1
|
Lin FH, Hsu YC, Chang KC, Shyong YJ. Porous hydroxyapatite carrier enables localized and sustained delivery of honokiol for glioma treatment. Eur J Pharm Biopharm 2023:S0939-6411(23)00169-8. [PMID: 37391090 DOI: 10.1016/j.ejpb.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
The objective of this study is to develop hydroxyapatite (HAp) particles for targeted delivery of honokiol to tumor sites after glioma surgical management. Honokiol is released from the HAp-honokiol particles inside cancer cells through endocytosis and subsequent acid lysosomal dissolution. HAp is synthesized using a co-precipitation method, and egg white is added to create porous structures. The HAp is then surface-modified with stearic acid to enhance its hydrophobicity and loaded with honokiol to form HAp-honokiol particles. The synthesized particles are of appropriate size and characteristics for cancer cell uptake. Honokiol remains attached on to the HAp particles in neutral environments due to its hydrophobic nature, but undergoes rapid burst release in acidic environments such as lysosomes. The HAp-honokiol treatment shows a delayed effect on cell viability and cytotoxicity, indicating sustained drug release without compromising drug efficacy. Flow cytometry analysis demonstrates the apoptosis pathway induced by HAp-honokiol in ALTS1C1 glioma cells. In an in vivo study using a mouse glioma model, MRI results showed a 40% reduction in tumor size after HAp-honokiol treatment. These findings suggest that HAp-honokiol particles have potential as an effective drug delivery system for the treatment of glioma.
Collapse
Affiliation(s)
- Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Yu-Chen Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuo-Chi Chang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Yan-Jye Shyong
- School of Pharmacy and Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
2
|
Djoudi A, Molina-Peña R, Ferreira N, Ottonelli I, Tosi G, Garcion E, Boury F. Hyaluronic Acid Scaffolds for Loco-Regional Therapy in Nervous System Related Disorders. Int J Mol Sci 2022; 23:12174. [PMID: 36293030 PMCID: PMC9602826 DOI: 10.3390/ijms232012174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Hyaluronic acid (HA) is a Glycosaminoglycan made of disaccharide units containing N-acetyl-D-glucosamine and glucuronic acid. Its molecular mass can reach 10 MDa and its physiological properties depend on its polymeric property, polyelectrolyte feature and viscous nature. HA is a ubiquitous compound found in almost all biological tissues and fluids. So far, HA grades are produced by biotechnology processes, while in the human organism it is a major component of the extracellular matrix (ECM) in brain tissue, synovial fluid, vitreous humor, cartilage and skin. Indeed, HA is capable of forming hydrogels, polymer crosslinked networks that are very hygroscopic. Based on these considerations, we propose an overview of HA-based scaffolds developed for brain cancer treatment, central and peripheral nervous systems, discuss their relevance and identify the most successful developed systems.
Collapse
Affiliation(s)
- Amel Djoudi
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Rodolfo Molina-Peña
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Natalia Ferreira
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d’Angers, 49000 Angers, France
| |
Collapse
|
3
|
Krolicki L, Kunikowska J, Bruchertseifer F, Koziara H, Morgenstern A, Krolicki B, Rosiak E, Pawlak D, Merlo A. Nuclear medicine therapy of CNS tumors. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
4
|
Schmitt C, Rasch F, Cossais F, Held-Feindt J, Lucius R, Vázquez AR, Nia AS, Lohe MR, Feng X, Mishra YK, Adelung R, Schütt F, Hattermann K. Glial cell responses on tetrapod-shaped graphene oxide and reduced graphene oxide 3D scaffolds in brain in vitro and ex vivo models of indirect contact. Biomed Mater 2020; 16:015008. [DOI: 10.1088/1748-605x/aba796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Królicki L, Kunikowska J, Bruchertseifer F, Koziara H, Królicki B, Jakuciński M, Pawlak D, Rola R, Morgenstern A, Rosiak E, Merlo A. 225Ac- and 213Bi-Substance P Analogues for Glioma Therapy. Semin Nucl Med 2020; 50:141-151. [DOI: 10.1053/j.semnuclmed.2019.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Roux A, Zanello M, Zah-Bi G, Pallud J. Carmustine Wafer Implantation at the Era of Standardized Chemoradiation Protocol. Asian J Neurosurg 2019; 14:616-617. [PMID: 31143298 PMCID: PMC6516040 DOI: 10.4103/ajns.ajns_297_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Alexandre Roux
- Department of Neurosurgery, Sainte-Anne Hospital Center, Paris, France.,Department of Neurosurgery, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMABRAIN, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Marc Zanello
- Department of Neurosurgery, Sainte-Anne Hospital Center, Paris, France.,Department of Neurosurgery, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMABRAIN, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Gilles Zah-Bi
- Department of Neurosurgery, Sainte-Anne Hospital Center, Paris, France
| | - Johan Pallud
- Department of Neurosurgery, Sainte-Anne Hospital Center, Paris, France.,Department of Neurosurgery, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,IMABRAIN, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| |
Collapse
|