1
|
Kosarnia M, Bahreyni-Toossi MT, Gholamhosseinian H, Dolat E, Fakour-Mollaee P, Azimian H. Establishment and validation of a calibration curve for dicentric chromosome induced by 6MV X-ray. RADIATION PROTECTION DOSIMETRY 2023; 199:1410-1415. [PMID: 37448196 DOI: 10.1093/rpd/ncad200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 03/12/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Radiation during radiotherapy and nuclear accidents is currently one of the biggest concerns for the international community. Biological dosimetry examines the amount of damage caused by radiation at the cellular level by quantifying a radiation biomarker. In particular, the dicentric chromosome assay is a biodosimetric technique that can quantify radiation damage by correlating radiation dose exposure with the frequency of dicentric chromosomes in the peripheral lymphocytes extracted from exposed individuals. This study aims to present of the reference dose-response calibration curve for biodosimetry laboratory of Mashhad University of Medical Sciences (north-east of Iran). In all, 40 samples of peripheral blood from four healthy volunteers were irradiated at doses of 0-5 Gray in a customised water phantom using a 6 MV X-rays at dose rate of 2 Gy/min from a linear accelerator. The irradiated samples were cultured and analysed according to the International Atomic Energy Agency Cytogenetic Dosimetry Protocol (2011) with some modifications. Linear-quadratic model curve fitting and further statistical analysis were done using Chromosome Aberration Calculation Software Version 2.0 and Dose Estimate (Version 5.2). The curve equation obtained was ${Y}_{dic}=0.0533{D}^2+0.0231D+0.0001$ and was in the range of other studies. Validation of the calibration curve was done by estimating the dose of blind samples.
Collapse
Affiliation(s)
- Morteza Kosarnia
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | | | - Hamid Gholamhosseinian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | - Elham Dolat
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | - Parisa Fakour-Mollaee
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| | - Hosein Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad 9138813944, Iran
| |
Collapse
|
2
|
Jeong SK, Oh SJ, Kang YR, Kim H, Kye YU, Lee SH, Lee CG, Park MT, Baek JH, Kim JS, Jeong MH, Jo WS. Biological dosimetry dose-response curves for residents living near nuclear power plants in South Korea. Sci Prog 2023; 106:368504231198935. [PMID: 37769294 PMCID: PMC10540589 DOI: 10.1177/00368504231198935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The purpose of this study was to establish the dose-response curves for biological dosimetry of the Dong Nam Institute of Radiological and Medical Sciences to monitor radiation exposure of local residents in the vicinity of the nuclear power plant. The blood samples of five healthy volunteers were irradiated with gamma ray, and each sample was divided equally for analysis of chromosomal aberrations by Giemsa staining and three-color fluorescence in situ hybridization painting of the triplet (chromosomes #1, #2, and #4). The results of chromosomal aberrations followed the Poisson distribution in all individual and averaged data which include inter-individual variation in radiation susceptibility. Cytogenetics Dose Estimate Software version 5.2 was used to fit the dose-response curve and to determine the coefficients of linear-quadratic equations. The goodness of fit of the curves and statistical significance of fitted α and β-coefficients were confirmed in both Giemsa-based dicentric analysis and FISH-based translocation analysis. The coefficients calculated from the five-donor average data were almost identical in both of the analyses. We also present the results that the dose-response curve for dicentric chromosomes plus fragments could be more effective for dose estimation following low-dose radiation accidents.
