1
|
Kania B, Montecinos K, Goldberg DJ. Artificial intelligence in cosmetic dermatology. J Cosmet Dermatol 2024; 23:3305-3311. [PMID: 39188183 DOI: 10.1111/jocd.16538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Cosmetic dermatology is a growing field as more patients are seeking treatments for esthetic concerns. Traditionally, practitioners and patients utilize their own perceptions, current beauty standards, and manual observation to determine their satisfaction with cosmetic interventions. Artificial intelligence (AI) can be introduced into cosmetic dermatology to provide objective data-driven recommendations to both dermatologists and patients. OBJECTIVE The purpose of this paper is to compose a unified review that illustrates the various facets of artificial intelligence and formulate a hypothesis regarding the new implications of artificial intelligence in cosmetic dermatology specifically. METHODS A comprehensive search on PubMed was conducted to identify the available information related to AI in cosmetic dermatology. The search was conducted using a combination of keywords including "cosmetic dermatology" and "artificial intelligence." RESULTS The current literature indicates that AI models offer personalized, efficient, and result-driven outputs that can enhance cosmetic outcomes, patient satisfaction, and overall experience. CONCLUSION Artificial intelligence integration in cosmetic dermatology shows a promising future, offering the ability to analyze vast data sets and deliver a tailored patient experience. By incorporating AI into cosmetic dermatology, there is an opportunity to balance evidence-based decision-making with the artistic human touch of cosmetic dermatologists.
Collapse
Affiliation(s)
- Barbara Kania
- Skin Laser and Surgery Specialists: A Division of Schweiger Dermatology Group, Hackensack, New Jersey, USA
| | - Karen Montecinos
- Skin Laser and Surgery Specialists: A Division of Schweiger Dermatology Group, Hackensack, New Jersey, USA
| | - David J Goldberg
- Skin Laser and Surgery Specialists: A Division of Schweiger Dermatology Group, Hackensack, New Jersey, USA
- Icahn School of Medicine at Mt. Sinai, New York, New York, USA
| |
Collapse
|
2
|
Trager MH, Gordon ER, Breneman A, Weng C, Samie FH. Artificial intelligence for nonmelanoma skin cancer. Clin Dermatol 2024; 42:466-476. [PMID: 38925444 DOI: 10.1016/j.clindermatol.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Nonmelanoma skin cancers (NMSCs) are among the top five most common cancers globally. NMSC is an area with great potential for novel application of diagnostic tools including artificial intelligence (AI). In this scoping review, we aimed to describe the applications of AI in the diagnosis and treatment of NMSC. Twenty-nine publications described AI applications to dermatopathology including lesion classification and margin assessment. Twenty-five publications discussed AI use in clinical image analysis, showing that algorithms are not superior to dermatologists and may rely on unbalanced, nonrepresentative, and nontransparent training data sets. Sixteen publications described the use of AI in cutaneous surgery for NMSC including use in margin assessment during excisions and Mohs surgery, as well as predicting procedural complexity. Eleven publications discussed spectroscopy, confocal microscopy, thermography, and the AI algorithms that analyze and interpret their data. Ten publications pertained to AI applications for the discovery and use of NMSC biomarkers. Eight publications discussed the use of smartphones and AI, specifically how they enable clinicians and patients to have increased access to instant dermatologic assessments but with varying accuracies. Five publications discussed large language models and NMSC, including how they may facilitate or hinder patient education and medical decision-making. Three publications pertaining to the skin of color and AI for NMSC discussed concerns regarding limited diverse data sets for the training of convolutional neural networks. AI demonstrates tremendous potential to improve diagnosis, patient and clinician education, and management of NMSC. Despite excitement regarding AI, data sets are often not transparently reported, may include low-quality images, and may not include diverse skin types, limiting generalizability. AI may serve as a tool to increase access to dermatology services for patients in rural areas and save health care dollars. These benefits can only be achieved, however, with consideration of potential ethical costs.
