1
|
Relationship between plasma amino acid and carnitine levels and primary angle-closure glaucoma based on mass spectrometry metabolomics. Exp Eye Res 2023; 227:109366. [PMID: 36592680 DOI: 10.1016/j.exer.2022.109366] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/01/2023]
Abstract
World blindness is primarily caused by glaucoma. It has been predicted that by 2040, 118 million individuals will have glaucoma. Among Asians and Africans, primary angle-closure glaucoma (PACG) is the most prevalent type of glaucoma, for which treatment options are currently very limited. At present, lowering intraocular pressure (IOP) is the primary approach for PACG treatment. However, some PACG patients with decreased IOP measurements still advance. Additionally, because of the complicated pathophysiology, there are no biomarkers for diagnosis. Metabolomics is the study of the metabolites produced by all cellular processes in a biological sample, providing a method for identifying biomarkers and early diagnosis. Nevertheless, metabolomics has infrequently been applied to PACG. Previous research conducted by our lab on plasma metabolite fatty acids in PACG patients revealed reduced free fatty acid (FFA) levels, which may be connected to lipid peroxidation. To ascertain the relationship between other metabolites and PACG. We compared levels of amino acids and carnitine in patients with PACG (n = 147) and non-glaucoma (n = 340). Using metabolomics analysis, twenty-one amino acids and twenty-six carnitines (a total of ninety-six indicators) were examined. Odds ratios (OR) and 95% confidence intervals (CI) for these metabolites in relation to PACG were calculated. The relationship between ocular measures and metabolites was assessed by Spearman's rank correlation. Predictive performance was evaluated using the receiver operating characteristic (ROC). The C8/C2 level was comparable across patients with PACG and individuals without glaucoma based on the Wilcoxon rank-sum test. The PACG group had lower levels of Arginine (Arg), Ornithine (Orn), Arg/Orn, Orn/Cit, and C26/C20 than the nonglaucoma group, whereas Cit/Arg and C4/C2 ratios were greater. Both univariate and multivariate models showed a negative correlation between Orn and Orn/Cit and PACG. In the univariate model, palmitoylcarnitine (C16) had a negative correlation with PACG. According to our findings, metabolic profiles of plasma amino acids and carnitine between PACG patients and controls are different. The combination of amino acids and carnitine increased the predictive value of PACG. The Orn and Arg were negatively correlated with the local ocular neurodegenerative pathology. We speculate lipid peroxidation may explain the reduction in C16, and the decrease in Orn may be associated with hyperammonia neurotoxicity.
Collapse
|
2
|
Radwan SES, El-Moslemany RM, Mehanna RA, Thabet EH, Abdelfattah EZA, El-Kamel A. Chitosan-coated bovine serum albumin nanoparticles for topical tetrandrine delivery in glaucoma: in vitro and in vivo assessment. Drug Deliv 2022; 29:1150-1163. [PMID: 35384774 PMCID: PMC9004496 DOI: 10.1080/10717544.2022.2058648] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/08/2023] Open
Abstract
Glaucoma is one of the leading causes of blindness. Therapies available suffer from several drawbacks including low bioavailability, repeated administration and poor patient compliance with adverse effects thereafter. In this study, bovine serum albumin nanoparticles (BSA-NPs) coated with chitosan(CS) were developed for the topical delivery of tetrandrine (TET) for glaucoma management. Optimized nanoparticles were prepared by desolvation. pH, BSA, CS and cross-linking agent concentrations effects on BSA-NPs colloidal properties were investigated. CS-BSA-NPs with particle size 237.9 nm and zeta potential 24 mV was selected for further evaluation. EE% exceeded 95% with sustained release profile. In vitro mucoadhesion was evaluated based on changes in viscosity and zeta potential upon incubation with mucin. Ex vivo transcorneal permeation was significantly enhanced for CS coated formulation. In vitro cell culture studies on corneal stromal fibroblasts revealed NPs biocompatibility with enhanced cellular uptake and improved antioxidant and anti-proliferative properties for the CS-coated formulation. Moreover, BSA-NPs were nonirritant as shown by HET-CAM test. Also, bioavailability in rabbit aqueous humor showed 2-fold increase for CS-TET-BSA-NPs compared to TET with a sustained reduction in intraocular pressure in a rabbit glaucoma model. Overall, results suggest CS-BSA-NPs as a promising platform for topical ocular TET delivery in the management of glaucoma.
