1
|
Nag S, Mitra O, Maturi B, Kaur SP, Saini A, Nama M, Roy S, Samanta S, Chacko L, Dutta R, Sayana SB, Subramaniyan V, Bhatti JS, Kandimalla R. Autophagy and mitophagy as potential therapeutic targets in diabetic heart condition: Harnessing the power of nanotheranostics. Asian J Pharm Sci 2024; 19:100927. [PMID: 38948399 PMCID: PMC11214300 DOI: 10.1016/j.ajps.2024.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 03/29/2024] [Accepted: 04/13/2024] [Indexed: 07/02/2024] Open
Abstract
Autophagy and mitophagy pose unresolved challenges in understanding the pathology of diabetic heart condition (DHC), which encompasses a complex range of cardiovascular issues linked to diabetes and associated cardiomyopathies. Despite significant progress in reducing mortality rates from cardiovascular diseases (CVDs), heart failure remains a major cause of increased morbidity among diabetic patients. These cellular processes are essential for maintaining cellular balance and removing damaged or dysfunctional components, and their involvement in the development of diabetic heart disease makes them attractive targets for diagnosis and treatment. While a variety of conventional diagnostic and therapeutic strategies are available, DHC continues to present a significant challenge. Point-of-care diagnostics, supported by nanobiosensing techniques, offer a promising alternative for these complex scenarios. Although conventional medications have been widely used in DHC patients, they raise several concerns regarding various physiological aspects. Modern medicine places great emphasis on the application of nanotechnology to target autophagy and mitophagy in DHC, offering a promising approach to deliver drugs beyond the limitations of traditional therapies. This article aims to explore the potential connections between autophagy, mitophagy and DHC, while also discussing the promise of nanotechnology-based theranostic interventions that specifically target these molecular pathways.
Collapse
Affiliation(s)
- Sagnik Nag
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Oishi Mitra
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Bhanu Maturi
- Department of Internal Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simran Preet Kaur
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Ankita Saini
- Department of Microbiology, University of Delhi (South Campus), Benito Juarez Road, New Delhi 110021, India
| | - Muskan Nama
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Soumik Roy
- Department of Biotechnology, Indian Institute of Technology, Hyderabad (IIT-H), Sangareddy, Telangana 502284, India
| | - Souvik Samanta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Leena Chacko
- BioAnalytical Lab, Meso Scale Discovery, 1601 Research Blvd, Rockville, MD, USA
| | - Rohan Dutta
- Department of Bio-Sciences, School of Bio-Sciences & Technology (SBST), Vellore Institute of Technology (VIT), Tiruvalam Road, Vellore 632014, Tamil Nadu, India
| | - Suresh Babu Sayana
- Department of Pharmacology, Government Medical College, Suryapet, Telangana, India
| | - Vetriselvan Subramaniyan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Ramesh Kandimalla
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, India
| |
Collapse
|
2
|
Mohyeldin SM, Talaat W, Kamal MF, Daabees HG, El-Tahawy MMT, Keshk RM. In-lab synthesized turn-off fluorescence sensor for estimation of Gemigliptin and Rosuvastatin polypill appraised by Spider diagram, AGREE and whiteness metrics. Sci Rep 2024; 14:2927. [PMID: 38316908 PMCID: PMC10844310 DOI: 10.1038/s41598-024-53203-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Gemigliptin-Rosuvastatin single-pill combination is a promising therapeutic tool in the effective control of hyperglycemia and hypercholesterolemia. Organic sensors with high quantum yields have profoundly significant applications in the pharmaceutical industry, such as routine quality control of marketed formulations. Herein, the fluorescence sensor, 2-Morpholino-4,6-dimethyl nicotinonitrile 3, (λex; 226 nm, λem; 406 nm), was synthesized with a fluorescence quantum yield of 56.86% and fully characterized in our laboratory. This sensor showed high efficiency for the determination of Gemigliptin (GEM) and Rosuvastatin (RSV) traces through their stoichiometric interactions and simultaneously fractionated by selective solvation. The interaction between the stated analytes and sensor 3 was a quenching effect. Various experimental parameters and the turn-off mechanism were addressed. The adopted approach fulfilled the ICH validation criteria and showed linear satisfactory ranges, 0.2-2 and 0.1-1 μg/mL for GEM and RSV, respectively with nano-limits of detection less than 30 ng/mL for both analytes. The synthesized sensor has been successfully applied for GEM and RSV co-assessment in their synthetic polypill with excellent % recoveries of 98.83 ± 0.86 and 100.19 ± 0.64, respectively. No statistically significant difference between the results of the proposed and reported spectrophotometric methods in terms of the F- and t-tests. Ecological and whiteness appraisals of the proposed study were conducted via three novel approaches: the Greenness Index via Spider Diagram, the Analytical Greenness Metric, and the Red-Green-Blue 12 model. The aforementioned metrics proved the superiority of the adopted approach over the previously published one regarding eco-friendliness and sustainability. Our devised fluorimetric turn-off sensing method showed high sensitivity, selectivity, feasibility, and rapidity with minimal cost and environmental burden over other sophisticated techniques, making it reliable in quality control labs.