Collapse
Affiliation(s)
- Megan H Trager
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Emily R Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Alyssa Breneman
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunhua Weng
- Department of Biomedical Informatics, Columbia University Irving Medical Center, New York, NY, USA
| | - Faramarz H Samie
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Bulińska B, Mazur-Milecka M, Sławińska M, Rumiński J, Nowicki RJ. Artificial Intelligence in the Diagnosis of Onychomycosis-Literature Review. J Fungi (Basel) 2024; 10:534. [PMID: 39194860 DOI: 10.3390/jof10080534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/22/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Onychomycosis is a common fungal nail infection that is difficult to diagnose due to its similarity to other nail conditions. Accurate identification is essential for effective treatment. The current gold standard methods include microscopic examination with potassium hydroxide, fungal cultures, and Periodic acid-Schiff biopsy staining. These conventional techniques, however, suffer from high turnover times, variable sensitivity, reliance on human interpretation, and costs. This study examines the potential of integrating AI (artificial intelligence) with visualization tools like dermoscopy and microscopy to improve the accuracy and efficiency of onychomycosis diagnosis. AI algorithms can further improve the interpretation of these images. The review includes 14 studies from PubMed and IEEE databases published between 2010 and 2024, involving clinical and dermoscopic pictures, histopathology slides, and KOH microscopic images. Data extracted include study type, sample size, image assessment model, AI algorithms, test performance, and comparison with clinical diagnostics. Most studies show that AI models achieve an accuracy comparable to or better than clinicians, suggesting a promising role for AI in diagnosing onychomycosis. Nevertheless, the niche nature of the topic indicates a need for further research.
Collapse
Affiliation(s)
- Barbara Bulińska
- Department of Dermatology, Venereology, and Allergology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Magdalena Mazur-Milecka
- Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Computer Science, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Martyna Sławińska
- Department of Dermatology, Venereology, and Allergology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| | - Jacek Rumiński
- Department of Biomedical Engineering, Faculty of Electronics, Telecommunications and Computer Science, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Roman J Nowicki
- Department of Dermatology, Venereology, and Allergology, Faculty of Medicine, Medical University of Gdańsk, 80-214 Gdańsk, Poland
| |
Collapse
|
4
|
Marri SS, Albadri W, Hyder MS, Janagond AB, Inamadar AC. Efficacy of an Artificial Intelligence App (Aysa) in Dermatological Diagnosis: Cross-Sectional Analysis. JMIR DERMATOLOGY 2024; 7:e48811. [PMID: 38954807 PMCID: PMC11252620 DOI: 10.2196/48811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/12/2023] [Accepted: 06/08/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Dermatology is an ideal specialty for artificial intelligence (AI)-driven image recognition to improve diagnostic accuracy and patient care. Lack of dermatologists in many parts of the world and the high frequency of cutaneous disorders and malignancies highlight the increasing need for AI-aided diagnosis. Although AI-based applications for the identification of dermatological conditions are widely available, research assessing their reliability and accuracy is lacking. OBJECTIVE The aim of this study was to analyze the efficacy of the Aysa AI app as a preliminary diagnostic tool for various dermatological conditions in a semiurban town in India. METHODS This observational cross-sectional study included patients over the age of 2 years who visited the dermatology clinic. Images of lesions from individuals with various skin disorders were uploaded to the app after obtaining informed consent. The app was used to make a patient profile, identify lesion morphology, plot the location on a human model, and answer questions regarding duration and symptoms. The app presented eight differential diagnoses, which were compared with the clinical diagnosis. The model's performance was evaluated using sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and F1-score. Comparison of categorical variables was performed with the χ2 test and statistical significance was considered at P<.05. RESULTS A total of 700 patients were part of the study. A wide variety of skin conditions were grouped into 12 categories. The AI model had a mean top-1 sensitivity of 71% (95% CI 61.5%-74.3%), top-3 sensitivity of 86.1% (95% CI 83.4%-88.6%), and all-8 sensitivity of 95.1% (95% CI 93.3%-96.6%). The top-1 sensitivities for diagnosis of skin infestations, disorders of keratinization, other inflammatory conditions, and bacterial infections were 85.7%, 85.7%, 82.7%, and 81.8%, respectively. In the case of photodermatoses and malignant tumors, the top-1 sensitivities were 33.3% and 10%, respectively. Each category had a strong correlation between the clinical diagnosis and the probable diagnoses (P<.001). CONCLUSIONS The Aysa app showed promising results in identifying most dermatoses.
