1
|
Lorini Franciscatto I, Scherer Seibert B, Dries SS, Linden R, Ziulkoski AL, Perassolo MS. Evaluation of oxidative stress and its association with drug therapy in inpatients treated for cocaine dependence. Drug Chem Toxicol 2024; 47:372-380. [PMID: 37259499 DOI: 10.1080/01480545.2023.2219039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/22/2023] [Indexed: 06/02/2023]
Abstract
The use of cocaine affects several systems and organs of the human body and the consumption of this substance leads to an increase in the production of reactive oxygen species, and to the reduction of antioxidant defenses. The aim of this study was to evaluate the oxidative stress (OS), biochemical and hematological parameters in patients hospitalized for treatment of cocaine addiction, comparing levels at hospital admission and discharge. Forty patients were included in the study. OS was evaluated using catalase (CAT), superoxide dismutase (SOD), glutathione reductase (GPx), total antioxidant power (FRAP), malondialdehyde (MDA), and sulfhydryl group (GS). The medications used during hospitalization were registered and their influence on the parameters of OS was analyzed. After the hospitalization period, there was an increase in GGT levels, a reduction in SOD activity, and an increase in GPx activity and FRAP levels. Carbamazepine users had higher SOD values and lower FRAP values at hospital discharge. The use of chlorpromazine caused differences in creatinine and gamma-glutamyltransferase (GGT) serum leves, and the levels of glutamic oxalacetic transaminase (TGO), MDA, and FRAP were increased at hospital discharge. Haloperidol and thiamine during hospitalization interfered with alkaline phosphatase levels. The use of risperidone caused an increase in the levels of SOD, and folic acid use was associated with lower levels of GPx and higher levels of glutamic-pyruvic transaminase (TGP) and alkaline phosphatase. Drug rehabilitation treatment was effective in decreasing oxidative damage represented by the reduction of biological markers.
Collapse
Affiliation(s)
- Isabela Lorini Franciscatto
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| | - Bruna Scherer Seibert
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| | - Samuel Selbach Dries
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| | - Rafael Linden
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- Laboratory of Analytical Toxicology, Feevale University, Novo Hamburgo, Brazil
| | - Ana Luiza Ziulkoski
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- Molecular Microbiology Laboratory, Feevale University, Novo Hamburgo, Brazil
| | - Magda Susana Perassolo
- Graduate Program on Toxicology and Analytical Toxicology, Feevale University, Novo Hamburgo, RS, Brazil
- University Pharmacy, Feevale University, Novo Hamburgo, RS, Brazil
| |
Collapse
|
2
|
De Luca M, Valvano A, Striano P, Bosso G, Pirone D, Trinchillo A, Bilo L, Oliviero U. EFFECTS OF THREE-MONTHS FOLATE SUPPLEMENTATION ON EARLY VASCULAR ABNORMALITIES IN HYPERHOMOCYSTEINEMIC PATIENTS WITH EPILEPSY. Seizure 2022; 103:120-125. [DOI: 10.1016/j.seizure.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/02/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022] Open
|
3
|
Alachkar A, Ojha SK, Sadeq A, Adem A, Frank A, Stark H, Sadek B. Experimental Models for the Discovery of Novel Anticonvulsant Drugs: Focus on Pentylenetetrazole-Induced Seizures and Associated Memory Deficits. Curr Pharm Des 2020; 26:1693-1711. [PMID: 32003682 DOI: 10.2174/1381612826666200131105324] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Epilepsy is a chronic neurological disorder characterized by irregular, excessive neuronal excitability, and recurrent seizures that affect millions of patients worldwide. Currently, accessible antiepileptic drugs (AEDs) do not adequately support all epilepsy patients, with around 30% patients not responding to the existing therapies. As lifelong epilepsy treatment is essential, the search for new and more effective AEDs with an enhanced safety profile is a significant therapeutic goal. Seizures are a combination of electrical and behavioral events that can induce biochemical, molecular, and anatomic changes. Therefore, appropriate animal models are required to evaluate novel potential AEDs. Among the large number of available animal models of seizures, the acute pentylenetetrazole (PTZ)-induced myoclonic seizure model is the most widely used model assessing the anticonvulsant effect of prospective AEDs, whereas chronic PTZ-kindled seizure models represent chronic models in which the repeated administration of PTZ at subconvulsive doses leads to the intensification of seizure activity or enhanced seizure susceptibility similar to that in human epilepsy. In this review, we summarized the memory deficits accompanying acute or chronic PTZ seizure models and how these deficits were evaluated applying several behavioral animal models. Furthermore, major advantages and limitations of the PTZ seizure models in the discovery of new AEDs were highlighted. With a focus on PTZ seizures, the major biochemicals, as well as morphological alterations and the modulated brain neurotransmitter levels associated with memory deficits have been illustrated. Moreover, numerous medicinal compounds with concurrent anticonvulsant, procognitive, antioxidant effects, modulating effects on several brain neurotransmitters in rodents, and several newly developed classes of compounds applying computer-aided drug design (CADD) have been under development as potential AEDs. The article details the in-silico approach following CADD, which can be utilized for generating libraries of novel compounds for AED discovery. Additionally, in vivo studies could be useful in demonstrating efficacy, safety, and novel mode of action of AEDs for further clinical development.
Collapse
Affiliation(s)
- Alaa Alachkar
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Shreesh K Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Adel Sadeq
- College of Pharmacy, Al Ain University, Al Ain, United Arab Emirates
| | - Abdu Adem
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| | - Annika Frank
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225 Düsseldorf, Germany
| | - Bassem Sadek
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, P.O. Box 17666 Al Ain, United States.,Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United States
| |
Collapse
|