Collapse
Affiliation(s)
- Soo Kyung Jeong
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
- Department of Microbiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Su Jung Oh
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Yeong-Rok Kang
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - HyoJin Kim
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Yong Uk Kye
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Seong Hun Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Chang Geun Lee
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Moon-Taek Park
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Jeong-Hwa Baek
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| | - Joong Sun Kim
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Min Ho Jeong
- Department of Microbiology, Dong-A University College of Medicine, Seo-gu, Busan, Republic of Korea
| | - Wol Soon Jo
- Department of Research Center, Dongnam Institute of Radiological & Medical Sciences, Gijang-gun, Busan, Republic of Korea
| |
Collapse
|
3
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
Affiliation(s)
- J. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Rajesh Kumar Chaurasia
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - K. Satish Srinivas
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - K. Vijayalakshmi
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - Solomon F.D. Paul
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, India
| | - N.N. Bhat
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| | - B.K. Sapra
- Radiological Physics and Advisory Division, Bhabha Atomic Research Centre (BARC), Mumbai, India
- Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
4
|
Samarth RM, Gandhi P, Chaudhury NK. Linear dose response of acrocentric chromosome associations to gamma irradiation in human lymphocytes. Strahlenther Onkol 2023; 199:182-191. [PMID: 35925202 DOI: 10.1007/s00066-022-01978-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 07/07/2022] [Indexed: 01/28/2023]
Abstract
PURPOSE The frequency of acrocentric chromosome associations (ACA) was studied to determine the possible dose-response relationship of gamma irradiation in human lymphocytes. METHODS Peripheral blood collected from three healthy donors was irradiated with 0, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy of gamma radiation. Chromosomal preparations were made after 48 h of culture as per standard guidelines. The experiment was repeated three times, with a different donor each time. RESULTS The ACA frequency in irradiated lymphocytes increased with radiation dose. The D-G type of association was most prominent and showed a significant dose-dependent increase in frequency. The dose response of ACA frequency to radiation was found to be linear: ACA frequency = 0.2923 (±0.0276) + 0.1846 (±0.0307) × D (correlation coefficient r = 0.9442). As expected, dicentric chromosome (DC) frequencies followed the linear quadratic fit model, with DC frequency = 0.0015 (±0.0013) + 0.0220 (±0.0059) × D + 0.0215 (±0.0018) × D^2 (correlation coefficient r = 0.9982). A correlation curve was prepared for ACA frequency versus DC frequency, resulting in the regression equation y = 1.130x + 0.4051 (R2 = 0.7408; p = 0.0014). CONCLUSION Our results showed an increase in ACA frequency in irradiated lymphocytes with an increase in radiation dose; thus, ACA may serve as a candidate cytogenetic biomarker for radiation biodosimetry.
Collapse
Affiliation(s)
- Ravindra M Samarth
- Department of Research, ICMR-Bhopal Memorial Hospital & Research Centre (ICMR-BMHRC), Government of India, Raisen Bypass Road, 462038, Bhopal, India.
| | - Puneet Gandhi
- Department of Research, ICMR-Bhopal Memorial Hospital & Research Centre (ICMR-BMHRC), Government of India, Raisen Bypass Road, 462038, Bhopal, India
| | - Nabo Kumar Chaudhury
- Division of Radiation Biodosimetry, Institute of Nuclear Medicine & Allied Sciences (INMAS), DRDO, 110054, Delhi, India
| |
Collapse
|
5
|
Nikolakopoulou A, Peppa V, Alexiou A, Pissakas G, Terzoudi G, Karaiskos P. Comparison and Evaluation of Different Radiotherapy Techniques Using Biodosimetry Based on Cytogenetics. Cancers (Basel) 2021; 14:cancers14010146. [PMID: 35008308 PMCID: PMC8749890 DOI: 10.3390/cancers14010146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Cell killing and tumor response in cancer patients depends not only on the absorbed radiation dose but also on the dose rate and delivery time. In this study, a biodosimetry assay based on the frequency of dicentrics chromosomes scored in peripheral blood lymphocytes from prostate cancer patients and PC3 human prostate cancer cell line was used to investigate the radiobiological impact of the relative prolonged dose delivery time and/or decreased dose rate met in advanced modulated radiotherapy techniques (VMAT and IMRT) compared to conventional non-modulated (3D-CRT) in prostate patient plan irradiations. The results showed a small but statistically significant decrease in the number of dicentrics following radiation with the