Collapse
Affiliation(s)
- Shiva Shankar Marri
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be) University, Vijayapura, Karnataka, India
| | - Warood Albadri
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be) University, Vijayapura, Karnataka, India
| | - Mohammed Salman Hyder
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be) University, Vijayapura, Karnataka, India
| | - Ajit B Janagond
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be) University, Vijayapura, Karnataka, India
| | - Arun C Inamadar
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be) University, Vijayapura, Karnataka, India
| |
Collapse
|
5
|
Gordon ER, Trager MH, Kontos D, Weng C, Geskin LJ, Dugdale LS, Samie FH. Ethical considerations for artificial intelligence in dermatology: a scoping review. Br J Dermatol 2024; 190:789-797. [PMID: 38330217 DOI: 10.1093/bjd/ljae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
The field of dermatology is experiencing the rapid deployment of artificial intelligence (AI), from mobile applications (apps) for skin cancer detection to large language models like ChatGPT that can answer generalist or specialist questions about skin diagnoses. With these new applications, ethical concerns have emerged. In this scoping review, we aimed to identify the applications of AI to the field of dermatology and to understand their ethical implications. We used a multifaceted search approach, searching PubMed, MEDLINE, Cochrane Library and Google Scholar for primary literature, following the PRISMA Extension for Scoping Reviews guidance. Our advanced query included terms related to dermatology, AI and ethical considerations. Our search yielded 202 papers. After initial screening, 68 studies were included. Thirty-two were related to clinical image analysis and raised ethical concerns for misdiagnosis, data security, privacy violations and replacement of dermatologist jobs. Seventeen discussed limited skin of colour representation in datasets leading to potential misdiagnosis in the general population. Nine articles about teledermatology raised ethical concerns, including the exacerbation of health disparities, lack of standardized regulations, informed consent for AI use and privacy challenges. Seven addressed inaccuracies in the responses of large language models. Seven examined attitudes toward and trust in AI, with most patients requesting supplemental assessment by a physician to ensure reliability and accountability. Benefits of AI integration into clinical practice include increased patient access, improved clinical decision-making, efficiency and many others. However, safeguards must be put in place to ensure the ethical application of AI.
Collapse
Affiliation(s)
- Emily R Gordon
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Megan H Trager
- Columbia University Irving Medical Center, Departments of Dermatology
| | - Despina Kontos
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, Philadelphia, PA, USA
- Radiology
| | | | - Larisa J Geskin
- Columbia University Irving Medical Center, Departments of Dermatology
| | - Lydia S Dugdale
- Columbia University Vagelos College of Physicians and Surgeons, Department of Medicine, Center for Clinical Medical Ethics, New York, NY, USA
| | - Faramarz H Samie
- Columbia University Irving Medical Center, Departments of Dermatology
| |
Collapse
|
6
|
Alhatem A, Wong T, Clark Lambert W. Revolutionizing diagnostic pathology: The emergence and impact of artificial intelligence-what doesn't kill you makes you stronger? Clin Dermatol 2024; 42:268-274. [PMID: 38181890 DOI: 10.1016/j.clindermatol.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
This study explored the integration and impact of artificial intelligence (AI) in diagnostic pathology, particularly dermatopathology, assessing its challenges and potential solutions for global health care enhancement. A comprehensive literature search in PubMed and Google Scholar, conducted on March 30, 2023, and using terms related to AI, pathology, and machine learning, yielded 44 relevant publications. These were analyzed under themes including the evolution of deep learning in pathology, AI's role in replacing pathologists, development challenges of diagnostic algorithms, clinical implementation hurdles, strategies for practical application in dermatopathology, and future prospects of AI in this field. The findings highlight AI's transformative potential in pathology, underscore the need for ongoing research, collaboration, and regulatory dialogue, and emphasize the importance of addressing the ethical and practical challenges in AI implementation for improved global health care outcomes.
