1
|
Sergi D, Melloni M, Passaro A, Neri LM. Influence of Type 2 Diabetes and Adipose Tissue Dysfunction on Breast Cancer and Potential Benefits from Nutraceuticals Inducible in Microalgae. Nutrients 2024; 16:3243. [PMID: 39408212 PMCID: PMC11478231 DOI: 10.3390/nu16193243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Breast cancer (BC) represents the most prevalent cancer in women at any age after puberty. From a pathogenetic prospective, despite a wide array of risk factors being identified thus far, poor metabolic health is emerging as a putative risk factor for BC. In particular, type 2 diabetes mellitus (T2DM) provides a perfect example bridging the gap between poor metabolic health and BC risk. Indeed, T2DM is preceded by a status of hyperinsulinemia and is characterised by hyperglycaemia, with both factors representing potential contributors to BC onset and progression. Additionally, the aberrant secretome of the dysfunctional, hypertrophic adipocytes, typical of obesity, characterised by pro-inflammatory mediators, is a shared pathogenetic factor between T2DM and BC. In this review, we provide an overview on the effects of hyperglycaemia and hyperinsulinemia, hallmarks of type 2 diabetes mellitus, on breast cancer risk, progression, treatment and prognosis. Furthermore, we dissect the role of the adipose-tissue-secreted adipokines as additional players in the pathogenesis of BC. Finally, we focus on microalgae as a novel superfood and a source of nutraceuticals able to mitigate BC risk by improving metabolic health and targeting cellular pathways, which are disrupted in the context of T2DM and obesity.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Mattia Melloni
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Angelina Passaro
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
| | - Luca Maria Neri
- Department of Translational Medicine, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy; (D.S.); (M.M.)
- Laboratory for Technologies of Advanced Therapies (LTTA)—Electron Microscopy Center, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Vijayashankar U, Ramashetty R, Rajeshekara M, Vishwanath N, Yadav AK, Prashant A, Lokeshwaraiah R. Leptin and ghrelin dynamics: unraveling their influence on food intake, energy balance, and the pathophysiology of type 2 diabetes mellitus. J Diabetes Metab Disord 2024; 23:427-440. [PMID: 38932792 PMCID: PMC11196531 DOI: 10.1007/s40200-024-01418-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/12/2024] [Indexed: 06/28/2024]
Abstract
Purpose Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by insulin resistance and impaired glucose homeostasis. In recent years, there has been growing interest in the role of hunger and satiety hormones such as ghrelin and leptin in the development and progression of T2DM. In this context, the present literature review aims to provide a comprehensive overview of the current understanding of how ghrelin and leptin influences food intake and maintain energy balance and its implications in the pathophysiology of T2DM. Methods A thorough literature search was performed using PubMed and Google Scholar to choose the studies that associated leptin and ghrelin with T2DM. Original articles and reviews were included, letters to editors and case reports were excluded. Results This narrative review article provides a comprehensive summary on mechanism of action of leptin and ghrelin, its association with obesity and T2DM, how they regulate energy and glucose homeostasis and potential therapeutic implications of leptin and ghrelin in managing T2DM. Conclusion Ghrelin, known for its appetite-stimulating effects, and leptin, a hormone involved in the regulation of energy balance, have been implicated in insulin resistance and glucose metabolism. Understanding the complexities of ghrelin and leptin interactions in the context of T2DM may offer insights into novel therapeutic strategies for this prevalent metabolic disorder. Further research is warranted to elucidate the molecular mechanisms underlying these hormone actions and to explore their clinical implications for T2DM prevention and management.
Collapse
Affiliation(s)
- Uma Vijayashankar
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Rajalakshmi Ramashetty
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Mahesh Rajeshekara
- Department of Surgical Gastroenterology, Bangalore Medical College and Research Institute, Bangalore, 560002 India
| | - Nagashree Vishwanath
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| | - Anshu Kumar Yadav
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru-15, Mysuru, 570015 India
| | - Akila Prashant
- Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru-15, Mysuru, 570015 India
| | - Rajeshwari Lokeshwaraiah
- Department of Physiology, JSS Medical College, JSS Academy of Higher Education & Research, Mysuru, 570015 India
| |
Collapse
|
3
|
Dutta S, Singhal AK, Suryan V, Chandra NC. Obesity: An Impact with Cardiovascular and Cerebrovascular Diseases. Indian J Clin Biochem 2024; 39:168-178. [PMID: 38577137 PMCID: PMC10987439 DOI: 10.1007/s12291-023-01157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 04/06/2024]
Abstract
The authors sought to correlate the complex sequel of obesity with various parameters known to develop metabolic syndrome viz. insulin resistance, dyslipidemia, hypertension etc., as these anomalies are linked to vascular atherosclerosis and outbreak of cardiovascular and cerebrovascular diseases. A comprehensive online survey using MEDLINE, Scopus, PubMed and Google Scholar was conducted for relevant journals from 1970 till present time (2023) with key search terms like: 'obesity', 'leptin', type-2 diabetes', 'atherosclerosis', 'cardiovascular and cerebrovascular diseases'. The findings of the reports were compared and correlated. The information was then collated for developing this review. Reports showed that in human obesity, hyper-leptinemia could induce hyperglycemia, which in turn templates hypercholesterolemia. Persisting hypercholesterolemia over a period of time may en-route atherosclerosis in blood vessels. Thus obesity has been considered as a template for originating hyperglycemia, hypercholesterolemia and outbreak of vascular atherogenesis or in other words, obesity in long run can trigger atherosclerosis and its related disorders e.g. heart attack and stroke. Literature survey shows that primarily, co-morbidities of human obesity start with leptin and insulin resistance and then multiplies with metabolic irregularities to an extreme that results in pathogenesis of heart attack and stroke. Atherosclerosis associated cardiovascular and cerebrovascular events are independent risks of obese subjects and particularly in the cases of persisting obesity.
Collapse
Affiliation(s)
- Savi Dutta
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
| | - A. K. Singhal
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
- Present Address: Department of Biochemistry, Al Falah School of Medical Sciences & Research Centre, Faridabad, Haryana India
| | - Varsha Suryan
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
- Present Address: Department of Paramedical Science, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
| | - Nimai Chand Chandra
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
| |
Collapse
|
4
|
Rentflejsz J, Wojszel ZB. Diabetes Mellitus Should Be Considered While Analysing Sarcopenia-Related Biomarkers. J Clin Med 2024; 13:1107. [PMID: 38398421 PMCID: PMC10889814 DOI: 10.3390/jcm13041107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Sarcopenia is a chronic, progressive skeletal muscle disease characterised by low muscle strength and quantity or quality, leading to low physical performance. Patients with type 2 diabetes mellitus (T2DM) are more at risk of sarcopenia than euglycemic individuals. Because of several shared pathways between the two diseases, sarcopenia is also a risk factor for developing T2DM in older patients. Various biomarkers are under investigation as potentially valuable for sarcopenia diagnosis and treatment monitoring. Biomarkers related to sarcopenia can be divided into markers evaluating musculoskeletal status (biomarkers specific to muscle mass, markers of the neuromuscular junction, or myokines) and markers assuming causal factors (adipokines, hormones, and inflammatory markers). This paper reviews the current knowledge about how diabetes and T2DM complications affect potential sarcopenia biomarker concentrations. This review includes markers recently proposed by the expert group of the European Society for the Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO) as those that may currently be useful in phase II and III clinical trials of sarcopenia: myostatin (MSTN); follistatin (FST); irisin; brain-derived neurotrophic factor (BDNF); procollagen type III N-terminal peptide (PIIINP; P3NP); sarcopenia index (serum creatinine to serum cystatin C ratio); adiponectin; leptin; insulin-like growth factor-1 (IGF-1); dehydroepiandrosterone sulphate (DHEAS); C-reactive protein (CRP); interleukin-6 (IL-6), and tumor necrosis factor α (TNF-α). A better understanding of factors influencing these biomarkers' levels, including diabetes and diabetic complications, may lead to designing future studies and implementing results in clinical practice.
