1
|
Goudet G, Beauclercq S, Douet C, Reigner F, Deleuze S, Nadal-Desbarats L. Saliva and plasma metabolome changes during anoestrus, the oestrous cycle and early gestation in the mare: A pilot study. Theriogenology 2024; 228:110-120. [PMID: 39141998 DOI: 10.1016/j.theriogenology.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/16/2024]
Abstract
Successful reproductive management of domestic mammals depends primarily upon timely identification of oestrous cycle stages. There is a need to develop an alternative non-invasive, welfare-friendly, accurate and reliable method to identify reproductive cycle stages. This is of particular interest for horse breeders, because horses are high-value farm animals that require careful management and individual monitoring. Saliva sampling is non-invasive, painless and welfare-friendly. Thus, we performed a metabolomic analysis of equine saliva during different reproductive stages to identify changes in the salivary metabolome during anoestrus, the oestrous cycle and early gestation. We compared the saliva and plasma metabolomes to investigate the relationship between the two fluids according to the physiological stage. We collected saliva and plasma samples from six mares during seasonal anoestrus, during the follicular phase 3 days, 2 days and 1 day before ovulation and the day when ovulation was detected, during the luteal phase 6 days after ovulation, and during early gestation 18 days after ovulation and insemination. Metabolome analysis was performed by proton-nuclear magnetic resonance spectroscopy. We identified 58 and 51 metabolites in saliva and plasma, respectively. The levels of four metabolites or groups of metabolites in saliva and five metabolites or groups of metabolites in plasma showed significant modifications during the 4 days until ovulation, ie 3 days prior to and on the day of ovulation. The levels of 11 metabolites or groups of metabolites in saliva and 17 metabolites or groups of metabolites in plasma were significantly different between the seasonal anoestrus and the ovarian cyclicity period. The physiological mechanisms involved in the onset of ovarian cyclicity and in ovulation induced modifications of the metabolome both in plasma and saliva. The metabolites whose salivary levels changed during the reproductive cycle could be potential salivary biomarkers to detect the reproductive stage in a welfare friendly production system. In particular, we propose creatine and alanine as candidate salivary biomarkers of ovulation and of the onset of ovarian cyclicity, respectively. However, extensive validation of their reliability is required. Our study contributes to extend to domestic mammals the use of saliva as a non-invasive alternative diagnostic fluid for reproduction in a welfare-friendly production system.
Collapse
Affiliation(s)
- Ghylène Goudet
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380, Nouzilly, France.
| | | | - Cécile Douet
- INRAE, CNRS, IFCE, Université de Tours, PRC, 37380, Nouzilly, France.
| | | | - Stéfan Deleuze
- Faculté de Médecine Vétérinaire, Département des Sciences Cliniques, Clinique Equine, Université de Liège, B-4000, Liège, Belgium.
| | | |
Collapse
|
2
|
Priya Aarthy A, Sen S, Srinivasan M, Muthukumar S, Madhanraj P, Akbarsha MA, Archunan G. Ectopic pregnancy: search for biomarker in salivary proteome. Sci Rep 2023; 13:16828. [PMID: 37803047 PMCID: PMC10558548 DOI: 10.1038/s41598-023-43791-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
Ectopic pregnancy (EP) is associated with high maternal morbidity and mortality. Ultrasonography is the only dependable diagnostic tool for confirming an ectopic pregnancy. In view of inadequate early detection methods, women suffer from a high-life risk due to the severity of EP. Early detection of EP using pathological/molecular markers will possibly improve clinical diagnosis and patient management. Salivary proteins contain potential biomarkers for diagnosing and detecting various physiological and/or pathological conditions. Therefore, the present investigation was designed to explore the salivary proteome with special reference to EP. Gel-based protein separation was performed on saliva, followed by identification of proteins using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS). Totally, 326 proteins were identified in the salivary samples, among which 101 were found to be specific for ruptured ectopic pregnancy (EPR). Reactome analysis revealed innate immune system, neutrophil degranulation, cell surface interactions at the vascular wall, and FCERI-mediated NF-kB activation as the major pathways to which the salivary proteins identified during EPR are associated. Glutathione-S-transferase omega-1 (GSTO1) is specific for EPR and has been reported as a candidate biomarker in the serum of EPR patients. Therefore, saliva would be a potential source of diagnostic non-invasive protein biomarker(s) for EP. Intensive investigation on the salivary proteins specific to EP can potentially lead to setting up of a panel of candidate biomarkers and developing a non-invasive protein-based diagnostic kit.
Collapse
Affiliation(s)
- Archunan Priya Aarthy
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India.