Collapse
Affiliation(s)
- Albert Alhatem
- Department of Pathology, Immunology and Laboratory Medicine and Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - Trish Wong
- Department of Pathology, Immunology and Laboratory Medicine and Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA
| | - W Clark Lambert
- Department of Pathology, Immunology and Laboratory Medicine and Department of Dermatology, Rutgers-New Jersey Medical School, Newark, New Jersey, USA.
| |
Collapse
|
7
|
Hartmann T, Passauer J, Hartmann J, Schmidberger L, Kneilling M, Volc S. Basic principles of artificial intelligence in dermatology explained using melanoma. J Dtsch Dermatol Ges 2024; 22:339-347. [PMID: 38361141 DOI: 10.1111/ddg.15322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/04/2023] [Indexed: 02/17/2024]
Abstract
The use of artificial intelligence (AI) continues to establish itself in the most diverse areas of medicine at an increasingly fast pace. Nevertheless, many healthcare professionals lack the basic technical understanding of how this technology works, which severely limits its application in clinical settings and research. Thus, we would like to discuss the functioning and classification of AI using melanoma as an example in this review to build an understanding of the technology behind AI. For this purpose, elaborate illustrations are used that quickly reveal the technology involved. Previous reviews tend to focus on the potential applications of AI, thereby missing the opportunity to develop a deeper understanding of the subject matter that is so important for clinical application. Malignant melanoma has become a significant burden for healthcare systems. If discovered early, a better prognosis can be expected, which is why skin cancer screening has become increasingly popular and is supported by health insurance. The number of experts remains finite, reducing their availability and leading to longer waiting times. Therefore, innovative ideas need to be implemented to provide the necessary care. Thus, machine learning offers the ability to recognize melanomas from images at a level comparable to experienced dermatologists under optimized conditions.
Collapse
Affiliation(s)
- Tim Hartmann
- Department of Dermatology, University hospital Tübingen, Tübingen, Germany
| | - Johannes Passauer
- Department of Dermatology, University hospital Tübingen, Tübingen, Germany
| | | | - Laura Schmidberger
- Department of Dermatology, University hospital Tübingen, Tübingen, Germany
| | - Manfred Kneilling
- Department of Dermatology, University hospital Tübingen, Tübingen, Germany
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany
| | - Sebastian Volc
- Department of Dermatology, University hospital Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Hartmann T, Passauer J, Hartmann J, Schmidberger L, Kneilling M, Volc S. Grundprinzipien der künstlichen Intelligenz in der Dermatologie erklärt am Beispiel des Melanoms. J Dtsch Dermatol Ges 2024; 22:339-349. [PMID: 38450927 DOI: 10.1111/ddg.15322_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/04/2023] [Indexed: 03/08/2024]
Abstract
ZusammenfassungDer Einsatz von künstlicher Intelligenz (KI) setzt sich in den verschiedensten Bereichen der Medizin immer schneller durch. Dennoch fehlt vielen medizinischen Kollegen das technische Grundverständnis für die Funktionsweise dieser Technologie, was ihre Anwendung in Klinik und Forschung stark einschränkt. Daher möchten wir in dieser Übersichtsarbeit die Funktionsweise und Klassifizierung der KI am Beispiel des Melanoms erörtern, um ein Verständnis für die Technologie hinter der KI zu schaffen. Dazu werden ausführliche Illustrationen verwendet, die die Technologie schnell erklären. Bisherige Übersichten konzentrieren sich eher auf die potenziellen Anwendungen der KI und verpassen die Gelegenheit, ein tieferes Verständnis für die Materie herauszuarbeiten, das für die klinische Anwendung so wichtig ist. Das maligne Melanom ist zu einer erheblichen Belastung für die Gesundheitssysteme geworden. Bei frühzeitiger Entdeckung ist eine bessere Prognose zu erwarten, weshalb das Hautkrebs‐Screening immer populärer und von den Krankenkassen unterstützt wird. Die Zahl der Fachärzte ist jedoch begrenzt, was ihre Verfügbarkeit einschränkt und zu längeren Wartezeiten führt. Daher müssen innovative Ideen umgesetzt werden, um die notwendige Versorgung zu gewährleisten. Das maschinelle Lernen bietet die Möglichkeit, Melanome auf Bildern zu erkennen, und zwar auf einem Niveau, das mit dem von erfahrenen Dermatologen – unter optimierten Bedingungen – vergleichbar ist.