Collapse
Affiliation(s)
- Sara M Mohyeldin
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt.
| | - Wael Talaat
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Miranda F Kamal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Hoda G Daabees
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Damanhour University, Damanhour, Egypt
| | - Mohsen M T El-Tahawy
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Reda M Keshk
- Department of Chemistry, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
3
|
Złotek M, Kurowska A, Herbet M, Piątkowska-Chmiel I. GLP-1 Analogs, SGLT-2, and DPP-4 Inhibitors: A Triad of Hope for Alzheimer's Disease Therapy. Biomedicines 2023; 11:3035. [PMID: 38002034 PMCID: PMC10669527 DOI: 10.3390/biomedicines11113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's is a prevalent, progressive neurodegenerative disease marked by cognitive decline and memory loss. The disease's development involves various pathomechanisms, including amyloid-beta accumulation, neurofibrillary tangles, oxidative stress, inflammation, and mitochondrial dysfunction. Recent research suggests that antidiabetic drugs may enhance neuronal survival and cognitive function in diabetes. Given the well-documented correlation between diabetes and Alzheimer's disease and the potential shared mechanisms, this review aimed to comprehensively assess the potential of new-generation anti-diabetic drugs, such as GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, as promising therapeutic approaches for Alzheimer's disease. This review aims to comprehensively assess the potential therapeutic applications of novel-generation antidiabetic drugs, including GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, in the context of Alzheimer's disease. In our considered opinion, antidiabetic drugs offer a promising avenue for groundbreaking developments and have the potential to revolutionize the landscape of Alzheimer's disease treatment.
Collapse
Affiliation(s)
| | | | | | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.Z.); (A.K.); (M.H.)