modulated techniques, suggesting a corresponding decrease on the radiation dose efficiency. The biodosimetry assay could be used as an alternative to the laborious conventional clonogenic assay, while both lymphocytes and cancer cell line could effectively be used for estimation of the biological absorbed dose. Abstract While rapid technological advances in radiotherapy techniques have led to a more precise delivery of radiation dose and to a decreased risk of side effects, there is still a need to evaluate the efficacy of the new techniques estimating the biological dose and to investigate the radiobiological impact of the protracted radiotherapy treatment duration. The aim of this study is to compare, at a cytogenetic level, advanced radiotherapy techniques VMAT and IMRT with the conventional 3D-CRT, using biological dosimetry. A dicentric biodosimetry assay based on the frequency of dicentrics chromosomes scored in peripheral blood lymphocytes from prostate cancer patients and PC3 human prostate cancer cell line was used. For each patient blood sample and each subpopulation of the cultured cell line, three different irradiations were performed using the 3D-CRT, IMRT, and VMAT technique. The absorbed dose was estimated with the biodosimetry method based on the induced dicentric chromosomes. The results showed a statistically significant underestimation of the biological absorbed dose of ~6% for the IMRT and VMAT compared to 3D-CRT irradiations for peripheral blood lymphocytes, whereas IMRT and VMAT results were comparable without a statistically significant difference, although slightly lower values were observed for VMAT compared to IMRT irradiation. Similar results were obtained using the PC3 cell line. The observed biological dose underestimation could be associated with the relative decreased dose rate and increase irradiation time met in modulated techniques compared to the conventional 3D-CRT irradiations.
Collapse
Affiliation(s)
- Aggeliki Nikolakopoulou
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos’’, 15310 Athens, Greece; (A.N.); (G.T.)
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vasiliki Peppa
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Radiotherapy Department, General Hospital of Athens Alexandra, 11528 Athens, Greece; (A.A.); (G.P.)
| | - Antigoni Alexiou
- Radiotherapy Department, General Hospital of Athens Alexandra, 11528 Athens, Greece; (A.A.); (G.P.)
| | - George Pissakas
- Radiotherapy Department, General Hospital of Athens Alexandra, 11528 Athens, Greece; (A.A.); (G.P.)
| | - Georgia Terzoudi
- Laboratory of Health Physics, Radiobiology & Cytogenetics, Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Centre for Scientific Research ‘‘Demokritos’’, 15310 Athens, Greece; (A.N.); (G.T.)
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence:
| |
Collapse
|
6
|
Lin WC, Chang KW, Liao TZ, Ou Yang FY, Chang TJ, Yuan MC, Wilkins RC, Chang CH. Intercomparison of conventional and QuickScan dicentric scoring for the validation of individual biodosimetry analysis in Taiwan. Int J Radiat Biol 2021; 97:916-925. [PMID: 34003708 DOI: 10.1080/09553002.2021.1928789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/12/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE The dicentric chromosome assay (DCA), the gold standard for radiation biodosimetry, evaluates an individual absorbed radiation dose by the analysis of DNA damage in human lymphocytes. The conventional (C-DCA) and QuickScan (QS-DCA) scoring methods are sensitive for estimating radiation dose. The Biodosimetry Laboratory at Institute of Nuclear Energy Research (INER), Taiwan, participated in intercomparison exercises conducted by Health Canada (HC) in 2014, 2015 and 2018 to validate the laboratory's accuracy and performance. MATERIAL AND METHODS Blood samples for the conventional dose response curve for Taiwan were irradiated with 0, 0.25, 0.5, 1, 2, 3, 4 and 5 Gy. Ten blind blood samples were provided by HC. Either or both of two methods of conventional (C) or QuickScan (QS) scoring could be chosen for the HC's intercomparison. For C-DCA triage scoring, only cells with 46 centromeres were counted and each scorer recorded the number of dicentrics in the first 50 metaphases or stopped scoring when 30 dicentrics were reached. Scorers also recorded how much time it took to analyze 10, 20, and 50 cells. Subsequently, the data were entered into the Dose Estimate software (DoseEstimate_v5.1) and dose estimates were calculated. With QS-DCA scoring, a minimum of 50 metaphase cells (or 30 dicentrics) were scored in apparently complete metaphases without verification of exactly 46 centromeres. RESULTS For the blinded blood samples irradiated at HC and shipped to INER, the mean absolute deviation (MAD) derived after scoring 50 cells for C-DCA and QS-DCA was <0.5 Gy for all three intercomparisons, meeting the criteria for acceptance. CONCLUSION The results indicated that the Biodosimetry Laboratory at INER can provide reliable dose estimates in the case of a large-scale radiation accident.