Collapse
Affiliation(s)
- Tim Hartmann
- Hautklinik, Universitätsklinik, Eberhard Karls Universität, Tübingen
| | - Johannes Passauer
- Hautklinik, Universitätsklinik, Eberhard Karls Universität, Tübingen
| | | | | | - Manfred Kneilling
- Hautklinik, Universitätsklinik, Eberhard Karls Universität, Tübingen
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University, Tübingen
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls Universität, Tübingen
| | - Sebastian Volc
- Hautklinik, Universitätsklinik, Eberhard Karls Universität, Tübingen
| |
Collapse
|
9
|
Corbin CK, Maclay R, Acharya A, Mony S, Punnathanam S, Thapa R, Kotecha N, Shah NH, Chen JH. DEPLOYR: a technical framework for deploying custom real-time machine learning models into the electronic medical record. J Am Med Inform Assoc 2023; 30:1532-1542. [PMID: 37369008 PMCID: PMC10436147 DOI: 10.1093/jamia/ocad114] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
OBJECTIVE Heatlhcare institutions are establishing frameworks to govern and promote the implementation of accurate, actionable, and reliable machine learning models that integrate with clinical workflow. Such governance frameworks require an accompanying technical framework to deploy models in a resource efficient, safe and high-quality manner. Here we present DEPLOYR, a technical framework for enabling real-time deployment and monitoring of researcher-created models into a widely used electronic medical record system. MATERIALS AND METHODS We discuss core functionality and design decisions, including mechanisms to trigger inference based on actions within electronic medical record software, modules that collect real-time data to make inferences, mechanisms that close-the-loop by displaying inferences back to end-users within their workflow, monitoring modules that track performance of deployed models over time, silent deployment capabilities, and mechanisms to prospectively evaluate a deployed model's impact. RESULTS We demonstrate the use of DEPLOYR by silently deploying and prospectively evaluating 12 machine learning models trained using electronic medical record data that predict laboratory diagnostic results, triggered by clinician button-clicks in Stanford Health Care's electronic medical record. DISCUSSION Our study highlights the need and feasibility for such silent deployment, because prospectively measured performance varies from retrospective estimates. When possible, we recommend using prospectively estimated performance measures during silent trials to make final go decisions for model deployment. CONCLUSION Machine learning applications in healthcare are extensively researched, but successful translations to the bedside are rare. By describing DEPLOYR, we aim to inform machine learning deployment best practices and help bridge the model implementation gap.
Collapse
Affiliation(s)
- Conor K Corbin
- Department of Biomedical Data Science, Stanford, California, USA
| | - Rob Maclay
- Stanford Children’s Health, Palo Alto, California, USA
| | | | | | | | - Rahul Thapa
- Stanford Health Care, Palo Alto, California, USA
| | | | - Nigam H Shah
- Center for Biomedical Informatics Research, Division of Hospital Medicine, Department of Medicine, Stanford University, School of Medicine, Stanford, California, USA
| | - Jonathan H Chen
- Center for Biomedical Informatics Research, Division of Hospital Medicine, Department of Medicine, Stanford University, School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Lukić A, Kudelić N, Antičević V, Lazić-Mosler E, Glunčić V, Hren D, Lukić IK. First-year nursing students' attitudes towards artificial intelligence: Cross-sectional multi-center study. Nurse Educ Pract 2023; 71:103735. [PMID: 37541081 DOI: 10.1016/j.nepr.2023.103735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
AIM To assess the attitudes of nursing students toward artificial intelligence. BACKGROUND Possible applications of artificial intelligence-powered systems in nursing cover all aspects of nursing care, from patient care to risk management. Although the final acceptance of artificial intelligence in practice will depend on positive 'nurses' attitudes toward artificial intelligence, those attitudes have gained little attention so far. DESIGN A cross-sectional multicenter study. METHODS The study was performed at nursing schools of four Croatian universities, surveying a total of 336 first-year nursing students (response rate 69.7%) enrolled in 2021. A validated instrument, the General Attitudes towards Artificial Intelligence Scale, consisting of 20 Likert-type items, was chosen for the study. Where applicable, the items were contextualized for nursing. Four sub-scales were identified based on the outcomes of the factor analysis. RESULTS The average attitude score was (mean ± standard deviation) 64.5 ± 11.7, out of a maximum of 100, which was significantly higher than the neutral score of 60.0 (p < 0.001). The attitude towards AI did not differ across the universities and was not associated with students' age. Male students scored slightly higher than their female colleagues. Scores on subscales "Benefits of artificial intelligence in nursing", "Willingness to use artificial intelligence in nursing practice", and "Dangers of artificial intelligence" were favorable of artificial intelligence-based solutions. However, scores on the subscale "Practical advantages of artificial intelligence" were somewhat unfavorable. CONCLUSIONS First-year nursing students had slightly positive attitudes towards artificial intelligence in nursing, which should make it easier for the new generations of nurses to embrace and implement artificial intelligence systems. Reservations about artificial intelligence in daily nursing practice indicate that nursing students might benefit from education focused specifically on applications of artificial intelligence in nursing.