| |
Collapse
|
4
|
Xie Y, Zhou Q, He Q, Wang X, Wang J. Opportunities and challenges of incretin-based hypoglycemic agents treating type 2 diabetes mellitus from the perspective of physiological disposition. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Dutta D, Agarwal A, Maisnam I, Singla R, Khandelwal D, Sharma M. Efficacy and Safety of the Novel Dipeptidyl Peptidase-4 Inhibitor Gemigliptin in the Management of Type 2 Diabetes: A Meta-Analysis. Endocrinol Metab (Seoul) 2021; 36:374-387. [PMID: 33820392 PMCID: PMC8090470 DOI: 10.3803/enm.2020.818] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/15/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND No meta-analysis has holistically analysed and summarised the efficacy and safety of gemigliptin in type 2 diabetes. The meta-analysis addresses this knowledge gap. METHODS Electronic databases were searched for randomised controlled trials (RCTs) involving diabetes patients receiving gemigliptin in the intervention arm and placebo/active comparator in the control arm. The primary outcome was change in haemoglobin A1c (HbA1c). The secondary outcomes were alterations in glucose, glycaemic targets, lipids, insulin resistance, and adverse events. RESULTS Data from 10 RCTs involving 1,792 patients were analysed. Four had an active control group (ACG), with metformin/dapagliflozin/sitagliptin/glimepiride as the active comparator; six had a passive control group (PCG), with placebo/rosuvastatin as controls. HbA1c reduction by gemigliptin at 24 weeks was comparable to ACG (mean difference [MD], 0.09%; 95% confidence interval [CI], -0.06 to 0.23; P=0.24; I2=0%; moderate certainty of evidence [MCE]), but superior to PCG (MD, -0.91%; 95% CI, -1.18 to -0.63); P<0.01; I2=89%; high certainty of evidence [HCE]). Gemigliptin was superior to PCG regarding achieving HbA1c <7% (12 weeks: odds ratio [OR], 5.91; 95% CI, 1.34 to 26.08; P=0.02; I2=74%; 24 weeks: OR, 4.48; 95% CI, 2.09 to 9.60; P<0.01; I2=69%; HCE). Gemigliptin was comparable to ACG regarding achieving HbA1c <7% after 24 weeks (OR, 0.92; 95% CI, 0.52 to 1.63; P=0.77; I2=66%; MCE). Adverse events were similar between the gemigliptin and control groups (risk ratio [RR], 1.06; 95% CI, 0.82 to 1.36; P=0.66; I2=35%; HCE). The gemigliptin group did not have increased hypoglycaemia (RR, 1.19; 95% CI, 0.62 to 2.28; P=0.61; I2=19%; HCE). CONCLUSION Gemigliptin has good glycaemic efficacy and is well-tolerated over 6 months of use.
Collapse
Affiliation(s)
- Deep Dutta
- Department of Endocrinology, Center for Endocrinology, Diabetes, Arthritis & Rheumatism (CEDAR) Superspeciality Clinics, New Delhi,
India
| | - Anshita Agarwal
- Department of Endocrinology, Dr Ram Manohar Lohia (RML) Hospital, New Delhi,
India
| | - Indira Maisnam
- Department of Endocrinology, R G Kar Medical College, Calcutta,
India
| | - Rajiv Singla
- Department of Endocrinology, Kalpavriksh Healthcare, Dwarka,
India
| | - Deepak Khandelwal
- Department of Endocrinology, Maharaja Agrasen Hospital, New Delhi,
India
| | - Meha Sharma
- Department of Rheumatology, Center for Endocrinology, Diabetes, Arthritis & Rheumatism (CEDAR) Superspeciality Clinics, New Delhi,
India
| |
Collapse
|
6
|
Gupta A, Behl T, Sehgal A, Bhardwaj S, Singh S, Sharma N, Hafeez A. Exploring the recent molecular targets for diabetes and associated complications. Mol Biol Rep 2021; 48:2863-2879. [PMID: 33763776 DOI: 10.1007/s11033-021-06294-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/16/2021] [Indexed: 12/19/2022]
Abstract
Diabetes is likely one of the centenarian diseases which is apprehended with certainty to humans. According to established protocols of the World Health Organisation (WHO) and numerous investigated studies diabetes is analyzed as a stellar and leading health issue worldwide. Although, the implicit costs of this pathology are increasing every year, thus, there is a need to find a novel method which can provide promising results in the management of diabetes and can overcome the side effects associated with the conventional medication. Comprehensive review of this topic was undertaken through various research and review papers which were conducted using MEDLINE, BIOSIS and EMBASE database. Using various keywords, we retrieve the most relevant content for the thorough review on recent targets and novel molecular pathways for targeting diabetes and associated complications. From the detailed analysis, we have highlighted some molecular pathways and novel targets which had shown promising results in both in-vitro and in-vivo studies and may be considered as pipeline target for clinical trials. Furthermore, these targets not only abetted amelioration of diabetes but also helped in mitigation of diabetes associated complications as well. Thus, based on the available information and literature on these potential molecules, conclusive evidence can be drawn which confirms targeting these novel pathways may unleash an array of benefits that have the potential to overpower the benefits obtained from conventional therapy in the management of diabetes thereby decreasing morbidity and mortality associated with diabetic complications.