- Department of Obstetrics and Gynecology, Saveetha Medical College and Hospital, Deemed University, Chennai, India.
| | - Sangeetha Sen
- Department of Obstetrics and Gynecology, Rabindra Nath Tagore Medical College, Udaipur, Rajasthan, India
| | - Mahalingam Srinivasan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Subramanian Muthukumar
- Deparment of Biotechnology, School of Chemical & Biotechnology (SCBT), SASTRA Deemed University, Thanjavur, Tamil Nadu, India.
| | - Pakirisamy Madhanraj
- Department of Microbiology, Marudupandiyar College, Thanjavur, Tamil Nadu, India
| | - Mohammad Abdulkader Akbarsha
- Mahatma Gandhi-Doerenkamp Centre for Alternatives, Bharathidasan University, Tiruchchirappalli, India
- Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchchirappalli, India
| | - Govindaraju Archunan
- Department of Animal Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Marudupandiyar College, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
3
|
Cordova-Gomez A, Wong AP, Sims LB, Doncel GF, Dorflinger LJ. Potential biomarkers to predict return to fertility after discontinuation of female contraceptives-looking to the future. FRONTIERS IN REPRODUCTIVE HEALTH 2023; 5:1210083. [PMID: 37674657 PMCID: PMC10477712 DOI: 10.3389/frph.2023.1210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 09/08/2023] Open
Abstract
Nowadays there are multiple types of contraceptive methods, from reversible to permanent, for those choosing to delay pregnancy. Misconceptions about contraception and infertility are a key factor for discontinuation or the uptake of family planning methods. Regaining fertility (the ability to conceive) after contraceptive discontinuation is therefore pivotal. Technical studies to date have evaluated return to fertility by assessing pregnancy as an outcome, with variable results, or return to ovulation as a surrogate measure by assessing hormone levels (such as progesterone, LH, FSH) with or without transvaginal ultrasound. In general, relying on time to pregnancy as an indicator of return to fertility following contraceptive method discontinuation can be problematic due to variable factors independent of contraceptive effects on fertility, hormone clearance, and fertility recovery. Since the ability to conceive after contraceptive method discontinuation is a critical factor influencing product uptake, it is important to have robust biomarkers that easily and accurately predict the timing of fertility return following contraception and isolate that recovery from extrinsic and circumstantial factors. The main aim of this review is to summarize the current approaches, existing knowledge, and gaps in methods of evaluating return-to-fertility as well as to provide insights into the potential of new biomarkers to more accurately predict fertility restoration after contraceptive discontinuation. Biomarker candidates proposed in this document include those associated with folliculogenesis, cumulus cell expansion, follicular rupture and ovulation, and endometrial transport and receptivity which have been selected and scored on predefined criteria meant to evaluate their probable viability for advancement. The review also describes limitations, regulatory requirements, and a potential path to clinically testing these selected biomarkers. It is important to understand fertility restoration after contraceptive method discontinuation to provide users and health providers with accurate evidence-based information. Predictive biomarkers, if easy and low-cost, have the potential to enable robust evaluation of RTF, and provide potential users the information they desire when selecting a contraceptive method. This could lead to expanded uptake and continuation of modern contraception and inform the development of new contraceptive methods to widen user's family planning choices.
Collapse
Affiliation(s)
- Amanda Cordova-Gomez
- Office of Population and Reproductive Health, USAID/Public Health Institute, Washington, DC, United States
| | - Andrew P. Wong
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Lee B. Sims
- Office of Population and Reproductive Health, USAID/Public Health Institute, Washington, DC, United States
| | - Gustavo F. Doncel
- CONRAD, Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Laneta J. Dorflinger
- Department of Product Development and Introduction, FHI 360, Durham, NC, United States
| |
Collapse
|
4
|
Singh LK, Pandey M, Baithalu RK, Fernandes A, Ali SA, Jaiswal L, Pannu S, Neeraj, Mohanty TK, Kumaresan A, Datta TK, Kumar S, Mohanty AK. Comparative Proteome Profiling of Saliva Between Estrus and Non-Estrus Stages by Employing Label-Free Quantitation (LFQ) and Tandem Mass Tag (TMT)-LC-MS/MS Analysis: An Approach for Estrus Biomarker Identification in Bubalus bubalis. Front Genet 2022; 13:867909. [PMID: 35754844 PMCID: PMC9217162 DOI: 10.3389/fgene.2022.867909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Accurate determination of estrus is essentially required for efficient reproduction management of farm animals. Buffalo is a shy breeder and does not manifest overt signs of estrus that make estrus detection difficult resulting in a poor conception rate. Therefore, identifying estrus biomarkers in easily accessible biofluid such as saliva is of utmost interest. In the current study, we generated saliva proteome profiles during proestrus (PE), estrus (E), metestrus (ME), and diestrus (DE) stages of the buffalo estrous cycle using both label-free quantitation (LFQ) and labeled (TMT) quantitation and mass spectrometry analysis. A total of 520 proteins were identified as DEPs in LFQ; among these, 59 and four proteins were upregulated (FC ≥ 1.5) and downregulated (FC ≤ 0.5) during E vs. PE, ME, and DE comparisons, respectively. Similarly, TMT-LC-MS/MS analysis identified 369 DEPs; among these, 74 and 73 proteins were upregulated and downregulated during E vs. PE, ME, and DE stages, respectively. Functional annotations of GO terms showed enrichment of glycolysis, pyruvate metabolism, endopeptidase inhibitor activity, salivary secretion, innate immune response, calcium ion binding, oocyte meiosis, and estrogen signaling. Over-expression of SERPINB1, HSPA1A, VMO1, SDF4, LCN1, OBP, and ENO3 proteins during estrus was further confirmed by Western blotting. This is the first comprehensive report on differential proteome analysis of buffalo saliva between estrus and non-estrus stages. This study generated an important panel of candidate proteins that may be considered buffalo estrus biomarkers which can be applied in the development of a diagnostic kit for estrus detection in buffalo.
Collapse
|