Collapse
Affiliation(s)
- Anita Lukić
- Varaždin General Hospital, Varaždin, Croatia; University of Applied Sciences, Bjelovar, Croatia; University North, Koprivnica, Croatia
| | - Nenad Kudelić
- Varaždin General Hospital, Varaždin, Croatia; University North, Koprivnica, Croatia
| | - Vesna Antičević
- University Department of Health Studies, University of Split, Split, Croatia
| | - Elvira Lazić-Mosler
- Department of Nursing, Catholic University of Croatia, Zagreb, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia
| | - Vicko Glunčić
- Department of Anesthesiology, Mount Sinai Hospital, Chicago, IL, USA
| | - Darko Hren
- Department of Psychology, Faculty of Humanities and Social Sciences, University of Split, Split, Croatia
| | - Ivan K Lukić
- University of Applied Sciences, Bjelovar, Croatia; School of Medicine, Catholic University of Croatia, Zagreb, Croatia.
| |
Collapse
|
11
|
Marri SS, Inamadar AC, Janagond AB, Albadri W. Analyzing the Predictability of an Artificial Intelligence App (Tibot) in the Diagnosis of Dermatological Conditions: A Cross-sectional Study. JMIR DERMATOLOGY 2023; 6:e45529. [PMID: 37632978 PMCID: PMC10335135 DOI: 10.2196/45529] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/13/2023] Open
Abstract
BACKGROUND Artificial intelligence (AI) aims to create programs that reproduce human cognition and processes involved in interpreting complex data. Dermatology relies on morphological features and is ideal for applying AI image recognition for assisted diagnosis. Tibot is an AI app that analyzes skin conditions and works on the principle of a convolutional neural network. Appropriate research analyzing the accuracy of such apps is necessary. OBJECTIVE This study aims to analyze the predictability of the Tibot AI app in the identification of dermatological diseases as compared to a dermatologist. METHODS This is a cross-sectional study. After taking informed consent, photographs of lesions of patients with different skin conditions were uploaded to the app. In every condition, the AI predicted three diagnoses based on probability, and these were compared with that by a dermatologist. The ability of the AI app to predict the actual diagnosis in the top one and top three anticipated diagnoses (prediction accuracy) was used to evaluate the app's effectiveness. Sensitivity, specificity, and positive predictive value were also used to assess the app's performance. Chi-square test was used to contrast categorical variables. P<.05 was considered statistically significant. RESULTS A total of 600 patients were included. Clinical conditions included alopecia, acne, eczema, immunological disorders, pigmentary disorders, psoriasis, infestation, tumors, and infections. In the anticipated top three diagnoses, the app's mean prediction accuracy was 96.1% (95% CI 94.3%-97.5%), while for the exact diagnosis, it was 80.6% (95% CI 77.2%-83.7%). The prediction accuracy (top one) for alopecia, acne, pigmentary disorders, and fungal infections was 97.7%, 91.7%, 88.5%, and 82.9%, respectively. Prediction accuracy (top three) for alopecia, eczema, and tumors was 100%. The sensitivity and specificity of the app were 97% (95% CI 95%-98%) and 98% (95% CI 98%-99%), respectively. There is a statistically significant association between clinical and AI-predicted diagnoses in all conditions (P<.001). CONCLUSIONS The AI app has shown promising results in diagnosing various dermatological conditions, and there is great potential for practical applicability.
