about other species of small RNA, including (miRNA), piwi-interacting RNA (piRNA), tRNA-derived small RNA (tsRNA), Y RNA, and rsRNA identified the distinct expression pattern of tsRNA in CE. In summary, our study performed small RNA and miRNA profiling and integrative analysis in human CE. The findings will help to understand the role of miRNA-mRNA in the pathogenesis of CE and provide molecular candidates for the development of potential biomarkers for human CE.
Collapse
Affiliation(s)
- Jialei Gong
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Peng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Jin-Chuan Liu
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Jianlin Li
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qun-Xiong Zeng
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China.,Department of Obstetrics and Gynecology, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Chen Yang
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yanfeng Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, China
| | - Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD, Australia
| | - Dandan Cao
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| | - Yong-Gang Duan
- Shenzhen Key Laboratory of Fertility Regulation, Center of Assisted Reproduction and Embryology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Yang C, Guo X, Dong F, Meng F, Wang L, Wang P, Zhang C, Ren Y. miR-542-3p reduces antioxidant capacity in goat caput epididymal epithelial cells by targeting glutathione peroxidase 5 (GPx5). Theriogenology 2022; 186:168-174. [DOI: 10.1016/j.theriogenology.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/12/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
|
7
|
Xing K, Chen Y, Wang L, Lv X, Li Z, Qi X, Wang X, Xiao L, Ni H, Guo Y, Sheng X. Epididymal mRNA and miRNA transcriptome analyses reveal important genes and miRNAs related to sperm motility in roosters. Poult Sci 2022; 101:101558. [PMID: 34844112 PMCID: PMC8633681 DOI: 10.1016/j.psj.2021.101558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022] Open
Abstract
Sperm motility is a crucial trait in chicken production, and the epididymis is an essential organ in the reproductive system. Currently, the molecular mechanisms underlying sperm motility in the epididymis are unclear. In this study, 8 cDNA libraries and eight miRNA libraries were constructed from roosters (4 chickens per group) with diverse sperm motility. After a comparative analysis of epididymal transcriptomes, we detected 84 differentially expressed genes (DEGs) using the edgeR package. Integrated interpretation of DEGs indicated that MMP9, SLN, WT1, PLIN1, and LRRIQ1 are the most promising candidate genes affecting sperm motility in the epididymis of roosters. MiR-146a, mir-135b, and mir-205 could play important regulatory roles in sperm maturation, capacitation, and motility. Additionally, a comprehensive analysis of the mRNA and miRNAs transcriptomes in silico identified a promising gene-miRNA pair miR-135b-HPS5, which may be a vital regulator of sperm motility in the epididymis. Our findings provide novel integrated information of miRNAs and genes that shed light on the regulatory mechanisms of fertility in roosters.
Collapse
Affiliation(s)
- Kai Xing
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yu Chen
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Liang Wang
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Xueze Lv
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Zheng Li
- Beijing Institute of Feed Control, Beijing 100107, China
| | - Xiaolong Qi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Longfei Xiao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Hemin Ni
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yong Guo
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Xihui Sheng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
8
|
Vashisht A, Gahlay GK. Using miRNAs as diagnostic biomarkers for male infertility: opportunities and challenges. Mol Hum Reprod 2021; 26:199-214. [PMID: 32084276 DOI: 10.1093/molehr/gaaa016] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/10/2020] [Indexed: 02/07/2023] Open
Abstract
The non-coding genome has been extensively studied for its role in human development and diseases. MicroRNAs (miRNAs) are small non-coding RNAs, which can regulate the expression of hundreds of genes at the post-transcriptional level. Therefore, any defects in miRNA biogenesis or processing can affect the genes and have been linked to several diseases. Male infertility is a clinical disorder with a significant number of cases being idiopathic. Problems in spermatogenesis and epididymal maturation, testicular development, sperm maturation or migration contribute to male infertility, and many of these idiopathic cases are related to issues with the miRNAs which tightly regulate these processes. This review summarizes the recent research on various such miRNAs and puts together the candidate miRNAs that may be used as biomarkers for diagnosis. The development of strategies for male infertility treatment using anti-miRs or miRNA mimics is also discussed. Although promising, the development of miRNA diagnostics and therapeutics is challenging, and ways to overcome some of these challenges are also reviewed.