Collapse
Affiliation(s)
- Justyna Rentflejsz
- Doctoral School, Medical University of Bialystok, 15-089 Bialystok, Poland
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland;
| | - Zyta Beata Wojszel
- Department of Geriatrics, Medical University of Bialystok, 15-471 Bialystok, Poland;
| |
Collapse
|
5
|
He Q, Yang J, Chen W, Pan Z, Chen B, Zeng J, Zhang N, Lin Y, Chen C, Xiao J, Li M, Li S, Wang H, Chen P. Biochanin A abrogates osteoclastogenesis in type 2 diabetic osteoporosis via regulating ROS/MAPK signaling pathway based on integrating molecular docking and experimental validation. BMC Complement Med Ther 2024; 24:24. [PMID: 38191438 PMCID: PMC10773052 DOI: 10.1186/s12906-023-04332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND There are accumulating type 2 diabetes patients who have osteoporosis simultaneously. More effective therapeutic strategies should be discovered. Biochanin A (BCA) has been indicated that can play a role in improving metabolic disorders of type 2 diabetes and preventing osteoporosis. But whether BCA can treat type 2 diabetic osteoporosis has not been studied. PURPOSE To investigate if the BCA can protect against type 2 diabetic osteoporosis and clarify the mechanism. METHODS Micro-CT and histology assays were performed to detect the trabecular bone and analyze the bone histomorphology effect of BCA. CCK-8 assay was performed to detect the toxicity of BCA. TRAcP staining, immunofluorescence and hydroxyapatite resorption assay were used to observe osteoclasts differentiation and resorptive activity. Molecular docking provided evidence about BCA regulating the MAPK axis via prediction by the algorithm. QRT-PCR and Western Blotting were utilized to detect the expression of osteoclastogenesis-related markers and MAPK signaling pathway. RESULTS Accumulation of bone volume after BCA treatment could be found based on the 3D reconstruction. Besides, there were fewer osteoclasts in db/db mice treated with BCA than db/db mice treated with saline. In vitro, we found that BCA hadn't toxicity in osteoclasts precursor, but also inhibited differentiation of osteoclasts. Further, we found that BCA suppresses osteoclastogenesis via ROS/MAPK signaling pathway. CONCLUSION BCA can prevent type 2 diabetic osteoporosis by restricting osteoclast differentiation via ROS/MAPK signaling pathway.
Collapse
Affiliation(s)
- Qi He
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Junzheng Yang
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
- Fifth School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
| | - Weijian Chen
- Fifth School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
| | - Zhaofeng Pan
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Baihao Chen
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Jiaxu Zeng
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Nenling Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550025, P.R. China
| | - Yuewei Lin
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Chuyi Chen
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Jiacong Xiao
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Miao Li
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Shaocong Li
- First School of Medicine, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China
- The Laboratory of Orthopaedics and Traumatology of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P.R. China
| | - Haibin Wang
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China.
| | - Peng Chen
- Department of Orthopaedics, First Affiliated Hospital, Guangzhou University of Chinese Medicine, 12 Jichang Road, Baiyun Area, Guangzhou, 510405, P.R. China.
| |
Collapse
|
6
|
Cassandra Mkhize B, Mosili P, Sethu Ngubane P, Khathi A. The relationship between adipose tissue RAAS activity and the risk factors of prediabetes: a systematic review and meta-analysis. Adipocyte 2023; 12:2249763. [PMID: 37606270 PMCID: PMC10472858 DOI: 10.1080/21623945.2023.2249763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/29/2023] [Accepted: 08/11/2023] [Indexed: 08/23/2023] Open
Abstract
METHODS This systematic review was developed in compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-2020) standards. This was accomplished by searching clinical MeSH categories in MEDLINE with full texts, EMBASE, Web of Science, PubMed, Cochrane Library, Academic Search Complete, ICTRP and ClinicalTrial.gov. Reviewers examined all the findings and selected the studies that satisfied the inclusion criteria. The Downs and Black Checklist was used to assess for bias, followed by a Review Manager v5. A Forrest plot was used for the meta-analysis and sensitivity analysis. The protocol for this review was registered with PROSPERO CRD42022320252. RESULTS The clinical studies (n = 2) comprised 1065 patients with prediabetes and 1103 normal controls. The RAAS measurements were completed in the adipose tissue. The RAAS components, renin and aldosterone were higher in the prediabetic (PD) compared to the control [mean difference (MD) = 0.16, 95% CI 0.16 (-0.13, 0.45), p = 0.25]. Furthermore, the PD group demonstrated higher triglycerides mean difference [MD = 7.84, 95% CI 7.84 (-9.84, 25.51), p = 0.38] and increased BMI [MD = 0.13, 95% CI 0.13 (-0.74, 0.99), p = 0.77] compared to the control. The overall quality of the studies was fair with a median score and range of 17 (16-18). CONCLUSION The current study highlights the relationship between increased BMI, RAAS and insulin resistance which is a predictor of prediabetes. The renin is slightly higher in the prediabetes group without any statistical significance, aldosterone is rather negatively associated with prediabetes which may be attributed to the use of anti-hypertensive treatment.
Collapse
Affiliation(s)
| | - Palesa Mosili
- Department of Human Physiology, University of KwaZulu-Natal, Westville, South Africa
| | | | - Andile Khathi
- Department of Human Physiology, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
7
|
Wang C, Chang L, Wang J, Xia L, Cao L, Wang W, Xu J, Gao H. Leptin and risk factors for atherosclerosis: A review. Medicine (Baltimore) 2023; 102:e36076. [PMID: 37986371 PMCID: PMC10659641 DOI: 10.1097/md.0000000000036076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
Leptin is a hormone secreted primarily by adipose tissue. It regulates an organism's metabolism, energy balance, and body weight through a negative feedback mechanism. When a person or animal has low body fat and little energy, the leptin level in the body decreases, and conversely, when there is an excess of nutrients, the leptin level increases, giving a feeling of satiety. However, when leptin levels are abnormal (too high or too low) for a number of reasons, it can negatively affect your health, inducing inflammatory responses, obesity, and other problems. Many studies have shown that abnormal leptin levels, such as hyperleptinemia, are closely associated with common risk factors for atherosclerosis (AS). This review systematically states the relationship between leptin and common risk factors for AS (inflammation, obesity, diabetes mellitus, hypertension, and sleep disorders) and provides some new thoughts on the future direction of research on both. Because the abnormal level of leptin will have adverse effects on multiple atherosclerotic risk factors, how to regulate the leptin level of patients with AS, and whether we can treat and prevent AS by intervening the leptin level, these may be our new research directions in the future.