Collapse
Affiliation(s)
- Wan-Chi Lin
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Kang-Wei Chang
- Laboratory Animal Center, Taipei Medical University, Taipei, Taiwan
- Neuroscience Research Center, Taipei Medical University, Taipei, Taiwan
| | - Tse-Zung Liao
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Fang-Yu Ou Yang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Tsui-Jung Chang
- Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ming-Chen Yuan
- Health Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruth C Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Chih-Hsien Chang
- Isotope Application Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Alsbeih GA, Al-Hadyan KS, Al-Harbi NM, Bin Judia SS, Moftah BA. Establishing a Reference Dose-Response Calibration Curve for Dicentric Chromosome Aberrations to Assess Accidental Radiation Exposure in Saudi Arabia. Front Public Health 2021; 8:599194. [PMID: 33425838 PMCID: PMC7793750 DOI: 10.3389/fpubh.2020.599194] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023] Open
Abstract
In cases of nuclear and radiological accidents, public health and emergency response need to assess the magnitude of radiation exposure regardless of whether they arise from disaster, negligence, or deliberate act. Here we report the establishment of a national reference dose–response calibration curve (DRCC) for dicentric chromosome (DC), prerequisite to assess radiation doses received in accidental exposures. Peripheral blood samples were collected from 10 volunteers (aged 20–40 years, median = 29 years) of both sexes (three females and seven males). Blood samples, cytogenetic preparation, and analysis followed the International Atomic Energy Agency EPR-Biodosimetry 2011 report. Irradiations were performed using 320 kVp X-rays. Metafer system was used for automated and assisted (elimination of false-positives and inclusion of true-positives) metaphases findings and DC scoring. DC yields were fit to a linear–quadratic model. Results of the assisted DRCC showed some variations among individuals that were not statistically significant (homogeneity test, P = 0.66). There was no effect of age or sex (P > 0.05). To obtain representative national DRCC, data of all volunteers were pooled together and analyzed. The fitted parameters of the radiation-induced DC curve were as follows: Y = 0.0020 (±0.0002) + 0.0369 (±0.0019) *D + 0.0689 (±0.0009) *D2. The high significance of the fitted coefficients (z-test, P < 0.0001), along with the close to 1.0 p-value of the Poisson-based goodness of fit (χ2 = 3.51, degrees of freedom = 7, P = 0.83), indicated excellent fitting with no trend toward lack of fit. The curve was in the middle range of DRCCs published in other populations. The automated DRCC over and under estimated DCs at low (<1 Gy) and high (>2 Gy) doses, respectively, with a significant lack of goodness of fit (P < 0.0001). In conclusion, we have established the reference DRCC for DCs induced by 320 kVp X-rays. There was no effect of age or sex in this cohort of 10 young adults. Although the calibration curve obtained by the automated (unsupervised) scoring misrepresented dicentric yields at low and high doses, it can potentially be useful for triage mode to segregate between false-positive and near 2-Gy exposures from seriously irradiated individuals who require hospitalization.