Collapse
Affiliation(s)
- Salma El-Sayed Radwan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Riham M. El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Radwa A. Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eman H. Thabet
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
- Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | | | - Amal El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Frudd K, Sivaprasad S, Raman R, Krishnakumar S, Revathy YR, Turowski P. Diagnostic circulating biomarkers to detect vision-threatening diabetic retinopathy: Potential screening tool of the future? Acta Ophthalmol 2022; 100:e648-e668. [PMID: 34269526 DOI: 10.1111/aos.14954] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
With the increasing prevalence of diabetes in developing and developed countries, the socio-economic burden of diabetic retinopathy (DR), the leading complication of diabetes, is growing. Diabetic retinopathy (DR) is currently one of the leading causes of blindness in working-age adults worldwide. Robust methodologies exist to detect and monitor DR; however, these rely on specialist imaging techniques and qualified practitioners. This makes detecting and monitoring DR expensive and time-consuming, which is particularly problematic in developing countries where many patients will be remote and have little contact with specialist medical centres. Diabetic retinopathy (DR) is largely asymptomatic until late in the pathology. Therefore, early identification and stratification of vision-threatening DR (VTDR) is highly desirable and will ameliorate the global impact of this disease. A simple, reliable and more cost-effective test would greatly assist in decreasing the burden of DR around the world. Here, we evaluate and review data on circulating protein biomarkers, which have been verified in the context of DR. We also discuss the challenges and developments necessary to translate these promising data into clinically useful assays, to detect VTDR, and their potential integration into simple point-of-care testing devices.
Collapse
Affiliation(s)
- Karen Frudd
- Institute of Ophthalmology University College London London UK
| | - Sobha Sivaprasad
- Institute of Ophthalmology University College London London UK
- NIHR Moorfields Biomedical Research Centre Moorfields Eye Hospital London UK
| | - Rajiv Raman
- Vision Research Foundation Sankara Nethralaya Chennai Tamil Nadu India
| | | | | | - Patric Turowski
- Institute of Ophthalmology University College London London UK
| |
Collapse
|
4
|
Liukkonen MPK, Paterno JJ, Kivinen N, Siintamo L, Koskela AKJ, Kaarniranta K. Epithelial-mesenchymal transition-related serum markers ET-1, IL-8 and TGF-β2 are elevated in a Finnish wet age-related macular degeneration cohort. Acta Ophthalmol 2021; 100:e1153-e1162. [PMID: 34699684 DOI: 10.1111/aos.15051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/16/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE It has been hypothesized that epithelial-mesenchymal transition (EMT) may occur in the retinal pigment epithelium of advanced stage age-related macular degeneration (AMD). Various serum and plasma growth factors and inflammatory mediators have been linked to AMD. We were interested in finding out whether systemic levels of EMT-associated markers were altered in the serum of wet AMD patients. Serum biomarkers associated with the various pathological processes of AMD may present an avenue towards identifying and characterizing the birth mechanisms of wet AMD, its progression and severity, paving the way towards the application of precision medicine. METHODS We chose to measure the serum levels of known biomarkers of EMT - EGF (epidermal growth factor), ET-1 (endothelin 1), IL-8 (interleukin 8), TGF-β1 and TGF-β2 (transforming growth factor-beta 1 and 2) and VEGF-A (vascular endothelial growth factor A) - using enzyme-linked immunosorbent assays. We measured them from 71 Finnish wet AMD patients who were receiving intravitreal anti-VEGF-A injection treatments, as well as 64 age-adjusted controls. RESULTS We found significantly elevated levels of ET-1, IL-8 and TGF-β2 in the serums of wet AMD patients. CONCLUSIONS ET-1, IL-8 and TGF-β2 appear to be useful serum biomarkers in understanding active wet AMD. However, we cannot conclude that local retinal EMT-processes could be observed from the corresponding systemic serum biomarkers in patients undergoing anti-VEGF-A treatments.