Collapse
Affiliation(s)
- Shiva Shankar Marri
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka, India
| | - Arun C Inamadar
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka, India
| | - Ajit B Janagond
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka, India
| | - Warood Albadri
- Department of Dermatology, Venereology and Leprosy, Shri B M Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapur, Karnataka, India
| |
Collapse
|
12
|
Jartarkar SR, Cockerell CJ, Patil A, Kassir M, Babaei M, Weidenthaler‐Barth B, Grabbe S, Goldust M. Artificial intelligence in Dermatopathology. J Cosmet Dermatol 2022; 22:1163-1167. [PMID: 36548174 DOI: 10.1111/jocd.15565] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/14/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ever evolving research in medical field has reached an exciting stage with advent of newer technologies. With the introduction of digital microscopy, pathology has transitioned to become more digitally oriented speciality. The potential of artificial intelligence (AI) in dermatopathology is to aid the diagnosis, and it requires dermatopathologists' guidance for efficient functioning of artificial intelligence. METHOD Comprehensive literature search was performed using electronic online databases "PubMed" and "Google Scholar." Articles published in English language were considered for the review. RESULTS Convolutional neural network, a type of deep neural network, is considered as an ideal tool in image recognition, processing, classification, and segmentation. Implementation of AI in tumor pathology is involved in the diagnosis, grading, staging, and prognostic prediction as well as in identification of genetic or pathological features. In this review, we attempt to discuss the use of AI in dermatopathology, the attitude of patients and clinicians, its challenges, limitation, and potential opportunities in future implementation.
Collapse
Affiliation(s)
- Shishira R. Jartarkar
- Department of Dermatology Vydehi Institute of Medical Sciences and Research Centre University‐RGUHS Bengaluru India
| | - Clay J. Cockerell
- Departments of Dermatology and Pathology The University of Texas Southwestern Medical Center Dallas Texas USA
| | - Anant Patil
- Department of Pharmacology Dr. DY Patil Medical College Navi Mumbai India
| | | | - Mahsa Babaei
- School of Medicine Stanford University California USA
| | - Beate Weidenthaler‐Barth
- Department of Dermatology University Medical Center of the Johannes Gutenberg University Mainz Germany
| | - Stephan Grabbe
- Department of Dermatology University Medical Center of the Johannes Gutenberg University Mainz Germany
| | - Mohamad Goldust
- Department of Dermatology University Medical Center Mainz Mainz Germany
| |
Collapse
|
13
|
Jartarkar SR. Artificial intelligence: Its role in dermatopathology. Indian J Dermatol Venereol Leprol 2022:1-4. [PMID: 36688886 DOI: 10.25259/ijdvl_725_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/01/2022] [Indexed: 12/15/2022]
Abstract
Artificial intelligence (AI), a major frontier in the field of medical research, can potentially lead to a paradigm shift in clinical practice. A type of artificial intelligence system known as convolutional neural network points to the possible utility of deep learning in dermatopathology. Though pathology has been traditionally restricted to microscopes and glass slides, recent advancement in digital pathological imaging has led to a transition making it a potential branch for the implementation of artificial intelligence. The current application of artificial intelligence in dermatopathology is to complement the diagnosis and requires a well-trained dermatopathologist's guidance for better designing and development of deep learning algorithms. Here we review the recent advances of artificial intelligence in dermatopathology, its applications in disease diagnosis and in research, along with its limitations and future potential.
Collapse
Affiliation(s)
- Shishira R Jartarkar
- Department of Dermatology, Venereology and Leprosy, Vydehi Institute of Medical Sciences and Research Centre, Whitefield, Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Artificial Intelligence Confirming Treatment Success: The Role of Gender- and Age-Specific Scales in Performance Evaluation. Plast Reconstr Surg 2022; 150:34S-40S. [PMID: 36170434 PMCID: PMC9512241 DOI: 10.1097/prs.0000000000009671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In plastic surgery and cosmetic dermatology, photographic data are an invaluable element of research and clinical practice. Additionally, the use of before and after images is a standard documentation method for procedures, and these images are particularly useful in consultations for effective communication with the patient. An artificial intelligence (AI)-based approach has been proven to have significant results in medical dermatology, plastic surgery, and antiaging procedures in recent years, with applications ranging from skin cancer screening to 3D face reconstructions, the prediction of biological age and perceived age. The increasing use of AI and computer vision methods is due to their noninvasive nature and their potential to provide remote diagnostics. This is especially helpful in instances where traveling to a physical office is complicated, as we have experienced in recent years with the global coronavirus pandemic. However, one question remains: how should the results of AI-based analysis be presented to enable personalization? In this paper, the author investigates the benefit of using gender- and age-specific scales to present skin parameter scores calculated using AI-based systems when analyzing image data.