Collapse
Affiliation(s)
- Amit Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Shaveta Bhardwaj
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Uttar Pradesh, India
| |
Collapse
|
7
|
Current Pharmacological Intervention and Medical Management for Diabetic Kidney Transplant Recipients. Pharmaceutics 2021; 13:pharmaceutics13030413. [PMID: 33808901 PMCID: PMC8003701 DOI: 10.3390/pharmaceutics13030413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/16/2021] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
Hyperglycemia after kidney transplantation is common in both diabetic and non-diabetic patients. Both pretransplant and post-transplant diabetes mellitus are associated with increased kidney allograft failure and mortality. Glucose management may be challenging for kidney transplant recipients. The pathophysiology and pattern of hyperglycemia in patients following kidney transplantation is different from those with type 2 diabetes mellitus. In patients with pre-existing and post-transplant diabetes mellitus, there is limited data on the management of hyperglycemia after kidney transplantation. The following article discusses the nomenclature and diagnosis of pre- and post-transplant diabetes mellitus, the impact of transplant-related hyperglycemia on patient and kidney allograft outcomes, risk factors and potential pathogenic mechanisms of hyperglycemia after kidney transplantation, glucose management before and after transplantation, and modalities for prevention of post-transplant diabetes mellitus.
Collapse
|
8
|
Trakarnvanich T, Satirapoj B, Suraamornkul S, Chirananthavat T, Sanpatchayapong A, Claimon T. Effect of Dipeptidyl Peptidase-4 (DPP-4) Inhibition on Biomarkers of Kidney Injury and Vascular Calcification in Diabetic Kidney Disease: A Randomized Controlled Trial. J Diabetes Res 2021; 2021:7382620. [PMID: 34697593 PMCID: PMC8541867 DOI: 10.1155/2021/7382620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/15/2021] [Accepted: 09/29/2021] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Dipeptidyl peptidase-4 (DPP-4) inhibitors improve glycemic control and have pleiotropic effects on kidney injury, albuminuria, and vascular inflammation, especially in animal models. We evaluated the effects of a potent DPP4 inhibitor (gemigliptin) on these processes among patients with diabetic kidney disease (DKD). METHODS This study employed a multicenter, prospective, randomized, placebo-controlled design. A total of 201 participants were enrolled and randomly assigned to one of two groups, one received treatment with 50 mg gemigliptin daily along with standard care for diabetes mellitus for 6 months. The changes in the coronary calcium score (CAC score), cardio-ankle vascular index (CAVI), estimated glomerular filtration rate (eGFR), vascular calcification level, and tubular renal injury marker expression were evaluated at baseline and 6 months. RESULTS In total, 182 patients completed the study. Significant reductions in hemoglobin A1C levels were observed in both groups. The changes in the CAC score, CAVI, eGFR, and level of proteinuria over the 6 months of the study did not significantly differ between the gemigliptin and control groups. However, biomarkers of vascular calcification, including serum bone alkaline phosphatase and kidney injury, including urine neutrophil gelatinase-associated lipocalin (NGAL)/Cr and urine liver fatty acid-binding protein (L-FABP)/Cr, were improved significantly in the gemigliptin treatment group compared with the control group. No serious adverse events were observed during the study. CONCLUSION Our study showed that gemigliptin significantly improved the expression of renal tubular injury biomarkers and vascular calcification levels among patients with DKD; however, gemigliptin did not affect renal function or coronary calcification compared with those observed in the control. A larger study with a longer follow-up is essential to verify these beneficial effects. Clinical Trials. This trial is registered with ClinicalTrials.Gov Identifier NCT04705506.