Collapse
Affiliation(s)
- Mikko P. K. Liukkonen
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
| | - Jussi J. Paterno
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Niko Kivinen
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Leea Siintamo
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| | - Ali K. J. Koskela
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
| | - Kai Kaarniranta
- Department of Ophthalmology Institute of Clinical Medicine University of Eastern Finland Kuopio Finland
- Department of Ophthalmology Kuopio University Hospital Kuopio Finland
| |
Collapse
|
5
|
Li Y, Mitchell W, Elze T, Zebardast N. Association Between Diabetes, Diabetic Retinopathy, and Glaucoma. Curr Diab Rep 2021; 21:38. [PMID: 34495413 DOI: 10.1007/s11892-021-01404-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE OF REVIEW The strength of the relationship between diabetes, diabetic retinopathy (DR), and glaucoma remains controversial. We review evidence supporting and refuting this association and explore mechanistic pathological and treatment relationships linking these diseases. RECENT FINDINGS While studies have shown diabetes/DR may increase the risk for glaucoma, this remains inconsistently demonstrated. Diabetes/DR may contribute toward glaucomatous optic neuropathy indirectly (either by increasing intraocular pressure or vasculopathy) or through direct damage to the optic nerve. However, certain elements of diabetes may slow glaucoma progression, and diabetic treatment may concurrently be beneficial in glaucoma management. Diabetes plays a significant role in poor outcomes after glaucoma surgery. While the relationship between diabetes/DR and glaucoma remains controversial, multiple mechanistic links connecting pathophysiology and management of diabetes, DR, and glaucoma have been made. However, a deeper understanding of the causes of disease association is needed.
Collapse
Affiliation(s)
- Yangjiani Li
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, Guangdong, 510060, China
| | - William Mitchell
- Department of Ophthalmology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA
- Department of Ophthalmology, Royal Victorian Eye and Ear, Melbourne, VIC, 3002, Australia
| | - Tobias Elze
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Nazlee Zebardast
- Department of Ophthalmology, Massachusetts Eye and Ear, 243 Charles Street, Boston, MA, 02114, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
6
|
Abstract
Purpose Glaucoma remains a poorly understood disease, and identifying biomarkers for early diagnosis is critical to reducing the risk of glaucoma-related visual impairment and blindness. The aim of this review is to provide current metabolic profiles for glaucoma through a summary and analysis of reported metabolites associated with glaucoma. Methods We searched PubMed and Web of Science for metabolomics studies of humans on glaucoma published before November 11, 2020. Studies were included if they assessed the biomarkers of any types of glaucoma and performed mass spectrometry-based or nuclear magnetic resonance–based metabolomics approach. Pathway enrichment analysis and topology analysis were performed to generate a global view of metabolic signatures related to glaucoma using the MetaboAnalyst 3.0. Results In total, 18 articles were included in this review, among which 13 studies were focused on open-angle glaucoma (OAG). Seventeen metabolites related to OAG were repeatedly identified, including seven amino acids (arginine, glycine, alanine, lysine, methionine, phenylalanine, tyrosine), two phosphatidylcholine (PC aa C34:2, PC aa C36:4), three complements (acetylcarnitine, propionylcarnitine, butyrylcarnitine), carnitine, glutamine, hypoxanthine, spermine, and spermidine. The pathway analysis implied a major role of amino metabolism in OAG pathophysiology and revealed the metabolic characteristics between different biological samples. Conclusions In this review, we summarize existing metabolomic studies related to glaucoma biomarker identification and point out a series of metabolic disorders in OAG patients, providing information on the molecular mechanism changes in glaucoma. Additional studies are needed to validate existing findings, and future research will need to explore the potential overlap between different biological fluids.