Collapse
Affiliation(s)
- A Vashisht
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - G K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
9
|
Zhao W, Hussain Solangi T, Wu Y, Yang X, Xu C, Wang H, Zheng X, Cai X, Zhu J. Comparative rna-seq analysis of region-specific miRNA expression in the epididymis of cattleyak. Reprod Domest Anim 2021; 56:555-576. [PMID: 33438262 DOI: 10.1111/rda.13893] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 02/06/2023]
Abstract
The epididymis is the site of post-testicular sperm maturation, which constitutes the acquisition of sperm motility and the ability to recognize and fertilize oocytes. The role of miRNA in male reproductive system, including the control of different steps leading to proper fertilization such as gametogenesis, sperm maturation and maintenance of male fertility where the deletion of Dicer in mouse germ cells led to infertility, has been demonstrated. The identification of miRNA expression in a region-specific manner will therefore provide valuable insight into the functional differences between the regions of the epididymis. In this study, we employed RNA-seq technology to explore the expression pattern of miRNAs and establish some miRNAs of significant interest with regard to epididymal sperm maturation in the CY epididymis. We identified a total of 431 DE known miRNAs; 119, 185 and 127 DE miRNAs were detected for caput versus corpus, corpus versus cauda and caput versus cauda region pairs, respectively. Our results demonstrate region-specific miRNA expression in the CY epididymis. The GO and KEGG enrichment for the predicted target genes indicated the functional values of miRNAs. Furthermore, we observed that the expression of miR-200a was downregulated in the caput, compared with cauda. Since the family of miR-200 has previously been suggested to contribute to the distinct physiological function of sperm maturation in epididymis of adult rat, we speculate that the downregulation of miR-200a in CY caput epididymis may play an important role of sperm maturation in the epididymis of CY. Therefore, our findings may not only increase our understanding of the molecular mechanisms regulated by the miRNA functions in region-specific miRNA expression in the CY epididymis, it could provide a valuable information to understand the mechanism of male infertility of CY.
Collapse
Affiliation(s)
- Wangsheng Zhao
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Tajmal Hussain Solangi
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Yitao Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xiankang Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Chuanfei Xu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Hongmei Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xuxin Zheng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Xin Cai
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization (Southwest Minzu University), Ministry of Education, Chengdu, China.,Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
10
|
Postnatal differentiation and regional histological variations in the ductus epididymidis of the Congjiang Xiang pig. Tissue Cell 2020; 67:101411. [PMID: 32835944 DOI: 10.1016/j.tice.2020.101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
The Congjiang Xiang pig is a rare Chinese miniature breed whose epididymal histologic features through the postnatal development are poorly understood. To clarify the histomorphological differences between each region of epididymis during postnatal development, 24 male Congjiang Xiang pigs aged from neonatal (15 d), peri-puberty (30 d), puberty (60 d) to adult (180 d) stages, were examined. Postnatal differentiation of the different regions (I-V) of the epididymis started from birth and continued until maturity that showed regional variations. Developmental progression was disto-proximal. At the neonatal stage, Wolffian duct differentiation starts in the distal region, then ascends to the middle region which forms regions V, IV and III, respectively. A simple lined cuboidal in the epidydimal epithelial, which gradually differentiated into a pseudostratified columnar with stereocilia from neonatal to post-pubertal. After puberty cell rearrangement occurred in the epithelium, differentiation accelerated, and spermatozoon seen in the lumen, especially the lumen of region II. In region III, both halo and apical cells were frequently observed. At the post-pubertal stage, clear cells were frequently observed in Region IV-V, and the epididymal duct was markedly increased in size and fully packed with spermatozoa. The information presented in this study will be helpful for future evaluations of Congjiang Xiang pig fertility. After puberty cell rearrangement occurred in the epithelium, differentiation accelerated, and spermatozoon seen in the lumen, especially the lumen of region II. In region III, both halo and apical cells were frequently observed. At the post-pubertal stage, clear cells were frequently observed in Region IV-V, and the epididymal duct was markedly increased in size and fully packed with spermatozoa. The information presented in this study will be helpful for future evaluations of Congjiang Xiang pig fertility.