Collapse
Affiliation(s)
- Cheng Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liping Chang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Jia Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Libo Xia
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Liyuan Cao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Wei Wang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jianwen Xu
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Huize Gao
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
8
|
Khoramipour K, Rezaei MH, Madadizadeh E, Hosseini MS, Soltani Z, Schierbauer J, Moser O. High Intensity Interval Training can Ameliorate Hypothalamic Appetite Regulation in Male Rats with Type 2 Diabetes: The Role of Leptin. Cell Mol Neurobiol 2023; 43:4295-4307. [PMID: 37828299 DOI: 10.1007/s10571-023-01421-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Disruption of leptin (LEP) signaling in the hypothalamus caused by type 2 diabetes (T2D) can impair appetite regulation. The aim of this study was to investigate whether the improvement in appetite regulation induced by high-intensity interval training (HIIT) in rats with T2D can be mediated by LEP signaling. In this study, 20 male Wister rats were randomly assigned to one of four groups: CO (non-type 2 diabetes control), T2D (type 2 diabetes), EX (non-type 2 diabetes exercise), and T2D + EX (type 2 diabetes + exercise).To induce T2D, a combination of a high-fat diet for 2 months and a single dose of streptozotocin (35 mg/kg) was administered. Rats in the EX and T2D + EX groups performed 4-10 intervals of treadmill running at 80-100% of their maximum velocity (Vmax). Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), serum levels of insulin (INS) and LEP (LEPS) as well as hypothalamic expression of LEP receptors (LEP-R), Janus kinase 2 (JAK-2), signal transducer and activator of transcription 3 (STAT-3), neuropeptide Y (NPY), agouti-related protein (AGRP), pro-opiomelanocortin cocaine (POMC), amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1) were assessed. ANOVA and Tukey post hoc tests were used to compare the results between the groups. The levels of LEPS and INS, as well as the levels of LEP-R, JAK-2, STAT-3, POMC, and CART in the hypothalamus were found to be higher in the T2D + EX group compared to the T2D group. On the other hand, the levels of HOMA-IR, NPY, AGRP, SOCS3, and FOXO1 were lower in the T2D + EX group compared to the T2D group (P < 0.0001). The findings of this study suggest that HIIT may improve appetite regulation in rats with T2D, and LEP signaling may play a crucial role in this improvement. Graphical abstract (leptin signaling in the hypothalamus), Leptin (LEP), Leptin receptor (LEP-R), Janus kinase 2 (JAK2), Signal transducer and activator of transcription 3 (STAT3), expressing Neuropeptide Y (NPY), Agouti-related protein (AGRP), anorexigenic neurons (expressing pro-opiomelanocortin cocaine (POMC), Amphetamine-related transcript (CART), suppressor of cytokine signaling (SOCS3), forkhead box protein O1 (FOXO1).
Collapse
Affiliation(s)
- Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Hossein Rezaei
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Elham Madadizadeh
- Department of Exercise Physiology, Faculty of Physical Education, Shahid Bahonar University, Kerman, Iran
| | - Mahdieh Sadat Hosseini
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Student Research Committee, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Janis Schierbauer
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuth, Bayreuth, Germany
| | - Othmar Moser
- Exercise Physiology and Metabolism (Sports Medicine), BaySpo-Bayreuth Centre of Sports Science, University of Bayreuth, Bayreuth, Germany
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
9
|
Fan X, Yuan W, Huang W, Lin Z. Recent progress in leptin signaling from a structural perspective and its implications for diseases. Biochimie 2023; 212:60-75. [PMID: 37080418 DOI: 10.1016/j.biochi.2023.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/14/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
As a multi-potency cytokine, leptin not only plays a crucial role in controlling weight and energy homeostasis but also participates in the metabolic balance in the human body. Leptin is a small helical protein with a molecular weight of 16 kDa. It can interact with multiple subtypes of its receptors to initiate intracellular signal transduction and exerts physiological effects. Disturbances in leptin signaling may lead to obesity and a variety of metabolic diseases. Leptin was also found to be a critical factor in many diseases of the elderly. In this review, we focus on recent advances in the structural and molecular mechanisms of leptin signaling through its receptors with the aim of a deeper understanding of leptin-related diseases.
Collapse
Affiliation(s)
- Xiao Fan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Wensu Yuan
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China
| | - Weidong Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, PR China.
| | - Zhi Lin
- School of Life Sciences, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
10
|
Lu Y, Liu J, Boey J, Hao R, Cheng G, Hou W, Wu X, Liu X, Han J, Yuan Y, Feng L, Li Q. Associations between eating speed and food temperature and type 2 diabetes mellitus: a cross-sectional study. Front Nutr 2023; 10:1205780. [PMID: 37560059 PMCID: PMC10407090 DOI: 10.3389/fnut.2023.1205780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/07/2023] [Indexed: 08/11/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the relationship between eating speed and food temperature and type 2 diabetes mellitus (T2DM) in the Chinese population. METHODS A cross-sectional survey was conducted between December 2020 to March 2022 from the department of Endocrinology at the Shandong Provincial Hospital. All recruited participants were asked to complete structured questionnaires on their eating behaviors at the time of recruitment. Clinical demographic data such as gender, age, height, weight, familial history of T2DM, prevalence of T2DM and various eating behaviors were collected. Univariate and multivariate logistic regression analyses were used to analyze the associations between eating behaviors and T2DM. RESULTS A total of 1,040 Chinese adults were included in the study, including 344 people with T2DM and 696 people without T2DM. Multivariate logistic regression analysis of the general population showed that gender (OR = 2.255, 95% CI: 1.559-3.260, p < 0.001), age (OR = 1.091, 95% CI: 1.075-1.107, p < 0.001), BMI (OR = 1.238, 95% CI: 1.034-1.483, p = 0.020), familial history of T2DM (OR = 5.709, 95% CI: 3.963-8.224, p < 0.001), consumption of hot food (OR = 4.132, 95% CI: 2.899-5.888, p < 0.001), consumption of snacks (OR = 1.745, 95% CI: 1.222-2.492, p = 0.002), and eating speed (OR = 1.292, 95% CI:1.048-1.591, p = 0.016) were risk factors for T2DM. CONCLUSION In addition to traditional risk factors such as gender, age, BMI, familial history of T2DM, eating behaviors associated with Chinese culture, including consumption of hot food, consumption of snacks, and fast eating have shown to be probable risk factors for T2DM.
Collapse
Affiliation(s)
- Yan Lu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Jia Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johnson Boey
- Department of Podiatry, National University Hospital Singapore, Singapore, Singapore
| | - Ruiying Hao
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guopeng Cheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Wentan Hou
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xinhui Wu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Xuan Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Junming Han
- Department of Biostatistics, School of Public Health, Shandong University, Jinan, Shandong, China
| | - Yuan Yuan
- Department of Clinical Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Li Feng
- Department of Clinical Nutrition, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qiu Li
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
11
|
Farrag EAE, Hammad MO, Safwat SM, Hamed S, Hellal D. Artemisinin attenuates type 2 diabetic cardiomyopathy in rats through modulation of AGE-RAGE/HMGB-1 signaling pathway. Sci Rep 2023; 13:11043. [PMID: 37422477 PMCID: PMC10329689 DOI: 10.1038/s41598-023-37678-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Diabetes mellitus is a common metabolic disorder. About two-thirds of diabetic patients develop diabetic cardiomyopathy (DCM), which becomes a challenging issue as it severely threatens the patient's life. Hyperglycemia and the resulting advanced glycated end products (AGE) and their receptor (RAGE)/High Mobility Group Box-1 (HMGB-1) molecular pathway are thought to be key players. Recently, artemisinin (ART) has gained more attention owing to its potent biological activities beyond its antimalarial effect. Herein, we aim to evaluate the effect of ART on DCM and the possible underlying mechanisms. Twenty-four male Sprague-Dawley rats were divided into: control, ART, type 2 diabetic and type 2 diabetic treated with ART groups. At the end of the research, the ECG was recorded, then the heart weight to body weight (HW/BW) ratio, fasting blood glucose, serum insulin and HOMA-IR were evaluated. Cardiac biomarkers (CK-MB and LDH), oxidative stress markers, IL-1β, AGE, RAGE and HMGB-1 expression were also measured. The heart specimens were stained for H&E as well as Masson's trichrome. DCM induced disturbances in all studied parameters; contrary to this, ART improved these insults. Our study concluded that ART could improve DCM through modulation of the AGE-RAGE/HMGB-1 signaling pathway, with subsequent impacts on oxidative stress, inflammation and fibrosis. ART could therefore be a promising therapy for the management of DCM.