Collapse
Affiliation(s)
- Ying Wang
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiao-Wen Hou
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Gang Liang
- Department of Ophthalmology, The Affiliated Hospital of Yunnan University, Kunming, China.,Department of Ophthalmology, The Second People's Hospital of Yunnan Province, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
7
|
Micera A, Balzamino BO, Di Zazzo A, Dinice L, Bonini S, Coassin M. Biomarkers of Neurodegeneration and Precision Therapy in Retinal Disease. Front Pharmacol 2021; 11:601647. [PMID: 33584278 PMCID: PMC7873955 DOI: 10.3389/fphar.2020.601647] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Vision-threatening retinal diseases affect millions of people worldwide, representing an important public health issue (high social cost) for both technologically advanced and new-industrialized countries. Overall RD group comprises the retinitis pigmentosa, the age-related macular degeneration (AMD), the diabetic retinopathy (DR), and idiopathic epiretinal membrane formation. Endocrine, metabolic, and even lifestyles risk factors have been reported for these age-linked conditions that represent a "public priority" also in this COVID-19 emergency. Chronic inflammation and neurodegeneration characterize the disease evolution, with a consistent vitreoretinal interface impairment. As the vitreous chamber is significantly involved, the latest diagnostic technologies of imaging (retina) and biomarker detection (vitreous) have provided a huge input at both medical and surgical levels. Complement activation and immune cell recruitment/infiltration as well as detrimental intra/extracellular deposits occur in association with a reactive gliosis. The cell/tissue aging route shows a specific signal path and biomolecular profile characterized by the increased expression of several glial-derived mediators, including angiogenic/angiostatic, neurogenic, and stress-related factors (oxidative stress metabolites, inflammation, and even amyloid formation). The possibility to access vitreous chamber by collecting vitreous reflux during intravitreal injection or obtaining vitreous biopsy during a vitrectomy represents a step forward for an individualized therapy. As drug response and protein signature appear unique in each single patient, therapies should be individualized. This review addresses the current knowledge about biomarkers and pharmacological targets in these vitreoretinal diseases. As vitreous fluids might reflect the early stages of retinal sufferance and/or late stages of neurodegeneration, the possibility to modulate intravitreal levels of growth factors, in combination to anti-VEGF therapy, would open to a personalized therapy of retinal diseases.
Collapse
Affiliation(s)
- Alessandra Micera
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Bijorn Omar Balzamino
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Antonio Di Zazzo
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Lucia Dinice
- Research and Development Laboratory for Biochemical, Molecular and Cellular Applications in Ophthalmological Sciences, IRCCS - Fondazione Bietti, Rome, Italy
| | - Stefano Bonini
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| | - Marco Coassin
- Ophthalmology Operative Complex Unit, University Campus Bio-Medico, Rome, Italy
| |
Collapse
|
8
|
Bell CM, Zack DJ, Berlinicke CA. Human Organoids for the Study of Retinal Development and Disease. Annu Rev Vis Sci 2020; 6:91-114. [DOI: 10.1146/annurev-vision-121219-081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent advances in stem cell engineering have led to an explosion in the use of organoids as model systems for studies in multiple biological disciplines. Together with breakthroughs in genome engineering and the various omics, organoid technology is making possible studies of human biology that were not previously feasible. For vision science, retinal organoids derived from human stem cells allow differentiating and mature human retinal cells to be studied in unprecedented detail. In this review, we examine the technologies employed to generate retinal organoids and how organoids are revolutionizing the fields of developmental and cellular biology as they pertain to the retina. Furthermore, we explore retinal organoids from a clinical standpoint, offering a new platform with which to study retinal diseases and degeneration, test prospective drugs and therapeutic strategies, and promote personalized medicine. Finally, we discuss the range of possibilities that organoids may bring to future retinal research and consider their ethical implications.
Collapse
Affiliation(s)
- Claire M. Bell
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
| | - Donald J. Zack
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA;,
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | - Cynthia A. Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
9
|
Beykin G, Norcia AM, Srinivasan VJ, Dubra A, Goldberg JL. Discovery and clinical translation of novel glaucoma biomarkers. Prog Retin Eye Res 2020; 80:100875. [PMID: 32659431 DOI: 10.1016/j.preteyeres.2020.100875] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/16/2022]
Abstract
Glaucoma and other optic neuropathies are characterized by progressive dysfunction and loss of retinal ganglion cells and their axons. Given the high prevalence of glaucoma-related blindness and the availability of treatment options, improving the diagnosis and precise monitoring of progression in these conditions is paramount. Here we review recent progress in the development of novel biomarkers for glaucoma in the context of disease pathophysiology and we propose future steps for the field, including integration of exploratory biomarker outcomes into prospective therapeutic trials. We anticipate that, when validated, some of the novel glaucoma biomarkers discussed here will prove useful for clinical diagnosis and prediction of progression, as well as monitoring of clinical responses to standard and investigational therapies.
