1
|
Starlin Chellathurai M, Mahmood S, Mohamed Sofian Z, Wan Hee C, Sundarapandian R, Ahamed HN, Kandasamy CS, Hilles AR, Hashim NM, Janakiraman AK. Biodegradable polymeric insulin microneedles - a design and materials perspective review. Drug Deliv 2024; 31:2296350. [PMID: 38147499 PMCID: PMC10763835 DOI: 10.1080/10717544.2023.2296350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.
Collapse
Affiliation(s)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Wan Hee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India
| | - C. S. Kandasamy
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, India
| | - Ayah R. Hilles
- INHART, International Islamic University, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Janakiraman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Chakraborty C, Bhattacharya M, Lee SS. Current Status of Microneedle Array Technology for Therapeutic Delivery: From Bench to Clinic. Mol Biotechnol 2024; 66:3415-3437. [PMID: 37987985 DOI: 10.1007/s12033-023-00961-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023]
Abstract
In recent years, microneedle (MN) patches have emerged as an alternative technology for transdermal delivery of various drugs, therapeutics proteins, and vaccines. Therefore, there is an urgent need to understand the status of MN-based therapeutics. The article aims to illustrate the current status of microneedle array technology for therapeutic delivery through a comprehensive review. However, the PubMed search was performed to understand the MN's therapeutics delivery status. At the same time, the search shows the number no of publications on MN is increasing (63). The search was performed with the keywords "Coated microneedle," "Hollow microneedle," "Dissolvable microneedle," and "Hydrogel microneedle," which also shows increasing trend. Similarly, the article highlighted the application of different microneedle arrays for treating different diseases. The article also illustrated the current status of different phases of MN-based therapeutics clinical trials. It discusses the delivery of different therapeutic molecules, such as drug molecule delivery, using microneedle array technology. The approach mainly discusses the delivery of different therapeutic molecules. The leading pharmaceutical companies that produce the microneedle array for therapeutic purposes have also been discussed. Finally, we discussed the limitations and future prospects of this technology.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha, 756020, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, Gangwon-do, 24252, Republic of Korea
| |
Collapse
|
3
|
Villota I, Calvo PC, Campo OI, Villarreal-Gómez LJ, Fonthal F. Manufacturing of a Transdermal Patch in 3D Printing. MICROMACHINES 2022; 13:2190. [PMID: 36557487 PMCID: PMC9783581 DOI: 10.3390/mi13122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Diabetes mellitus is an endocrine disorder that affects glucose metabolism, making the body unable to effectively use the insulin it produces. Transdermal drug delivery (TDD) has attracted strong interest from researchers, as it allows minimally invasive and painless insulin administration, showing advantages over conventional delivery methods. Systems composed of microneedles (MNs) assembled in a transdermal patch provide a unique route of administration, which is innovative with promising results. This paper presents the design of a transdermal patch composed of 25 microneedles manufactured with 3D printing by stereolithography with a class 1 biocompatible resin and a printing angle of 0°. Finite element analysis with ANSYS software is used to obtain the mechanical behavior of the microneedle (MN). The values obtained through the analysis were: a Von Misses stress of 18.057 MPa, a maximum deformation of 2.179×10-3, and a safety factor of 4. Following this, through a flow simulation, we find that a pressure of 1.084 Pa and a fluid velocity of 4.800 ms were necessary to ensure a volumetric flow magnitude of 4.447×10-5cm3s. Furthermore, the parameters found in this work are of great importance for the future implementation of a transdermal drug delivery device.
