1
|
Allen K, Rodriguez S, Hayani L, Rothenberger S, Moses-Kolko E, Simhan HN, Krishnamurti T. Digital phenotyping of depression during pregnancy using self-report data. J Affect Disord 2024; 364:231-239. [PMID: 39137834 DOI: 10.1016/j.jad.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 08/09/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Depression is a common pregnancy complication yet is often under-detected and, subsequently, undertreated. Data collected through mobile health tools may be used to support the identification of depression symptoms in pregnancy. METHODS An observational cohort study of 2062 pregnancies collected self-reports of patient history, mood, pregnancy-specific symptoms, and written language using a prenatal support app. These app inputs were used to model depression risk in subsequent 30- and 60-day periods throughout pregnancy. A selective inference lasso modeling approach examined the individual and additive value of each type of patient-reported app input. RESULTS Depression models ranged in predictive power (AUC value of 0.64-0.83), depending on the type of inputs. The most predictive model included personal history, daily mood, and acute pregnancy-related symptoms (e.g., severe vomiting, cramping). Across models, daily mood was the strongest indicator of depression symptoms in the following month. Models that retained natural language inputs typically improved predictive accuracy and offered insight into the lived context associated with experiencing depression. LIMITATIONS Our findings are not generalizable beyond a digitally literate patient population that is self-motivated to report data during pregnancy. CONCLUSIONS Simple patient reported data, including sparse language, shared directly via digital tools may support earlier depression symptom identification and a more nuanced understanding of depression context.
Collapse
Affiliation(s)
- Kristen Allen
- Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, PA, United States of America; Allegheny County Department of Human Services, Pittsburgh, PA, United States of America
| | - Samantha Rodriguez
- Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Laila Hayani
- Naima Health LLC, Pittsburgh, PA, United States of America
| | - Scott Rothenberger
- Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Eydie Moses-Kolko
- University of Pittsburgh Medical Center Western Psychiatric Hospital, Pittsburgh, PA, United States of America
| | - Hyagriv N Simhan
- Department of OB-GYN and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Tamar Krishnamurti
- Division of General Internal Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America.
| |
Collapse
|
2
|
Harris C, Tang Y, Birnbaum E, Cherian C, Mendhe D, Chen MH. Digital Neuropsychology beyond Computerized Cognitive Assessment: Applications of Novel Digital Technologies. Arch Clin Neuropsychol 2024; 39:290-304. [PMID: 38520381 PMCID: PMC11485276 DOI: 10.1093/arclin/acae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/25/2024] Open
Abstract
Compared with other health disciplines, there is a stagnation in technological innovation in the field of clinical neuropsychology. Traditional paper-and-pencil tests have a number of shortcomings, such as low-frequency data collection and limitations in ecological validity. While computerized cognitive assessment may help overcome some of these issues, current computerized paradigms do not address the majority of these limitations. In this paper, we review recent literature on the applications of novel digital health approaches, including ecological momentary assessment, smartphone-based assessment and sensors, wearable devices, passive driving sensors, smart homes, voice biomarkers, and electronic health record mining, in neurological populations. We describe how each digital tool may be applied to neurologic care and overcome limitations of traditional neuropsychological assessment. Ethical considerations, limitations of current research, as well as our proposed future of neuropsychological practice are also discussed.
Collapse
Affiliation(s)
- Che Harris
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Yingfei Tang
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Eliana Birnbaum
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Christine Cherian
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Dinesh Mendhe
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
| | - Michelle H Chen
- Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA
- Department of Neurology, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
3
|
Glynn TR, Khanna SS, Hasdianda MA, Tom J, Ventakasubramanian K, Dumas A, O'Cleirigh C, Goldfine CE, Chai PR. Informing Acceptability and Feasibility of Digital Phenotyping for Personalized HIV Prevention among Marginalized Populations Presenting to the Emergency Department. PROCEEDINGS OF THE ... ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES. ANNUAL HAWAII INTERNATIONAL CONFERENCE ON SYSTEM SCIENCES 2024; 57:3192-3200. [PMID: 38196408 PMCID: PMC10774708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
For marginalized populations with ongoing HIV epidemics, alternative methods are needed for understanding the complexities of HIV risk and delivering prevention interventions. Due to lack of engagement in ambulatory care, such groups have high utilization of drop-in care. Therefore, emergency departments represent a location with those at highest risk for HIV and in highest need of novel prevention methods. Digital phenotyping via data collected from smartphones and other wearable sensors could provide the innovative vehicle for examining complex HIV risk and assist in delivering personalized prevention interventions. However, there is paucity in exploring if such methods are an option. This study aimed to fill this gap via a cross-sectional psychosocial assessment with a sample of N=85 emergency department patients with HIV risk. Findings demonstrate that although potentially feasible, acceptability of digital phenotyping is questionable. Technology-assisted HIV prevention needs to be designed with the target community and address key ethical considerations.
Collapse
Affiliation(s)
- Tiffany R Glynn
- Harvard Medical School, Brigham and Women's Hospital, Massachusetts General Hospital, Boston, MA
| | | | | | | | | | | | | | | | - Peter R Chai
- Harvard Medical School, Brigham and Women's Hospital
| |
Collapse
|
4
|
Oudin A, Maatoug R, Bourla A, Ferreri F, Bonnot O, Millet B, Schoeller F, Mouchabac S, Adrien V. Digital Phenotyping: Data-Driven Psychiatry to Redefine Mental Health. J Med Internet Res 2023; 25:e44502. [PMID: 37792430 PMCID: PMC10585447 DOI: 10.2196/44502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/05/2023] Open
Abstract
The term "digital phenotype" refers to the digital footprint left by patient-environment interactions. It has potential for both research and clinical applications but challenges our conception of health care by opposing 2 distinct approaches to medicine: one centered on illness with the aim of classifying and curing disease, and the other centered on patients, their personal distress, and their lived experiences. In the context of mental health and psychiatry, the potential benefits of digital phenotyping include creating new avenues for treatment and enabling patients to take control of their own well-being. However, this comes at the cost of sacrificing the fundamental human element of psychotherapy, which is crucial to addressing patients' distress. In this viewpoint paper, we discuss the advances rendered possible by digital phenotyping and highlight the risk that this technology may pose by partially excluding health care professionals from the diagnosis and therapeutic process, thereby foregoing an essential dimension of care. We conclude by setting out concrete recommendations on how to improve current digital phenotyping technology so that it can be harnessed to redefine mental health by empowering patients without alienating them.
Collapse
Affiliation(s)
- Antoine Oudin
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Redwan Maatoug
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Alexis Bourla
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
- Medical Strategy and Innovation Department, Clariane, Paris, France
- NeuroStim Psychiatry Practice, Paris, France
| | - Florian Ferreri
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Olivier Bonnot
- Department of Child and Adolescent Psychiatry, Nantes University Hospital, Nantes, France
- Pays de la Loire Psychology Laboratory, Nantes University, Nantes, France
| | - Bruno Millet
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Pitié-Salpêtrière Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Félix Schoeller
- Institute for Advanced Consciousness Studies, Santa Monica, CA, United States
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Stéphane Mouchabac
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
| | - Vladimir Adrien
- Infrastructure for Clinical Research in Neurosciences, Paris Brain Institute, Sorbonne University- Institut national de la santé et de la recherche médicale - Centre national de la recherche scientifique, Paris, France
- Department of Psychiatry, Saint-Antoine Hospital, Public Hospitals of Sorbonne University, Paris, France
| |
Collapse
|