Collapse
Affiliation(s)
| | - Bancha Satirapoj
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, Thailand
| | - Swangjit Suraamornkul
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | | | - Anoma Sanpatchayapong
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Torpong Claimon
- Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| |
Collapse
|
9
|
Jung HS, Seo MS, An JR, Kang M, Heo R, Li H, Jung WK, Choi IW, Cho EH, Park H, Bae YM, Park WS. The vasodilatory effect of gemigliptin via activation of voltage-dependent K + channels and SERCA pumps in aortic smooth muscle. Eur J Pharmacol 2020; 882:173243. [PMID: 32535099 DOI: 10.1016/j.ejphar.2020.173243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/20/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
This study investigated the vasodilatory effects and acting mechanism of gemigliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor. Tests were conducted in aortic rings pre-contracted with phenylephrine. Gemigliptin induced dose-dependent vasodilation of the aortic smooth muscle. Several pre-treatment groups were used to investigate the mechanism of action. While pre-treatment with paxilline, a large-conductance Ca2+-activated K+ channel inhibitor, glibenclamide, an ATP-sensitive K+ channel inhibitor, and Ba2+, an inwardly rectifying K+ channel inhibitor, had no impact on the vasodilatory effect of gemigliptin, pre-treatment with 4-aminopyridine, a voltage-dependent K+ (Kv) channel inhibitor, effectively attenuated the vasodilatory action of gemigliptin. In addition, pre-treatment with sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin and cyclopiazonic acid significantly reduced the vasodilatory effect of gemigliptin. cAMP/PKA-related or cGMP/PKG-related signaling pathway inhibitors, including adenylyl cyclase inhibitor SQ 22536, PKA inhibitor KT 5720, guanylyl cyclase inhibitor ODQ, and PKG inhibitor KT 5823 did not alter the vasodilatory effect of gemigliptin. Similarly, elimination of the endothelium and pre-treatment with a nitric oxide (NO) synthase inhibitor (L-NAME) or small- and intermediate-conductance Ca2+-activated K+ channels (apamin and TRAM-34, respectively) did not change the gemigliptin effect. These findings suggested that gemigliptin induces vasodilation through the activation of Kv channels and SERCA pumps independent of cAMP/PKA-related or cGMP/PKG-related signaling pathways and the endothelium. Therefore, caution is required when prescribing gemigliptin to the patients with hypotension and diabetes.
Collapse
Affiliation(s)
- Hee Seok Jung
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Mi Seon Seo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Jin Ryeol An
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Minji Kang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Ryeon Heo
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongliang Li
- Institute of Translational Medicine, Medical College, Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment for Senile Diseases, Yangzhou University, Yangzhou, 225001, China
| | - Won-Kyo Jung
- Department of Biomedical Engineering, And Center for Marine-Integrated Biomedical Technology (BK21 Plus), Pukyong National University, Busan, 48513, South Korea
| | - Il-Whan Choi
- Department of Microbiology, Inje University College of Medicine, Busan, 48516, South Korea
| | - Eun-Hee Cho
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Hongzoo Park
- Department of Urology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea
| | - Young Min Bae
- Department of Physiology, Konkuk University School of Medicine, Chungju, 27478, South Korea
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon, 24341, South Korea.