Collapse
Affiliation(s)
- Isabella Villota
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Paulo César Calvo
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Oscar Iván Campo
- Biomedical Engineering Research Group—GBIO, Universidad Autónoma de Occidente, Cali 760030, Colombia
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de baja California, Tijuana 21500, Baja California, Mexico
| | - Faruk Fonthal
- Science and Engineering of Materials Research Group-GCIM, Universidad Autónoma de Occidente, Cali 760030, Colombia
| |
Collapse
|
4
|
An update on microneedle in insulin delivery: Quality attributes, clinical status and challenges for clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Manasa G, Mascarenhas RJ, Shetti NP, Malode SJ, Mishra A, Basu S, Aminabhavi TM. Skin Patchable Sensor Surveillance for Continuous Glucose Monitoring. ACS APPLIED BIO MATERIALS 2022; 5:945-970. [PMID: 35170319 DOI: 10.1021/acsabm.1c01289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Diabetes mellitus is a physiological and metabolic disorder affecting millions of people worldwide, associated with global morbidity, mortality, and financial expenses. Long-term complications can be avoided by frequent, continuous self-monitoring of blood glucose. Therefore, this review summarizes the current state-of-art glycemic control regimes involving measurement approaches and basic concepts. Following an introduction to the significance of continuous glucose sensing, we have tracked the evolution of glucose monitoring devices from minimally invasive to non-invasive methods to present an overview of the spectrum of continuous glucose monitoring (CGM) technologies. The conveniences, accuracy, and cost-effectiveness of the real-time CGM systems (rt-CGMs) are the factors considered for discussion. Transdermal biosensing and drug delivery routes have recently emerged as an innovative approach to substitute hypodermal needles. This work reviews skin-patchable glucose monitoring sensors for the first time, providing specifics of all the major findings in the past 6 years. Skin patch sensors and their progressive form, i.e., microneedle (MN) array sensory and delivery systems, are elaborated, covering self-powered, enzymatic, and non-enzymatic devices. The critical aspects reviewed are material design and assembly techniques focusing on flexibility, sensitivity, selectivity, biocompatibility, and user-end comfort. The review highlights the advantages of patchable MNs' multi-sensor technology designed to maintain precise blood glucose levels and administer diabetes drugs or insulin through a "sense and act" feedback loop. Subsequently, the limitations and potential challenges encountered from the MN array as rt-CGMs are listed. Furthermore, the current statuses of working prototype glucose-responsive "closed-loop" insulin delivery systems are discussed. Finally, the expected future developments and outlooks in clinical applications are discussed.
Collapse
Affiliation(s)
- G Manasa
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Ronald J Mascarenhas
- Electrochemistry Research Group, Department of Chemistry, St. Joseph's College (Autonomous), Lalbagh Road, Bangalore, Karnataka 560027, India
| | - Nagaraj P Shetti
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Shweta J Malode
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| | - Amit Mishra
- Department of Chemical Engineering, Inha University, Incheon 22212, South Korea
| | - Soumen Basu
- School of Chemistry and Biochemistry, Thapar Institute of Engineering & Technology, Patiala, Punjab 147004, India
| | - Tejraj M Aminabhavi
- Department of Chemistry, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi, Karnataka 580031, India
| |
Collapse
|
6
|
Zahoor I, Singh S, Behl T, Sharma N, Naved T, Subramaniyan V, Fuloria S, Fuloria NK, Bhatia S, Al-Harrasi A, Aleya L, Wani SN, Vargas-De-La-Cruz C, Bungau S. Emergence of microneedles as a potential therapeutics in diabetes mellitus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3302-3322. [PMID: 34755300 DOI: 10.1007/s11356-021-17346-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.