Collapse
Affiliation(s)
- Eman A E Farrag
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Maha O Hammad
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Sally M Safwat
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shereen Hamed
- Department of Medical Histology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Doaa Hellal
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
12
|
Antoniak-Pietrynczak K, Zorena K, Jaskulak M, Hansdorfer-Korzon R, Koziński M. Effect of Manual Lymphatic Drainage on the Concentrations of Selected Adipokines, Cytokines, C-Reactive Protein and Parameters of Carbohydrate and Lipid Metabolism in Patients with Abnormal Body Mass Index: Focus on Markers of Obesity and Insulin Resistance. Int J Mol Sci 2023; 24:10338. [PMID: 37373485 DOI: 10.3390/ijms241210338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
The aim of the study was to assess the impact of manual lymphatic drainage (MLD) on the parameters of carbohydrate metabolism, lipid metabolism and the level of selected adipokines and cytokines in people with abnormal body mass index (BMI). In addition, an attempt was made to assess the optimal cut-off values of serum concentrations of the biochemical parameters studied in identifying the risk of obesity and insulin resistance (IR). The study included 60 subjects who underwent 10 and 30 min long MLD sessions three times a week. The study group included 15 patients with a normal body mass index (group I; n = 15), overweight patients (group II; n = 15) and obese patients (group III; n = 10). The control group was IV; n = 20 subjects not undergoing MLD. Biochemical tests were carried out on all subjects at stage 0' (before MLD therapy) and at stage 1' (one month after MLD therapy). In the control group, the time between the sample collection at stage 0' and stage 1' was the same as in the study group. Our results showed that 10 MLD sessions may have a positive effect on the selected biochemical parameters, including insulin, 2h-PG, leptin and HOMA-IR values in normal weight and overweight patients. In addition, in the study group, the highest AUCROC values in identifying the risk of obesity were found for leptin (AUCROC = 82.79%; cut-off = 17.7 ng/mL; p = 0.00004), insulin (AUCROC = 81.51%; cut-off = 9.5 µIU/mL; p = 0.00009) and C-peptide (AUCROC = 80.68%; cut-off = 2.3 ng/mL; p = 0.0001) concentrations as well as for HOMA-IR values (AUCROC = 79.97%; cut-off = 1.8; p = 0.0002). When considering the risk of IR, we observed the highest diagnostic value for insulin (AUCROC = 93.05%; cut-off = 1.8 ng/mL; p = 0.053), which was followed by C-peptide (AUCROC = 89.35%; cut-off = 17.7 ng/mL; p = 0.000001), leptin (AUCROC = 79.76%; cut-off = 17.6 ng/mL; p = 0.0002) and total cholesterol (AUCROC = 77.31%; cut-off = 198 mg/dL; p = 0.0008). Our results indicate that MLD may have a positive effect on selected biochemical parameters, including insulin, 2h-PG, leptin and HOMA-IR, in normal weight and overweight patients. In addition, we successfully established optimal cut-off values for leptin in the assessment of obesity and insulin in the assessment of insulin resistance in patients with abnormal body mass index. Based on our findings, we hypothesize that MLD, when combined with caloric restriction and physical activity, may serve as an effective preventive intervention against the development of obesity and insulin resistance.
Collapse
Affiliation(s)
- Klaudia Antoniak-Pietrynczak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdansk, Dębinki 7, 80-211 Gdansk, Poland
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology, Medical University of Gdansk, Dębinki 7, 80-211 Gdansk, Poland
| | - Marta Jaskulak
- Department of Immunobiology and Environment Microbiology, Medical University of Gdansk, Dębinki 7, 80-211 Gdansk, Poland
| | - Rita Hansdorfer-Korzon
- Department of Physiotherapy, Medical University of Gdansk, Dębinki 7, 80-211 Gdansk, Poland
| | - Marek Koziński
- Department of Cardiology and Internal Diseases, Institute of Maritime and Tropical Medicine, Faculty of Health Sciences, Medical University of Gdansk, Powstania Styczniowego 9b, 81-519 Gdynia, Poland
| |
Collapse
|
13
|
Minato-Inokawa S, Hayashida Y, Honda M, Tsuboi-Kaji A, Takeuchi M, Kitaoka K, Kurata M, Wu B, Kazumi T, Fukuo K. Association between serum leptin concentrations and homeostasis model assessment-insulin resistance of 2.5 and higher in normal weight Japanese women. Sci Rep 2023; 13:8217. [PMID: 37217782 DOI: 10.1038/s41598-023-35490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Normal weight insulin resistant phenotype was characterized in 251 Japanese female university students using homeostasis model assessment-insulin resistance. Birth weight, body composition at age 20, cardiometabolic traits and dietary intake were compared cross-sectionally between insulin sensitive (< 1.6, n = 194) and insulin resistant (2.5 and higher, n = 16) women. BMI averaged < 21 kg/m2 and waist < 72 cm and did not differ between two groups. The percentage of macrosomia and serum absolute and fat-mass corrected leptin concentrations were higher in insulin resistant women although there was no difference in birth weight, fat mass index, trunk/leg fat ratio and serum adiponectin. In addition, resting pulse rate, serum concentrations of free fatty acids, triglycerides and remnant-like particle cholesterol were higher in insulin resistant women although HDL cholesterol and blood pressure did not differ. In multivariate logistic regression analyses, serum leptin (odds ratio:1.68, 95% confidential interval:1.08-2.63, p = 0.02) was associated with normal weight insulin resistance independently of macrosomia, free fatty acids, triglycerides, remnant-like particle cholesterol and resting pulse rate. In conclusion, normal weight IR phenotype may be associated with increased plasma leptin concentrations and leptin to fat mass ratio in young Japanese women, suggesting higher leptin production by body fat unit.
Collapse
Affiliation(s)
- Satomi Minato-Inokawa
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Laboratory of Community Health and Nutrition, Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, Japan
- Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Yuuna Hayashida
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Mari Honda
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Health, Sports, and Nutrition, Faculty of Health and Welfare, Kobe Women's University, Kobe, Hyogo, Japan
| | - Ayaka Tsuboi-Kaji
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Nutrition, Osaka City Juso Hospital, Osaka, Japan
| | - Mika Takeuchi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
| | - Kaori Kitaoka
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Advanced Epidemiology, Noncommunicable Disease (NCD) Epidemiology Research Center, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Miki Kurata
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| | - Bin Wu
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tsutomu Kazumi
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan.
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan.