Collapse
|
11
|
Heidary Z, Zaki-Dizaji M, Saliminejad K, Edalatkhah H, Khorram Khorshid HR. MiR-4485-3p expression reduced in spermatozoa of men with idiopathic asthenozoospermia. Andrologia 2020; 52:e13539. [PMID: 32030798 DOI: 10.1111/and.13539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/06/2023] Open
Abstract
Asthenozoospermia (AZS), which characterised by reduced forward sperm motility, is a common cause of male infertility. Recently, mitochondrial dysfunction reported in AZS men came to attention for finding the molecular aetiology of AZS. Mitochondria-related microRNAs (miRNAs) are the most important regulators of mitochondrial function through post-transcriptionally modulation of gene expression. Therefore, this study aims to evaluate the expression of four recently reported mitochondrial-related miRNAs (miR-4485-3p/4484/4461 and 4463) in the sperm sample of asthenozoospermic men. RNA was extracted from spermatozoa of 74 volunteers (39 patients with idiopathic AZS and 35 controls with normal fertility), and relative gene expression analysis was performed by quantitative PCR. We used SNORD48 as a normaliser gene, and quantification was calculated by 2-ΔΔCt method. The expression of miR-4484 and miR-4461 was not detected in the spermatozoa of cases and controls. However, miR-4485-3p (p = .006) was significantly downregulated in the AZS men compared with the controls, but the miR-4463 expression was not significantly different between the two groups (p = .5). Bioinformatic analysis identified three target genes for miR-4485-3p (DNAH1, KIT and PARK7) that are related to male infertility. In conclusion, the downregulation of miR-4485-3p was associated with idiopathic AZS, which could be a molecular link between mitochondrial dysfunction and AZS.
Collapse
Affiliation(s)
- Zohreh Heidary
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Majid Zaki-Dizaji
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Kioomars Saliminejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hamid Reza Khorram Khorshid
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
12
|
Salas‐Huetos A, James ER, Aston KI, Carrell DT, Jenkins TG, Yeste M. The role of miRNAs in male human reproduction: a systematic review. Andrology 2019; 8:7-26. [DOI: 10.1111/andr.12714] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022]
Affiliation(s)
- A. Salas‐Huetos
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - E. R. James
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
| | - K. I. Aston
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - D. T. Carrell
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
- Department of Human Genetics University of Utah School of Medicine Salt Lake City UT USA
- Department of Obstetrics and Gynecology University of Utah School of Medicine Salt Lake City UT USA
| | - T. G. Jenkins
- Andrology and IVF Laboratory Division of Urology Department of Surgery University of Utah School of Medicine Salt Lake City UT USA
| | - M. Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm) Unit of Cell Biology Department of Biology Faculty of Sciences Institute of Food and Agricultural Technology University of Girona Girona Spain
| |
Collapse
|
13
|
Browne JA, Leir SH, Yin S, Harris A. Transcriptional networks in the human epididymis. Andrology 2019; 7:741-747. [PMID: 31050198 DOI: 10.1111/andr.12629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/26/2018] [Accepted: 03/29/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND The epithelial lining of the human epididymis is critical for sperm maturation. This process requires distinct specialized functions in the head, body, and tail of the duct. These region-specific properties are maintained by distinct gene expression profiles which are governed by transcription factor networks, non-coding RNAs, and other factors. MATERIALS AND METHODS We used genome-wide protocols including DNase-seq, RNA-seq and ChIP-seq to characterize open (active) chromatin, the transcriptome and occupancy of specific transcription factors (TFs) respectively, in caput, corpus, and cauda segments of adult human epididymis tissue and primary human epididymis epithelial (HEE) cell cultures derived from them. RNA-seq following TF depletion or activation, combined with gene ontology analysis also determined TF targets. RESULTS Among regional differentially expressed transcripts were epithelial-selective transcription factors (TFs), microRNAs, and antiviral response genes. Caput-enriched TFs included hepatocyte nuclear factor 1 (HNF1) and the androgen receptor (AR), both of which were also predicted to occupy cis-regulatory elements identified as open chromatin in HEE cells. HNF1 targets were identified genome-wide using ChIP-seq, in HEE cells. Next, siRNA-mediated depletion of HNF1 revealed a pivotal role for this TF in coordinating epithelial water and solute transport in caput epithelium. The importance of AR in HEE cells was shown by AR ChIP-seq, and by RNA-seq after synthetic androgen (R1881) treatment. AR has a distinct transcriptional program in the HEE cells and likely recruits different co-factors (RUNX1 and CEBPβ) in comparison to those used in prostate epithelium. DISCUSSION AND CONCLUSION Our data identify many transcription factors that regulate the development and differentiation of HEE cells. Moreover, a comparison between immature and adult HEE cells showed key TFs in the transition to fully differentiated function of this epithelium. These data may help identify new targets to treat male infertility and have the potential to open new avenues for male contraception.