Collapse
Affiliation(s)
- Ishrat Zahoor
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tanveer Naved
- Amity Institute of Pharmacy, Amity University, Noida, India
| | | | | | | | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | | | - Celia Vargas-De-La-Cruz
- Faculty of Pharmacy and Biochemistry, Academic Department of Pharmacology, Bromatology and Toxicology, Centro Latinoamericano de Ensenanza E Investigacion en Bacteriologia Alimentaria, Universidad Nacinol Mayor de San Marcos, Lima, Peru
- E-Health Research Center, Universidad de Ciencias Y Humanidades, Lima, Peru
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
7
|
Xenikakis I, Tsongas K, Tzimtzimis EK, Katsamenis OL, Demiri E, Zacharis CK, Georgiou D, Kalogianni EP, Tzetzis D, Fatouros DG. Transdermal delivery of insulin across human skin in vitro with 3D printed hollow microneedles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.102891] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
8
|
|
9
|
Fu Y, Ding Y, Zhang L, Zhang Y, Liu J, Yu P. Poly ethylene glycol (PEG)-Related controllable and sustainable antidiabetic drug delivery systems. Eur J Med Chem 2021; 217:113372. [PMID: 33744689 DOI: 10.1016/j.ejmech.2021.113372] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/25/2022]
Abstract
Diabetes mellitus is one of the most challenging threats to global public health. To improve the therapy efficacy of antidiabetic drugs, numerous drug delivery systems have been developed. Polyethylene glycol (PEG) is a polymeric family sharing the same skeleton but with different molecular weights which is considered as a promising material for drug delivery. In the delivery of antidiabetic drugs, PEG captures much attention in the designing and preparation of sustainable and controllable release systems due to its unique features including hydrophilicity, biocompatibility and biodegradability. Due to the unique architecture, PEG molecules are also able to shelter delivery systems to decrease their immunogenicity and avoid undesirable enzymolysis. PEG has been applied in plenty of delivery systems such as micelles, vesicles, nanoparticles and hydrogels. In this review, we summarized several commonly used PEG-contained antidiabetic drug delivery systems and emphasized the advantages of stimuli-responsive function in these sustainable and controllable formations.
Collapse
Affiliation(s)
- Yupeng Fu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Ying Ding
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Litao Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China
| | - Yongmin Zhang
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China; Sorbonne Université, CNRS, IPCM, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Jiang Liu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| | - Peng Yu
- China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, 300457, Tianjin, China.
| |
Collapse
|
10
|
Liu T, Jiang G, Song G, Zhu J, Yang Y. Fabrication of separable microneedles with phase change coating for NIR-triggered transdermal delivery of metformin on diabetic rats. Biomed Microdevices 2020; 22:12. [PMID: 31912303 DOI: 10.1007/s10544-019-0468-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
To enhance the compliance of drug delivery for patients, the novel near-infrared (NIR) light-triggered and separable microneedles (MNs) have been developed in this work. Firstly, prussian blue nanoparticles (PB NPs) as the photo-thermal conversion factor and metformin as the hypoglycemic drug were embedded into the separable arrowheads, which consisted by poly (vinyl alcohol) and sucrose (PVA/Suc). The arrowheads of MNs were located on soluble solids supporting substrates that produced by poly(vinyl pyrrolidone) (PVP). Lauric acid (LA) as the phase transition coating covered on the surface of the MNs due to its lower phase transition temperature (~44 °C). Then, the separable arrowheads could be left into the skin because of the absorbing the interstitial fluid (IF) by the solid supporting substrates. With the irradiation of NIR light, LA could be melted due to the role of PB NPs in photo-thermal conversion, thus releasing the metformin from arrowheads. Compared with the traditional subcutaneous injections, the hypoglycemic effect was evaluated by the drug-release behaviors induced by NIR in vivo. The results showed that metformin could be allowed to on-demand release under the NIR irradiation. And the as-obtained MNs exhibited a good hypoglycemic effect, hypotoxicity and low inflammation reaction compared with those of traditional subcutaneous injections. The results indicate that the fabricated MNs have the potential treatment for diabetes due to their safety, convenience and painlessness.
Collapse
Affiliation(s)
- Tianqi Liu
- Department of Polymer Materials, College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, 310018, Zhejiang, China
| | - Guohua Jiang
- Department of Polymer Materials, College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, 310018, China.
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, 310018, Zhejiang, China.
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China.
| | - Gao Song
- Department of Polymer Materials, College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, 310018, Zhejiang, China
| | - Jiangying Zhu
- Department of Polymer Materials, College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, 310018, Zhejiang, China
| | - Yuhui Yang
- Department of Polymer Materials, College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, 310018, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, 310018, Zhejiang, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| |
Collapse
|