- Department of Medicine, Kohan Kakogawa Hospital, Kakogawa, Hyogo, Japan.
| | - Keisuke Fukuo
- Research Institute for Nutrition Sciences, Mukogawa Women's University, 6-46, Ikebiraki-cho, Nishinomiya, Hyogo, 663-8558, Japan
- Department of Food Sciences and Nutrition, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
- Open Research Center for Studying of Lifestyle-Related Diseases, Mukogawa Women's University, Nishinomiya, Hyogo, Japan
| |
Collapse
|
14
|
Łupińska A, Stawerska R, Szałapska M, Kolasa-Kicińska M, Jeziorny K, Stawerski W, Aszkiełowicz S, Lewiński A. The incidence of insulin resistance based on indices calculated using the HOMA and Belfiore methods and its impact on the occurrence of metabolic complications in prepubertal children born small for gestational age. Pediatr Endocrinol Diabetes Metab 2023; 29:175-183. [PMID: 38031832 PMCID: PMC10679911 DOI: 10.5114/pedm.2023.130027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION Children born small for gestational age (SGA) are predisposed to obesity, insulin resistance (IR), and lipid disorders. The HOMA-IR index is commonly used to assess IR (IRIHOMA), calculated from fasting glucose and insulin. However, sometimes, during the oral glucose tolerance test (OGTT), elevated and prolonged postprandial insulin secretion is observed despite normal fasting insulin levels. IRIBelfiore is an IR index that analyses glucose and insulin levels during OGTT according to the method proposed by Belfiore. THE AIM OF THE STUDY was to assess the frequency of IR based on IRIHOMA and IRIBelfiore results in SGA children aged 6-8 years, after catch-up phenomenon, to determine the usefulness of IRIBelfiore in diagnosis of IR and in predicting future metabolic complications. MATERIAL AND METHODS In 129 SGA normal-height children, aged 6-8 years, height, weight, waist circumference, blood pressure, as well as lipids, IGF-1, cortisol, C-peptide, leptin, adiponectin, and resistin concentrations were measured. The glucose and insulin concentrations were evaluated at 0, 60, and 120 minutes of OGTT. RESULTS IRIHOMA was normal in all children, while elevated IRIBelfiore was found in 22.5% of them. Children with IR diagnosed by IRIBelfiore were taller, had higher blood pressure, higher leptin, and lower HDL-cholesterol concentrations. CONCLUSIONS It seems worth recommending IRIBelfiore derived from OGTT as a valuable diagnostic tool for identifying IR in SGA prepubertal children. Abnormal IRIBelfiore is related to higher blood pressure and lower HDL-cholesterol concentration in this group.
Collapse
Affiliation(s)
- Anna Łupińska
- Department of Paediatric Endocrinology, Medical University of Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute of Lodz, Poland
| | - Renata Stawerska
- Department of Paediatric Endocrinology, Medical University of Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute of Lodz, Poland
| | - Małgorzata Szałapska
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute of Lodz, Poland
| | - Marzena Kolasa-Kicińska
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute of Lodz, Poland
| | - Krzysztof Jeziorny
- Department of Paediatric Endocrinology, Medical University of Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute of Lodz, Poland
| | - Wojciech Stawerski
- Department of Arthroscopy, Minimally Invasive Surgery and Sports Traumatology, Medical University of Lodz, Poland
| | - Sara Aszkiełowicz
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute of Lodz, Poland
| | - Andrzej Lewiński
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital – Research Institute of Lodz, Poland
- Department of Endocrinology and Metabolic Diseases, Medical University of Lodz, Poland
| |
Collapse
|
15
|
Marcinnò A, Gallo E, Roveta F, Boschi S, Grassini A, Rainero I, Rubino E. Decreased resistin plasmatic concentrations in patients with Alzheimer's disease: A case-control study. Heliyon 2022; 8:e11738. [PMID: 36439765 PMCID: PMC9694389 DOI: 10.1016/j.heliyon.2022.e11738] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 07/28/2022] [Accepted: 11/11/2022] [Indexed: 11/22/2022] Open
Abstract
Previous studies suggested a role for adipokines in ageing and in several age-related diseases. The purpose of our study was to further elucidate adipokines involvement in neurodegeneration, investigating adiponectin, leptin and resistin in Alzheimer's disease (AD) and Frontotemporal Dementia (FTD). We enrolled for the study 70 subjects: 26 AD, 21 FTD, and 23 with other neurological (but not neurodegenerative) conditions (CTR, control group). According to a standardized protocol, we measured adipokines plasmatic levels, blood parameters of glucidic and lipidic metabolism, ESR, cerebrospinal fluid (CSF) markers of neurodegeneration (beta-amyloid, total-Tau, phosphorylated-Tau) and anthropometric parameters. In comparison with control group, we found lower resistin concentrations in patients with dementia, and in particular in AD (p < 0.001). In multivariate analysis, AD relative risk was reduced by resistin, when controlling for sex, age and anthropometric/metabolic parameters (RR = 0.71, P < 0.0001). Considering CSF biomarkers, we found a direct correlation between resistin and Aβ1-42 CSF concentration in patients (p < 0.001, r = 0.50). Lower resistin characterized AD patients in our study and AD, but not FTD, diagnosis risk was found to be inversely associated with resistin when controlling for confounders. We hypothesize that resistin-linked metabolic profile has to be reconsidered and further investigated in AD. Adipose tissue has an endocrine function, releasing polypeptide hormones, the adipokines. Impairment of adipokines circulating levels has been shown in neurodegenerative dementias. We found lower resistin levels in Alzheimer's disease patients compared to control group. Resistin plasmatic levels correlated with liquoral amyloid β1-42 concentrations in dementia patients. Resistin could interact with amyloid β1-42 secretion and have a role in Alzheimer's disease pathogenesis.
Collapse
|
16
|
Zhao Y, Li H. Association of serum leptin and insulin levels among type 2 diabetes mellitus patients: A case-control study. Medicine (Baltimore) 2022; 101:e31006. [PMID: 36254065 PMCID: PMC9575727 DOI: 10.1097/md.0000000000031006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Secretion of insulin is compromised in type 2 diabetes (T2DM) individuals and inadequate to accommodate for insulin resistance (IR) in peripheral tissue. Hyperleptinemia reflects leptin resistance, which is a key factor in the production of IR in T2DM patients, making leptin a potential biomarker for evaluating IR levels. The objective of the study was to assess the association of serum leptin and insulin levels among T2DM patients. This case-control research was carried out on T2DM patients. A total of 73 patients diagnosed with T2DM (the case group) and 40 healthy participants (control; group 3) were enrolled according to the American Diabetes Association (ADA) criteria. In the case group, T2DM patients were enrolled with metabolic syndrome (group 1, n = 38) or without metabolic syndrome (group 2, n = 35) according to the WHO criteria. Metabolic profiles of T2DM patients with or without metabolic syndrome were evaluated, and compare these two groups with healthy controls. The subjects of all groups were age- and gender-matched. Body mass index (BMI, P < .01), fasting (P = .0133) and postprandial (P < .01) blood sugar levels, % glycated hemoglobin (HbA1c, P < .01), and lipid profile (P < .01) were found significantly different and higher in group 1 as compared to groups 2 and 3. Serum leptin and insulin levels were found higher and significant in patients with metabolic syndrome (P < .01 for both). The values of serum leptin levels were 10.01 ± 2.7 ng/mL, 6.9 ± 2.4 ng/mL, and 4.11 ± 1.8 ng/mL, and those of serum insulin 120 ± 40.7 µIU/mL, 20.43 ± 5.2 µIU/mL, and 11.4 ± 2.5 µIU/mL in groups 1, 2, and 3, respectively. There was a positive linear correlation between BMI, blood sugar, HbA1c, serum cholesterol (TC), and triglycerides (TG) with serum insulin and leptin levels in the case group. An extremely significant correlation (R = 0.74, P < .001) was found in BMI and serum leptin level in the case group. Serum leptin and insulin levels have a positive association, with serum leptin being a significant predictor of IR syndrome (Evidence Level: 5; Technical Efficacy: Stage 3).