Collapse
Affiliation(s)
- J A Browne
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - S-H Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - S Yin
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - A Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
14
|
Chu C, Zhang YL, Yu L, Sharma S, Fei ZL, Drevet JR. Epididymal small non-coding RNA studies: progress over the past decade. Andrology 2019; 7:681-689. [PMID: 31044548 DOI: 10.1111/andr.12639] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/01/2019] [Accepted: 03/30/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Small non-coding RNAs (sncRNAs) accomplish a huge variety of biological functions. Over the past decade, we have witnessed the substantial progress in the epididymal sncRNA studies. In the Epididymis 7, we had the true privilege of having a whole session to share our findings and exchange ideas on the epididymal sncRNA studies. OBJECTIVES This mini-review attempts to provide an overview of what is known about the sncRNAs in the mammalian epididymis and discuss the future directions in this field. METHODS We surveyed literature regarding the sncRNA studies in the mammalian epididymis, and integrated some of our unpublished findings as well. We focus on the progress in methodology and the advances in our understanding of the expression and functions of epididymal sncRNAs. RESULTS AND DISCUSSION The applications of high-throughput approaches have made great contributions in the discovery of new sncRNA species and profiling their dynamics in the epithelial cells, the passing spermatozoa, and the luminal environment. The diverse classes of epididymal sncRNAs exert important biological functions from the in situ regulation of epididymal gene expression to the epigenetic inheritance in the offspring. CONCLUSION Although still in its infancy, we believe that the research on epididymal sncRNAs will not only lead to a better understanding of their physiological and pathological functions, but also contribute to the whole landscape of the RNA field.
Collapse
Affiliation(s)
- C Chu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Y L Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - L Yu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - S Sharma
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Z L Fei
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - J R Drevet
- Genetics Reproduction & Development Laboratory, CNRS UMR 6293 - INSERM U1103 - Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
15
|
Dupont C, Kappeler L, Saget S, Grandjean V, Lévy R. Role of miRNA in the Transmission of Metabolic Diseases Associated With Paternal Diet-Induced Obesity. Front Genet 2019; 10:337. [PMID: 31057600 PMCID: PMC6482346 DOI: 10.3389/fgene.2019.00337] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/29/2019] [Indexed: 12/25/2022] Open
Abstract
The concept of Developmental Origins of Health and Diseases (DOHaD) recognizes that an unfavorable maternal environment alters the developmental trajectory of the fetus and can lead to long-term risk of developing chronic noncommunicable diseases. More recently, the concept of a paternal transmission [Paternal Origins of Health and Diseases (POHaD)] has emerged stressing the impact of paternal overweight or obesity on offspring's health and development. While very few examples of paternal epigenetic inheritance of metabolic disorders have been evidenced in human, many experimental mouse models based on high-fat diet (HFD)-induced paternal obesity have been developed to breakdown molecular mechanisms involved in the process. Besides DNA methylation and chromatin structure, sperm short noncoding RNAs have been considered as the main epigenetic vector of inheritance of paternally environmentally induced changes. Among them, sperm miRNAs are one particular subspecies sensitive to environmental changes and obesity can modify the sperm miRNA profile. Once delivered into the zygote, these molecules might induce epigenetic modifications in the embryo, thereby leading to consequences for fetus development and offspring physical and metabolic health later on in life. Furthermore, some data also suggest that metabolic pathologies may be intergenerationally or transgenerationally transmitted.
Collapse
Affiliation(s)
- Charlotte Dupont
- Sorbonne Université, Inserm, Centre de Recherche St-Antoine, CRSA, AP-HP, Hôpital Tenon, Service de biologie de la reproduction-CECOS, Paris, France
| | - Laurent Kappeler
- Sorbonne Université, INSERM, Institute of Cardiometabolism, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Sarah Saget
- Sorbonne Université, INSERM, Institute of Cardiometabolism, Centre de Recherche St-Antoine, CRSA, Paris, France
| | - Valérie Grandjean
- Inserm U1065, Team Control of Gene Expression (10), Université Cote d’Azur, Nice, France
| | - Rachel Lévy
- Sorbonne Université, Inserm, Centre de Recherche St-Antoine, CRSA, AP-HP, Hôpital Tenon, Service de biologie de la reproduction-CECOS, Paris, France
| |
Collapse
|