Collapse
Affiliation(s)
- Gala Beykin
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Anthony M Norcia
- Department of Psychology, Stanford University, 290 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Vivek J Srinivasan
- Department of Biomedical Engineering, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA; Department of Ophthalmology and Vision Science, University of California Davis School of Medicine, 4610 X St, Sacramento, CA, 96817, USA.
| | - Alfredo Dubra
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| | - Jeffrey L Goldberg
- Spencer Center for Vision Research at Stanford University, 2370 Watson Ct, Palo Alto, CA, 94303, USA.
| |
Collapse
|
10
|
Ang WJ, Zunaina E, Norfadzillah AJ, Raja-Norliza RO, Julieana M, Ab-Hamid SA, Mahaneem M. Evaluation of vascular endothelial growth factor levels in tears and serum among diabetic patients. PLoS One 2019; 14:e0221481. [PMID: 31437234 PMCID: PMC6705830 DOI: 10.1371/journal.pone.0221481] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/07/2019] [Indexed: 01/16/2023] Open
Abstract
Objective Detection of vascular endothelial growth factor (VEGF) levels in ocular tissue may perhaps provide insight into the role of VEGF in the pathogenesis and progression of diabetic retinopathy (DR). The aim of this study was to evaluate the levels of VEGF in tears and serum amongst type 2 diabetes mellitus (DM) patients. Methods A comparative cross-sectional study was conducted between August 2016 and May 2018 involving type 2 DM patients with no DR, non-proliferative DR (NPDR), and proliferative DR (PDR). Tear samples were collected using no.41 Whatman filter paper (Schirmer strips) and 5 mL blood samples were drawn by venous puncture. VEGF levels in tears and serum were measured by enzyme-linked immunosorbent assay. Results A total of 88 type 2 DM patients (no DR: 30 patients, NPDR: 28 patients, PDR: 30 patients) were included in the study. Mean tear VEGF levels were significantly higher in the NPDR and PDR groups (114.4 SD 52.5 pg/mL and 150.8 SD 49.7 pg/mL, respectively) compared to the no DR group (40.4 SD 26.5 pg/mL, p < 0.001). There was no significant difference in the mean serum VEGF levels between the three groups. There was a fair correlation between serum and tear VEGF levels (p = 0.015, r = 0.263). Conclusion VEGF levels in tears were significantly higher amongst diabetic patients with DR compared to those without DR and were significantly associated with the severity of DR. There was a fair correlation between serum and tear VEGF levels. Detection of VEGF in tears is a good non-invasive predictor test for the severity of DR. A large cohort study is needed for further evaluation.
Collapse
Affiliation(s)
- Wen Jeat Ang
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- Department of Ophthalmology, Melaka General Hospital, Jalan Mufti Haji Khalil, Melaka, Malaysia
| | - Embong Zunaina
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
- * E-mail:
| | | | - Raja Omar Raja-Norliza
- Department of Ophthalmology, Melaka General Hospital, Jalan Mufti Haji Khalil, Melaka, Malaysia
| | - Muhammed Julieana
- Department of Ophthalmology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Siti Azrin Ab-Hamid
- Unit Biostatistics and Research Methodology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohamed Mahaneem
- Department of Physiology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
11
|
Hindle AG, Thoonen R, Jasien JV, Grange RMH, Amin K, Wise J, Ozaki M, Ritch R, Malhotra R, Buys ES. Identification of Candidate miRNA Biomarkers for Glaucoma. Invest Ophthalmol Vis Sci 2019; 60:134-146. [PMID: 30629727 PMCID: PMC6329203 DOI: 10.1167/iovs.18-24878] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose Glaucoma, a leading cause of blindness worldwide, often remains undetected until irreversible vision loss has occurred. Treatments focus on lowering intraocular pressure (IOP), the only modifiable and readily measurable risk factor. However, IOP can vary and does not always predict disease progression. MicroRNAs (miRNAs) are promising biomarkers. They are abundant and stable in biological fluids, including plasma and aqueous humor (AqH). We aimed to identify differentially expressed miRNAs in AqH and plasma from glaucoma, exfoliation syndrome (XFS), and control subjects. Methods Plasma and AqH from two ethnic cohorts were harvested from glaucoma or XFS (often associated with glaucoma, n = 33) and control (n = 31) patients undergoing elective surgery. A custom miRNA array measured 372 miRNAs. Molecular target prediction and pathway analysis were performed with Ingenuity Pathway Analysis (IPA) and DIANA bioinformatical tools. Results Levels of miRNAs in plasma, a readily accessible biomarker source, correlated with miRNA levels in AqH. Twenty circulating miRNAs were at least 1.5-fold higher in glaucoma or XFS patients than in controls across two ethnic cohorts: miR-4667-5p (P = 4.1 × 10−5), miR-99b-3p (P = 4.8 × 10−5), miR-637 (P = 5.1 × 10−5), miR-4490 (P = 5.7 × 10−5), miR-1253 (P = 6.0 × 10−5), miR-3190-3p (P = 3.1 × 10−4), miR-3173-3p (P = 0.001), miR-608 (P = 0.001), miR-4725-3p (P = 0.002), miR-4448 (P = 0.002), and miR-323b-5p (P = 0.002), miR-4538 (P = 0.003), miR-3913-3p (P = 0.003), miR-3159 (P = 0.003), miR-4663 (P = 0.003), miR-4767 (P = 0.003), miR-4724-5p (P = 0.003), miR-1306-5p (P = 0.003), miR-181b-3p (P = 0.004), and miR-433-3p (P = 0.004). miR-637, miR-1306-5p, and miR-3159, in combination, allowed discrimination between glaucoma patients and control subjects (AUC = 0.91 ± 0.008, sensitivity 85.0%, specificity 87.5%). Conclusions These results identify specific miRNAs as potential biomarkers and provide insight into the molecular processes underlying glaucoma.