Collapse
Affiliation(s)
- Yanfei Zhao
- VIP Ward, Tianjin TEDA Hospital, Tianjin, China
| | - Huihui Li
- Department of Endocrinology, Tianjin TEDA Hospital, Tianjin, China
- * Correspondence: Huihui Li, Department of Endocrinology, Tianjin TEDA Hospital, Tianjin 300456, China (e-mail: )
| |
Collapse
|
17
|
Kern-Matschilles S, Gar C, Schilbach K, Haschka SJ, Rauch B, Then C, Seissler J, Bidlingmaier M, Lechner A. Altered Circulating Leptin, hGH, and IGF-I in Prediabetes and Screening-Diagnosed T2DM Unrelated to Metabolic Syndrome in Women Post Gestational Diabetes. Horm Metab Res 2022; 54:613-619. [PMID: 35556239 DOI: 10.1055/a-1850-5392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recently, we proposed two pathophysiologic subtypes of type 2 diabetes mellitus (T2DM), one related and one unrelated to metabolic syndrome. To begin to understand the pathophysiology of the subtype unrelated to metabolic syndrome, we now measured selected hormones and signaling molecules in affected individuals. In this cross-sectional analysis, we examined 138 women out of the monocenter, post gestational diabetes study PPSDiab. Of these women, 73 had prediabetes or screening-diagnosed T2DM, 40 related to metabolic syndrome and 33 unrelated. The remaining 65 women were normoglycemic controls. Our analysis included medical history, anthropometrics, oral glucose tolerance testing, laboratory chemistry, and cardiopulmonary exercise testing. In addition, plasma proinsulin/insulin ratio, growth hormone (hGH) nadir during oral glucose tolerance testing, Insulin-like Growth Factor I (IGF-I), Leptin, Resistin, Adiponectin, Fetuin-a, FGF21, and myostatin were measured. Compared to controls, women with prediabetes or screening-diagnosed T2DM unrelated to metabolic syndrome depicted higher plasma Leptin [10.47(6.6-14.57) vs. 5.52(3.15-10.02); p<0.0001] and IGF-I [193.01(171.00-213.30) vs. 167.97(138.77-200.64); p=0.0008], as well as a lower hGH nadir [0.07(0.05-0.15) vs. 0.14(0.08-0.22; p<0.0001]. These differences were independent of body adiposity. Women with prediabetes or T2DM related to metabolic syndrome, in comparison to controls, displayed elevated Leptin, Fetuin-a, and FGF21, as well as reduced Adiponectin and hGH nadir. Based on our study, altered Leptin and hGH/IGF-I signaling could potentially contribute to the pathophysiology of prediabetes and T2DM unrelated to metabolic syndrome. Further mechanistic investigations of these signaling pathways in the context of lean T2DM are necessary to test causal relationships.
Collapse
Affiliation(s)
- Stefanie Kern-Matschilles
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Christina Gar
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Katharina Schilbach
- Endocrine Research Unit, LMU Klinikum München, Medizinische Klinik IV, München, Germany
| | - Stefanie Julia Haschka
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Barbara Rauch
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Cornelia Then
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Jochen Seissler
- Diabetes Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik IV, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| | - Martin Bidlingmaier
- Endocrine Research Unit, LMU Klinikum München, Medizinische Klinik IV, München, Germany
| | - Andreas Lechner
- Clinical Research Group, LMU Klinikum München, Medizinische Klinik und Poliklinik 4, München, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum München, Neuherberg, Germany
- (DZD), German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
18
|
Reddy I, Yadav Y, Dey CS. Cellular and Molecular Regulation of Exercise—A Neuronal Perspective. Cell Mol Neurobiol 2022; 43:1551-1571. [PMID: 35986789 DOI: 10.1007/s10571-022-01272-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022]
Abstract
The beneficial effects of exercise on the proper functioning of the body have been firmly established. Multi-systemic metabolic regulation of exercise is the consequence of multitudinous changes that occur at the cellular level. The exercise responsome comprises all molecular entities including exerkines, miRNA species, growth factors, signaling proteins that are elevated and activated by physical exercise. Exerkines are secretory molecules released by organs such as skeletal muscle, adipose tissue, liver, and gut as a function of acute/chronic exercise. Exerkines such as FNDC5/irisin, Cathepsin B, Adiponectin, and IL-6 circulate through the bloodstream, cross the blood-brain barrier, and modulate the expression of important signaling molecules such as AMPK, SIRT1, PGC1α, BDNF, IGF-1, and VEGF which further contribute to improved energy metabolism, glucose homeostasis, insulin sensitivity, neurogenesis, synaptic plasticity, and overall well-being of the body and brain. These molecules are also responsible for neuroprotective adaptations that exercise confers on the brain and potentially ameliorate neurodegeneration. This review aims to detail important cellular and molecular species that directly or indirectly mediate exercise-induced benefits in the body, with an emphasis on the central nervous system.
Collapse
Affiliation(s)
- Ishitha Reddy
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
19
|
Caroline OB, Ebuehi OA, Cecilia OA, Kayode OA. Effect of Allium sativum extract in combination -with orlistat on insulin resistance and disrupted metabolic hormones in high fat diet induced obese rats. SCIENTIFIC AFRICAN 2021. [DOI: 10.1016/j.sciaf.2021.e00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
20
|
El-Hawary M, El-Tahlawi S, Ibrahim S, El Ansary M, Mogawer RM. Possible enigmatic link between serum leptin and vitiligo with its metabolic derangements: A comparative controlled study. J Cosmet Dermatol 2021; 21:2971-2976. [PMID: 34601796 DOI: 10.1111/jocd.14490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 09/20/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Serum leptin, an adipocytokine of interleukin-6 family, has been linked to vitiligo-associated metabolic derangements. Additionally, it has been proposed as an inflammatory mediator with possible influence on vitiligo pathogenesis. This study aimed at assessing serum leptin in vitiligo patients compared to controls and whether different vitiligo characteristics have an influence on serum leptin levels. METHODS In this hospital-based, cross-sectional case-control study, 70 vitiligo (35 segmental vitiligo (SV) and 35 Non-segmental vitiligo (NSV)) and 70 age- and sex-matched controls were assessed for different anthropometric measurements including waist circumference (WC), index of central obesity (ICO), and body mass index (BMI) as well as serum leptin levels. RESULTS Central obesity as per ICO showed no significant difference between patients and controls. Additionally, patients of SV and NSV collectively showed significant higher incidence of +ve serum leptin than their controls (41.4% vs. 22.9%%, P: 0.019). Mere presence of vitiligo and ICO >0.5 were highlighted as independent predictors of +ve serum leptin (P: 0.009 and <0.001, respectively). LIMITATION Inability to determine a cause/effect relationship based on a cross-sectional study. Larger scale studies are needed to affirm our findings. CONCLUSION Mere presence of vitiligo being an independent predictor for high serum leptin could be either a contributor to pathogenesis of vitiligo or a sequel to accumulating evidence of metabolic nature of vitiligo. This is likely to influence the investigative panel and treatment protocol for vitiligo patients.
Collapse
Affiliation(s)
- Marwa El-Hawary
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samar El-Tahlawi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sarah Ibrahim
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mervat El Ansary
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Rania M Mogawer
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Obese mice weight loss role on nonalcoholic fatty liver disease and endoplasmic reticulum stress treated by a GLP-1 receptor agonist. Int J Obes (Lond) 2021; 46:21-29. [PMID: 34465857 DOI: 10.1038/s41366-021-00955-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/03/2021] [Accepted: 08/18/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVES The weight loss following Semaglutide treatment, a GLP-1 receptor agonist, might be responsible for some effects observed on the nonalcoholic fatty liver disease of obese mice. SUBJECTS/METHODS Two groups of C57BL/6 male mice (n = 30/group) were fed the diets Control (C) or high-fat (HF) for 16 weeks. Then, separated into six new groups for an additional four weeks (n = 10/group) and treated with Semaglutide (S, 40 µg/kg) or paired feeding (PF) with S groups (C; C-S; C-PF; HF; HF-S; HF-PF). RESULTS Semaglutide reduced energy consumption leading to weight loss. Simultaneously it improved glucose intolerance, glycated hemoglobin, insulin resistance/sensitivity, plasma lipids, and gastric inhibitory polypeptide. Semaglutide and paired feeding mitigated liver steatosis and adipose differentiation-related protein (Plin2) expression. Semaglutide also improved hormones and adipokines, reduced lipogenesis and inflammation, and increased beta-oxidation. Semaglutide lessened liver glucose uptake and endoplasmic reticulum (ER) stress. Among the 14 genes analyzed, 13 were modified by Semaglutide (93 %, six genes were changed exclusively by Semaglutide, and seven other genes were affected by the combination of Semaglutide and paired feeding). In seven genes, the paired diet showed no effect (50% of the genes tested). No marker was affected exclusively by paired feeding. CONCLUSIONS Semaglutide and the consequent weight loss reduced obese mice liver inflammation, insulin resistance, and ER stress. However, weight loss alone did show few or no action on some significant study findings, like liver steatosis, leptin, insulin, resistin, and amylin. Furthermore, hepatic inflammation mediated by MCP-1 and partially by TNF-alpha and IL6 were also not reduced by weight loss. Furthermore, weight loss alone did not lessen hepatic lipogenesis as determined by the findings of SREBP-1c, CHREBP, PPAR-alpha, and SIRT1. Semaglutide was implicated in improving glucose uptake and lessening ER stress by reducing GADD45, independent of weight loss.