Collapse
|
15
|
Willem T, Krammer S, Böhm A, French LE, Hartmann D, Lasser T, Buyx A. Risks and benefits of dermatological machine learning healthcare applications – an overview and ethical analysis. J Eur Acad Dermatol Venereol 2022; 36:1660-1668. [DOI: 10.1111/jdv.18192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/07/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Theresa Willem
- Technical University of Munich School of Medicine, Institute of History and Ethics in Medicine Germany
- Technical University of Munich School of Social Sciences and Technology, Department of Science, Technology and Society (STS)
| | - Sebastian Krammer
- Ludwig Maximilian University of Munich Department of Dermatology and Allergology Munich Germany
| | - Anne‐Sophie Böhm
- Ludwig Maximilian University of Munich Department of Dermatology and Allergology Munich Germany
| | - Lars E. French
- Ludwig Maximilian University of Munich Department of Dermatology and Allergology Munich Germany
- Dr. Philip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Daniela Hartmann
- Ludwig Maximilian University of Munich Department of Dermatology and Allergology Munich Germany
| | - Tobias Lasser
- Technical University of Munich School of Computation, Information and Technology, Department of Informatics Germany
- Technical University of Munich Institute of Biomedical Engineering Germany Munich
| | - Alena Buyx
- Technical University of Munich School of Medicine, Institute of History and Ethics in Medicine Germany
| |
Collapse
|
16
|
Eapen BR, Kaliyadan F, Ashique KT. DICODerma: A Practical Approach for Metadata Management of Images in Dermatology. J Digit Imaging 2022; 35:1231-1237. [PMID: 35488074 PMCID: PMC9054111 DOI: 10.1007/s10278-022-00636-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/07/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Clinical images are vital for diagnosing and monitoring skin diseases, and their importance has increased with the growing popularity of machine learning. Lack of standards has stifled innovation in dermatological imaging, unlike other image-intensive specialties such as radiology. We investigate the meta-requirements for utilizing the popular DICOM standard for metadata management of images in dermatology. We propose practical design solutions and provide open-source tools to integrate dermatologists’ workflow with enterprise imaging systems. Using the tool, dermatologists can tag, search, organize and convert clinical images to the DICOM format. We believe that our less disruptive approach will improve the adoption of standards in the specialty.
Collapse
Affiliation(s)
- Bell Raj Eapen
- McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada.
| | - Feroze Kaliyadan
- Department of Dermatology, Sree Narayana Institute of Medical Sciences, Kunnukara, Kerala, India
| | | |
Collapse
|
17
|
Gupta AK, Hall DC. Diagnosing onychomycosis: A step forward? J Cosmet Dermatol 2021; 21:530-535. [PMID: 34918448 DOI: 10.1111/jocd.14681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/09/2021] [Accepted: 12/08/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS There are a number of available methods for diagnosing onychomycosis, but more emerge as technology advances. This review briefly discusses the common diagnostic methods, the use of artificial intelligence (AI) as a diagnostic tool in dermatology as a whole, and then examines research on the use of AI for diagnosing onychomycosis. The studies discussed implemented convolutional neural networks (CNNs) to examine datasets of images of entire nails or histological images and then used the information learned from those datasets to make a diagnostic decision of onychomycosis or not. RESULTS Results: It was found that, on average, AI were able to diagnose onychomycosis from the images provided at an equivalent level as human dermatologists. However, there are a number of clear limitations for using AI in this manner. The AI models implemented relied solely on images and therefore were limited by image quality. As only images were examined, other clinical data were not taken into consideration, which could be important to the diagnostic outcome. CONCLUSION Conclusion: In conclusion, although AI can be a very helpful tool in the diagnostic process by increasing efficiency and reducing costs, it still requires the precision and expertise of professional dermatologists to be used optimally.
Collapse
Affiliation(s)
- Aditya K Gupta
- Mediprobe Research Inc., London, ON, Canada.,Division of Dermatology, Department of Medicine, University of Toronto School of Medicine, Toronto, ON, Canada
| | | |
Collapse
|