| |
Collapse
|
10
|
Rameshrad M, Razavi BM, Ferns GAA, Hosseinzadeh H. Pharmacology of dipeptidyl peptidase-4 inhibitors and its use in the management of metabolic syndrome: a comprehensive review on drug repositioning. ACTA ACUST UNITED AC 2019; 27:341-360. [PMID: 30674032 DOI: 10.1007/s40199-019-00238-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/02/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Despite advances in our understanding of metabolic syndrome (MetS) and the treatment of each of its components separately, currently there is no single therapy approved to manage it as a single condition. Since multi-drug treatment increases drug interactions, decreases patient compliance and increases health costs, it is important to introduce single therapies that improve all of the MetS components. EVIDENCE ACQUISITION We conducted a PubMed, Scopus, Google Scholar, Web of Science, US FDA, utdo.ir and clinicaltrial.gov search, gathered the most relevant preclinical and clinical studies that have been published since 2010, and discussed the beneficial effects of dipeptidyl peptidase (DPP)-4 inhibitors to prevent and treat different constituent of the MetS as a single therapy. Furthermore, the pharmacology of DPP-4 inhibitors, focusing on pharmacodynamics, pharmacokinetics, drug interactions and their side effects are also reviewed. RESULTS DPP-4 inhibitors or gliptins are a new class of oral anti-diabetic drugs that seem safe drugs with no severe side effects, commonly GI disturbance, infection and inflammatory bowel disease. They increase mass and function of pancreatic β-cells, and insulin sensitivity in liver, muscle and adipose tissue. It has been noted that gliptin therapy decreases dyslipidemia. DPP-4 inhibitors increase fatty oxidation, and cholesterol efflux, and decrease hepatic triglyceride synthase and de novo lipogenesis. They delay gastric emptying time and lead to satiety. Besides, gliptin therapy has anti-inflammatory and anti-atherogenic impacts, and improves endothelial function and reduces vascular stiffness. CONCLUSION The gathered data prove the efficacy of DPP-4 inhibitors in managing MetS in some levels beyond anti-diabetic effects. This review could be a lead for designing new DPP-4 inhibitors with greatest effects on MetS in future. Introducing drugs with polypharmacologic effects could increase the patient's compliance and decrease the health cost that there is not in multi-drug therapy. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Maryam Rameshrad
- Pharmaceutical Research Center, Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A A Ferns
- Brighton & Sussex Medical School, Department of Medical Education, Mayfield House, Falmer, Brighton, West Sussex, BN1 9PH, UK
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Kim HJ, Baek EB, Kim SJ. Potentiation of endothelium-dependent vasorelaxation of mesenteric arteries from spontaneously hypertensive rats by gemigliptin, a dipeptidyl peptidase-4 inhibitor class of anti-diabetic drug. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:713-719. [PMID: 30402032 PMCID: PMC6205934 DOI: 10.4196/kjpp.2018.22.6.713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022]
Abstract
Dipeptidyl peptidase4 (DPP4) inhibitors such as gemigliptin are anti-diabetic drugs elevating plasma concentration of incretins such as GLP-1. In addition to the DPP4 inhibition, gemigliptin might directly improve the functions of vessels under pathological conditions. To test this hypothesis, we investigated whether the acetylcholine-induced endothelium dependent relaxation (ACh-EDR) of mesenteric arteries (MA) are altered by gemigliptin pretreatment in Spontaneous Hypertensive Rats (SHR) and in Wistar-Kyoto rats (WKY) under hyperglycemia-like conditions (HG; 2 hr incubation with 50 mM glucose). ACh-EDR of WKY was reduced by the HG condition, which was significantly recovered by 1 µM gemigliptin while not by saxagliptin and sitagliptin up to 10 µM. The ACh-EDR of SHR MA was also improved by 1 µM gemigliptin while similar recovery was observed with higher concentration (10 µM) of saxagliptin and sitagliptin. The facilitation of ACh-EDR by gemigliptin in SHR was not observed under pretreatment with NOS inhibitor, L-NAME. In the endotheliumdenuded MA of SHR, sodium nitroprusside induced dose-dependent relaxation was not affected by gemigliptin. The ACh-EDR in WKY was decreased by treatment with 30 µM pyrogallol, a superoxide generator, which was not prevented by gemigliptin. Exendin-4, a GLP-1 analogue, could not enhance the ACh-EDR in SHR MA. The present results of ex vivo study suggest that gemigliptin enhances the NOS-mediated EDR of the HG-treated MA as well as the MA from SHR via GLP-1 receptor independent mechanism.
Collapse
Affiliation(s)
- Hae Jin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Hypoxic/Ischemic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Bok Baek
- Department of Regulatory Toxicology, Life Science R&D, LG Chem Ltd., LG Science Park, Seoul 07796, Korea
| | - Sung Joon Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul 03080, Korea.,Hypoxic/Ischemic Disease Institute, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|