Collapse
|
22
|
Chandra NC. A comprehensive account of insulin and LDL receptor activity over the years: A highlight on their signaling and functional role. J Biochem Mol Toxicol 2021; 35:e22840. [PMID: 34227185 DOI: 10.1002/jbt.22840] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/13/2021] [Accepted: 06/25/2021] [Indexed: 11/08/2022]
Abstract
Insulin receptor (IR) was discovered in 1970. Shortcomings in IR transcribed signals were found pro-diabetic, which could also inter-relate obesity and atherosclerosis in a time-dependent manner. Low-density lipoprotein receptor (LDLR) was discovered in 1974. Later studies showed that insulin could modulate LDLR expression and activity. Repression of LDLR transcription in the absence or inactivity of insulin showed a direct cause of atherosclerosis. Leptin receptor (OB-R) was found in 1995 and its resistance became responsible for developing obesity. The three interlinked pathologies namely, diabetes, atherosclerosis, and obesity were later on marked as metabolic syndrome-X (MSX). In 2012, the IR-LDLR inter-association was identified. In 2019, the proficiency of signal transmission from this IR-LDLR receptor complex was reported. LDLR was found to mimic IR-generated signaling path when it remains bound to IR in IR-DLR interlocked state. This was the first time LDLR was found sending messages besides its LDL-clearing activity from blood vessels.
Collapse
Affiliation(s)
- Nimai C Chandra
- Department of Biochemistry, All India Institute of Medical Sciences, Patna, India
| |
Collapse
|
23
|
Chai S, Chen Y, Xin S, Yuan N, Liu Y, Sun J, Meng X, Qi Y. Positive Association of Leptin and Artery Calcification of Lower Extremity in Patients With Type 2 Diabetes Mellitus: A Pilot Study. Front Endocrinol (Lausanne) 2021; 12:583575. [PMID: 34093426 PMCID: PMC8170469 DOI: 10.3389/fendo.2021.583575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 05/04/2021] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE We aimed to explore the role and possible mechanism of leptin in lower-extremity artery calcification in patients with type 2 diabetes mellitus (T2DM). METHODS We recruited 59 male patients with T2DM and 39 non-diabetic male participants. All participants underwent computed tomography scan of lower-extremity arteries. The calcification scores (CSs) were analyzed by standardized software. Plasma leptin level was determined by radioimmunoassay kits. Human vascular smooth muscle cells (VSMCs) calcification model was established by beta-glycerophosphate and calcium chlorideinduction. Calcium deposition and mineralization were measured by the o-cresolphthalein complexone method and Alizarin Red staining. The mRNA expression of bone morphogenic protein 2 (BMP2), runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and osteopontin (OPN) was determined by quantitative RT-PCR. The protein levels of BMP2, Runx2, α-smooth muscle actin (α-SMA) and (p)-Akt was determined by Western-blot analysis, and α-SMA was also measured by immunofluorescence analysis. RESULTS Compared with controls, patients with T2DM showed higher median calcification score in lower-extremity artery [286.50 (IQR 83.41, 1082.00) vs 68.66 (3.41, 141.30), p<0.01]. Plasma leptin level was higher in patients with calcification score ≥300 than ≥100 (252.67 ± 98.57 vs 189.38 ± 44.19 pg/ml, p<0.05). Compared with calcification medium, intracellular calcium content was significantly increased in VSMCs treated by leptin (200, 400 and 800 ng/ml) combined with calcification medium [11.99 ± 3.63, 15.18 ± 4.55, and 24.14 ± 5.85 mg/ml, respectively, vs 7.27 ± 1.54 mg/ml, all p<0.01]. Compared with calcification medium, Alizarin Red staining showed calcium disposition was more obvious, and the mRNA level of BMP2, Runx2 and OCN was significantly increased, and immunofluorescence and Western blot analysis showed that the expression of α-SMA was downregulated in VSMCs treated by leptin (400 ng/ml) combined with calcification medium, respectively. Compared with calcification medium, the protein level of BMP2 and Runx2 was upregulated in VSMCs treated by leptin (400 ng/ml) combined with calcification medium. Moreover, blocking PI3K/Akt signaling pathway can decrease the protein expression of BMP2 and Runx2 in VSMCs treated by leptin (400 ng/ml) combined with calcification medium. CONCLUSIONS Leptin promoted lower-extremity artery calcification of T2DM by upregulating the expression of BMP2 and Runx2, and regulating phenotypic switch of VSMCs via PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- SanBao Chai
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - SiXu Xin
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China
| | - Ning Yuan
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China
| | - YuFang Liu
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China
| | - JianBin Sun
- Department of Endocrinology and Metabolism, Peking University International Hospital, Beijing, China
| | - XiangYu Meng
- The Central Laboratory, Peking University International Hospital, Beijing, China
- *Correspondence: XiangYu Meng, ; YongFen Qi,
| | - YongFen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
- *Correspondence: XiangYu Meng, ; YongFen Qi,
| |
Collapse
|
24
|
Gonçalves AS, Andrade N, Martel F. Intestinal fructose absorption: Modulation and relation to human diseases. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Bungau S, Behl T, Tit DM, Banica F, Bratu OG, Diaconu CC, Nistor-Cseppento CD, Bustea C, Aron RAC, Vesa CM. Interactions between leptin and insulin resistance in patients with prediabetes, with and without NAFLD. Exp Ther Med 2020; 20:197. [PMID: 33123227 DOI: 10.3892/etm.2020.9327] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
This study explored the link between insulin sensitivity, insulin resistance and leptinaemia in people with prediabetes with and without non-alcoholic fatty liver disease (NAFLD). A total of 143 prediabetes patients were evaluated in the study. Ultrasonography was used for diagnosis of NAFLD, and fasting insulin, postprandial insulin, leptin levels, common clinical/biochemical determinations were determined. In total, 69 (48.25%) of the patients were diagnosed with NAFLD and 74 (51.75%) without NAFLD. Leptin values correlated statistically with fasting insulin in prediabetes patients, while in the patients that were also diagnosed with NAFLD the correlation was stronger. Values of log-leptin <1 ng/ml were found in 64% of patients with prediabetes without NAFLD, and in 2% of patients with prediabetes and NAFLD. In the context of the association between serum leptin levels and a worse biochemical profile in prediabetes patients on one hand, and fatty liver disease and a worse biochemical profile in prediabetes patients on the other, leptin can be considered a possible candidate molecule that mediates the biochemical alterations identified in these patients.