Collapse
Affiliation(s)
- Allyson G Hindle
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Robrecht Thoonen
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Jessica V Jasien
- Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
| | - Robert M H Grange
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | | | - Jasen Wise
- Qiagen, Frederick, Maryland, United States
| | | | - Robert Ritch
- Einhorn Clinical Research Center, New York Ear Eye and Ear Infirmary of Mount Sinai, New York, New York, United States
| | - Rajeev Malhotra
- Cardiovascular Research Center and Cardiology Division of the Department of Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| | - Emmanuel S Buys
- Anesthesia Center for Critical Care Research, Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
12
|
Early impairments in the retina of rats fed with high fructose/high fat diet are associated with glucose metabolism deregulation but not dyslipidaemia. Sci Rep 2019; 9:5997. [PMID: 30979946 PMCID: PMC6461688 DOI: 10.1038/s41598-019-42528-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
Way of life changes such as high consumption of processed foods rich in fat and sugar and sedentary lifestyle are associated with the increasing prevalence of metabolic syndrome (MetS) that affects about 35% in the American population. MetS is the main risk factor for diabetes mellitus, which is associated with vascular changes in the retina. However, the early consequences of MetS in the retina are not well described. We therefore aimed at characterizing the early effects of a high fructose and high fat diet (HFHF) on the function and structure of the rat retina, and evaluate the associations with metabolic changes. Brown Norway rats of 6 weeks of age were fed for 8 days, 5 weeks or 13 weeks with HFHF diet, or a standard chow. After only 4 weeks of this diet, rats exhibited a reduction in cone photoreceptor sensitivity to light. Moreover, we observed that MetS significantly exacerbated laser-induced choroidal neovascularization by 72% and 67% 2 weeks and 3 weeks post laser treatment, respectively. These retinal abnormalities were associated with deregulation of glucose metabolism but not lipid metabolism. These data showed retinal modifications in HFHF-induced MetS in the rat, at very early stage of the disease.
Collapse
|
13
|
Review of Biomarkers in Ocular Matrices: Challenges and Opportunities. Pharm Res 2019; 36:40. [PMID: 30673862 PMCID: PMC6344398 DOI: 10.1007/s11095-019-2569-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/07/2019] [Indexed: 02/05/2023]
Abstract
Biomarkers provide a powerful and dynamic approach to improve our understanding of the mechanisms underlying ocular diseases with applications in diagnosis, disease modulation or for predicting and monitoring of clinical response to treatment. Defined as measurable indicator of normal or pathological processes, biomarker evaluation has been used extensively in drug development within clinical settings to better comprehend effectiveness of treatment in ocular diseases. Biomarkers in the eye have the advantage of access to multiple ocular matrices via minimally invasive methods. Repeat sampling for biomarker assessment has enabled reproducible objective measures of disease process or biological responses to a drug treatment. This review describes the usage of biomarkers with respect to four commonly sampled ocular matrices in clinic: tears, conjunctiva, aqueous humor and vitreous. Issues that affect the evaluation of biomarkers are discussed along with opportunities to leverage biomarkers such that ultimately, they can be used for customized targeted therapy.
Collapse
|