Collapse
Affiliation(s)
- Ghazi A Alsbeih
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Khaled S Al-Hadyan
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Najla M Al-Harbi
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Sara S Bin Judia
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Belal A Moftah
- Radiation Biology Section, Biomedical Physics Department, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.,Medical Physics Unit, Department of Oncology, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Perez-Gelvez YNC, Unger S, Kurz S, Rosenbalm K, Wright WM, Rhodes OE, Tiemeyer M, Bergmann CW. Chronic exposure to low doses of ionizing radiation impacts the processing of glycoprotein N-linked glycans in Medaka ( Oryzias latipes). Int J Radiat Biol 2021; 97:401-420. [PMID: 33346724 DOI: 10.1080/09553002.2021.1864500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
PURPOSE Ionizing radiation is found naturally in the environment. Low doses of IR may have beneficial applications, yet there is also potential for detrimental long-term health effects. Impacts following exposure to low levels of IR have been refractory to identification and quantification. Glycoprotein glycosylation is vital to cell-cell communication and organismal function, and sensitive to changes in an organism's macro- and cellular environment. We investigated whether accumulated low doses of IR (LoDIR) affect the N-linked glycoprotein glycans using Medaka fish (Oryzias latipes). MATERIALS AND METHODS State-of-the-art methods in radiation exposure and glycan analysis were applied to study N-glycan changes after 190 day exposure at three different rates of gamma irradiation (2.25, 21.01, and 204.3 mGy/day) in wild-type adult Medaka. Tissue N-glycans were analyzed following enzymatic release from extracted proteins. RESULTS N-linked glycan profiles are dominated by complex type N-glycans modified with terminal sialic acid and core fucose. Fucosylation and sialylation of N-linked glycoprotein glycans are affected by LoDIR and a subset of N-glycans are involved in the organismal radio-response. CONCLUSION This is the first indication that the glycome can be interrogated for biomarkers that report the impact of chronic exposure to environmental stressors, such as low-level IR.
Collapse
Affiliation(s)
- Yeni Natalia C Perez-Gelvez
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | - Shem Unger
- Savannah River Ecology Laboratory, The University of Georgia, Aiken, GA, USA
| | - Simone Kurz
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Katelyn Rosenbalm
- Carbohydrate Complex Research Center, Biochemistry and Molecular Biology, The University of Georgia, Athens, GA, USA
| | | | - Olin E Rhodes
- Savannah River Ecology Laboratory, Odum School of Ecology, The University of Georgia, Athens, GA, USA
| | - Michael Tiemeyer
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| | - Carl W Bergmann
- Carbohydrate Complex Research Center, The University of Georgia, Athens, GA, USA
| |
Collapse
|
9
|
ZARE A, MORTAZAVI SMJ. The Efficacy of Periodic Complete Blood Count Tests in Evaluation of the Health Status of Radiation Workers in Iran: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:628-636. [PMID: 32548042 PMCID: PMC7283191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
BACKGROUND Periodic medical examinations of radiation workers are routinely conducted in many countries. Although low dose radiation (LDR) is not expected to cause a significant effect on blood count, the periodic examination usually includes reviewing the work history, general medical history, a physical examination and collecting a blood sample. Despite lymphocytes are the most sensitive cells to radiation, their counts do not show any significant change as long as the radiation level is less than a few hundreds of millisievert (mSv). In spite of this, in Iran, radiation workers, even those who work in diagnostic radiology departments, are regularly examined for blood count changes. METHODS After a detailed search in PubMed, ISI, Scopus, SID and Google Scholar, only 12 out of 650 articles matched our criteria. A review of these 12 reports was conducted. The full texts were fully reviewed by the authors. RESULTS The complete blood count (CBC) test has a very low efficacy in evaluation of the adverse health effects of ionizing radiation in radiation workers. Therefore, finding alternative methods with a higher efficacy is recommended. CONCLUSION CBC tests cannot be introduced as valid markers of potential radiation effects in most occupational exposures. Given this consideration, in periodic tests of radiation workers, cytogenetic tests can be the gold-standard method. In particular, due to its relatively low cost and good sensitivity and specificity, the dicentric assay can be promising. Moreover, the simple and rapid evaluation of micronuclei by fast automated scoring systems can be a good alternative for current low efficacy CBC tests.
Collapse
Affiliation(s)
- Asma ZARE
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Javad MORTAZAVI
- Department of Medical Physics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, Department of Diagnostic Imaging, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA,Corresponding author:
| |
Collapse
|