Collapse
Affiliation(s)
- Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, 140401 Punjab, India
| | - Delia Mirela Tit
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Florin Banica
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Ovidiu G Bratu
- Clinical Department 3, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Camelia C Diaconu
- Department 5, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Carmen D Nistor-Cseppento
- Department of Psycho-Neurosciences and Recovery, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Cristiana Bustea
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Raluca A Corb Aron
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| | - Cosmin Mihai Vesa
- Department of Preclinical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania
| |
Collapse
|
26
|
Salazar J, Chávez-Castillo M, Rojas J, Ortega A, Nava M, Pérez J, Rojas M, Espinoza C, Chacin M, Herazo Y, Angarita L, Rojas DM, D'Marco L, Bermudez V. Is "Leptin Resistance" Another Key Resistance to Manage Type 2 Diabetes? Curr Diabetes Rev 2020; 16:733-749. [PMID: 31886750 DOI: 10.2174/1573399816666191230111838] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/08/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
Although novel pharmacological options for the treatment of type 2 diabetes mellitus (DM2) have been observed to modulate the functionality of several key organs in glucose homeostasis, successful regulation of insulin resistance (IR), body weight management, and pharmacological treatment of obesity remain notable problems in endocrinology. Leptin may be a pivotal player in this scenario, as an adipokine which centrally regulates appetite and energy balance. In obesity, excessive caloric intake promotes a low-grade inflammatory response, which leads to dysregulations in lipid storage and adipokine secretion. In turn, these entail alterations in leptin sensitivity, leptin transport across the blood-brain barrier and defects in post-receptor signaling. Furthermore, hypothalamic inflammation and endoplasmic reticulum stress may increase the expression of molecules which may disrupt leptin signaling. Abundant evidence has linked obesity and leptin resistance, which may precede or occur simultaneously to IR and DM2. Thus, leptin sensitivity may be a potential early therapeutic target that demands further preclinical and clinical research. Modulators of insulin sensitivity have been tested in animal models and small clinical trials with promising results, especially in combination with agents such as amylin and GLP-1 analogs, in particular, due to their central activity in the hypothalamus.
Collapse
Affiliation(s)
- Juan Salazar
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Mervin Chávez-Castillo
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Joselyn Rojas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Angel Ortega
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Manuel Nava
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - José Pérez
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | - Milagros Rojas
- Endocrine and Metabolic Diseases Research Center, School of Medicine, The University of Zulia, Maracaibo, Venezuela
| | | | - Maricarmen Chacin
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Yaneth Herazo
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| | - Lissé Angarita
- Escuela de Nutricion y Dietetica, Facultad de Medicina, Universidad Andres Bello, Sede Concepcion, Chile
| | - Diana Marcela Rojas
- Escuela de Nutricion y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Luis D'Marco
- Hospital Clinico de Valencia, INCLIVA, Servicio de Nefrologia, Valencia, Spain
| | - Valmore Bermudez
- Universidad Simon Bolivar, Facultad de Ciencias de la Salud, Barranquilla, Colombia
| |
Collapse
|
27
|
Othman AI, Amer MA, Basos AS, El-Missiry MA. Moringa oleifera leaf extract ameliorated high-fat diet-induced obesity, oxidative stress and disrupted metabolic hormones. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0140-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
Background
Obesity is a health problem in many countries, and maintaining a perfect weight is challenging. Moringa oleifera leaf extract (ME) is rich in polyphenols with antioxidant and pharmaceutical potential. The present study investigated the potential protective effect of Moringa oleifera leaf extract against obesity induced from a high-fat diet (HFD), oxidative stress and disruption of metabolic hormones compared to simvastatin (SIM) or their combination.
Results
Rats fed a HFD for 6 weeks exhibited a significant increase in body weight and levels of serum glucose and lipid fractions, verifying an obesity state. There were also higher levels of insulin and leptin and lower gherlin in sera of HFD rats compared to the levels in control rats. Homeostasis model assessment for insulin resistance (HOMA-IR), quantitative insulin sensitivity check index (QUICKI) and the atherogenic index were elevated, indicating the development of insulin resistance and dyslipidaemia in these rats. These changes were accompanied with a significant increase in oxidative stress, as indicated by elevated lipid peroxidation and protein oxidation with low levels of antioxidants in liver. The activities of liver function enzymes, including aspartate amino transferase, alanine amino transferase, alkaline phosphatase and gamma glutamyltransferase, were also significantly increased in serum. Concurrent treatment with 300 mg/kg ME for 6 weeks ameliorated the increase in body weight and improved the levels of glucose, lipid fractions and metabolic hormones, indicating the anti-obesity effect and amelioration of tissue insulin resistance potential of ME. ME treatment also normalized oxidative stress and antioxidants in liver and improved liver function enzymes, indicating the antioxidant potential of ME. The effects of ME were similar to SIM, and the combination of these agents was better than each agent alone.
Conclusion
We propose that ME extract has anti-obesity and antioxidant potential and may be used as a lipid-lowering drug to control weight, obesity and its pathophysiological consequences.
Collapse
|
28
|
Ruscitti P, Ursini F, Cipriani P, Greco M, Alvaro S, Vasiliki L, Di Benedetto P, Carubbi F, Berardicurti O, Gulletta E, De Sarro G, Giacomelli R. IL-1 inhibition improves insulin resistance and adipokines in rheumatoid arthritis patients with comorbid type 2 diabetes: An observational study. Medicine (Baltimore) 2019; 98:e14587. [PMID: 30762811 PMCID: PMC6408058 DOI: 10.1097/md.0000000000014587] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recently, it has been shown that some well-known pathogenic mediators in rheumatoid arthritis (RA), such as interleukin-1β (IL-1β) and tumor necrosis factor (TNF), could play a pathogenic role in insulin resistance and (IR) and type 2 diabetes (T2D).In this 6-month longitudinal study, we aimed at investigating if the inhibition of IL-1 or TNF is associated with an improvement of IR in RA patients with comorbid T2D and the possible effects on selected serum adipokines. RA patients with comorbid T2D were recruited among those undergoing treatment with anakinra (ANA) or with TNF inhibitor (TNFi). The 1998-updated version of the Homeostasis Model Assessment (HOMA2) was used to calculate surrogate indexes of IR (HOMA2-IR) and steady-state beta cell function (%B) from fasting values of glucose and C-peptide. Glucagon, adiponectin, adipsin, leptin, and resistin were also measured. All these parameters were collected at baseline, after 3 and 6 months of treatment.ANA-treated patients showed a significant improvement in HOMA2-%β, HOMA2-IR, and glucagon. In TNFi-treated patients, no significant difference was observed analyzing these metabolic parameters. Adipsin and resistin decreased after 6 months in ANA-treated patients whereas, no difference was recognized analyzing adiponectin and leptin. In TNFi-treated patients, leptin and resistin significantly increased, whereas no difference was found analyzing adiponectin and adipsin, during the follow-up.Our data may suggest a beneficial effect of IL-1 inhibition on measures of metabolic derangement in RA-associated T2D. If further confirmed by larger studies, IL-1 targeting therapies may represent a tailored approach in these patients.
Collapse
Affiliation(s)
- Piero Ruscitti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| | - Francesco Ursini
- Department of Health Sciences, University of Catanzaro “Magna Graecia”, Catanzaro
| | - Paola Cipriani
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| | - Marta Greco
- Clinical Pathology Unit, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | - Saverio Alvaro
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| | - Liakouli Vasiliki
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| | - Paola Di Benedetto
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| | - Francesco Carubbi
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| | - Onorina Berardicurti
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| | - Elio Gulletta
- Clinical Pathology Unit, University of Catanzaro “Magna Graecia”, Catanzaro, Italy
| | | | - Roberto Giacomelli
- Division of Rheumatology, Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila
| |
Collapse
|