1
|
Chandwani ND, Gedam UD, Deshmukh R, Dakshindas DM, Shrigiriwar M. Mines of cytokine: A treasure trove in pulpal and periapical diseases. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2024; 27:227-232. [PMID: 38634023 PMCID: PMC11019815 DOI: 10.4103/jcde.jcde_289_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 04/19/2024]
Abstract
Pulpitis is a special disease of dental pulp. It causes localized inflammation, due to various inflammatory mediators such as cytokines and chemokines. These inflammatory mediators are responsible for various reparative and resorptive processes in the dental pulp. The balance between these processes ultimately determines the viability of the tooth. Due to the important properties of various inflammatory markers, the correlation of cytokinin gene expression in various stages of inflammation becomes necessary to focus on. Several studies in the past have focused on the importance of such correlation to help in diagnostic applications. The nature of these inflammatory mediators can help us in diagnostic evaluation. Several attempts have been made to focus on these associations so that it can assist in making clinical decisions effectively. The data available are vast but are the most neglected topic. This review article briefly outlines and summarizes the importance of various inflammatory mediators such as cytokinin and chemokines in various pathways of pulpal and periapical inflammation in explanatory and diagrammatic forms. Knowledge gained about pulpal inflammatory response may aid in understanding the molecular level of inflammatory pulpal and periapical diseases, which shall modify our future diagnostic modalities. Several medicaments are used in the treatment of minimal to advanced dental caries which leads to periapical infections. Thorough understanding of these medicaments can resolve secondary infection and can improve the prognosis of the treated tooth.
Collapse
Affiliation(s)
- Neelam D Chandwani
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Unnati Devanand Gedam
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Ranjana Deshmukh
- Department of Dentistry, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| | - Darshan M Dakshindas
- Department of Conservative Dentistry and Endodontics, Government Dental College and Hospital, Nagpur, Maharashtra, India
| | - Manish Shrigiriwar
- Department of FMT, All India Institute of Medical Sciences, Nagpur, Maharashtra, India
| |
Collapse
|
2
|
Jayaraman S, Veeraraghavan VP, Natarajan SR, Jasmine S. Exploring the therapeutic potential of curcumin in oral squamous cell carcinoma (HSC-3 cells): Molecular insights into hypoxia-mediated angiogenesis. Pathol Res Pract 2024; 254:155130. [PMID: 38277750 DOI: 10.1016/j.prp.2024.155130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Oral cancer represents a substantial global health burden, often associate with hypoxia-induced angiogenesis as a critical factor in its progression. Curcumin, a naturally occurring bioactive compounds, has gained increasing attention for its potential anticancer properties. OBJECTIVE To assess the impact of curcumin on oral cancer, particularly its role in modulating HIF-1α-mediated angiogenesis in HSC-3 cells. METHODS Our investigation involved multiple experimental approaches, including MTT assay, aerobic glycolysis by metabolic kit, cell cycle, and apoptosis assessment via flow cytometry. Furthermore, we employed molecular docking techniques to examine the interactions between curcumin and key angiogenesis related proteins, including HIF-1α, VEGF-B, MMP-3, and STAT3. RESULTS Our results demonstrate that curcumin exerts significant effects on the cell survivability, cell cycle regulation, and apoptosis induction in oral cancer cells. These effects were particularly pronounced under the conditions of HIF-1α mediated angiogenesis. Computational binding analysis revealed strong binding interactions with curcumin and the selected proteins, implying a plausible mechanism through which curcumin may modulate the angiogenic pathways in oral cancer. CONCLUSION Our research sheds light on the diverse effects of curcumin on oral cancer cells, emphasizing its potential as a promising therapeutic tool for addressing hypoxia-induced angiogenesis. However, further investigation is essential to comprehensively understand the molecular mechanisms underlying these effects in in vitro models. This deeper comprehension is crucial for translating these findings into clinical applications aimed at improving oral cancer treatment.
Collapse
Affiliation(s)
- Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India.
| | - Sathan Raj Natarajan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences, SaveethaUniversity, Chennai 600 077, India
| | - Sharmila Jasmine
- Department of Oral Maxillofacial Surgery, Rajas Dental College and Hospital, Kavalkinaru, Tirunelveli 627105, Tamil Nadu, India
| |
Collapse
|
3
|
Abstract
Matrix metalloproteinases (MMPs) are a class of endopeptidases that are dependent on zinc and facilitate the degradation of extracellular matrix (ECM) proteins, thereby playing pivotal parts in human physiology and pathology. MMPs regulate normal tissue and cellular functions, including tissue development, remodeling, angiogenesis, bone formation, and wound healing. Several diseases, including cancer, inflammation, cardiovascular diseases, and nervous system disorders, have been linked to dysregulated expression of specific MMP subtypes, which can promote tumor progression, metastasis, and inflammation. Various MMP-responsive drug delivery and release systems have been developed by harnessing cleavage activities and overexpression of MMPs in affected regions. Herein, we review the structure, substrates, and physiological and pathological functions of various MMPs and highlight the strategies for designing MMP-responsive nanoparticles to improve the targeting efficiency, penetration, and protection of therapeutic payloads.
Collapse
Affiliation(s)
- Chenyun Zhang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Gan Jiang
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Universities Collaborative Innovation Center for Translational Medicine, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
4
|
Liposomal formulation of new arsenic schiff base complex as drug delivery agent in the treatment of acute promyelocytic leukemia and quantum chemical and docking calculations. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Koca CG, Yıldırım B, Ozmen O, Dikilitas A, Cicek MF, Simsek AT, Gungor MA, Tuncay E. Effect of single-dose locally applied lactoferrin on autograft healing in peri-implant bone in rat models. Injury 2022; 53:858-867. [PMID: 35042599 DOI: 10.1016/j.injury.2021.11.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/20/2021] [Accepted: 11/28/2021] [Indexed: 02/02/2023]
Abstract
Immediate dental implant installation into fresh extraction sockets has become a common surgical technique and yields successful clinical results. In addition, complete contact may not be possible with this procedure cause of defects between the bone wall and the implant surface. Therefore, different graft materials have been used in the literature to increase the peri‑implant bone volume. The aim of the present study was to evaluate the effect of single-dose and locally applied lactoferrin on autograft healing in peri‑implant area and bone implant contact value. Twenty-four Sprague-Dawley rats were included in this study. Firstly, a trephine drill was used for creating a cylindrical bony defects (6.5 mm in diameter and 3 mm in depth) under sterile saline irrigation in the lateral side of the femur. Subsequently, implant beds -2.5 mm diameter and 6 mm depth - were prepared in the middle of each defect with special implant drills. All of the implants were installed and primary stability was achieved. Rats were randomly divided into 3 groups (n = 8 each): Group-1 had empty defects, Group-2 had defects filled with autograft, and Group-3 had defects filled with autograft and lactoferrin solution (100 μg/ml) combination. All of the rats were sacrificed at postoperative 4th week and samples were analyzed with micro-computed tomography, histomorphometry and immunohistochemistry respectively. It was found that Group 3 had the least area of fibrous tissue (6.75±0.83mm2) according to the other 2 groups (p<0.001). On the other hand, Group 3 had the highest osteoblast number (25.50±3.29), osteoclast number (21.25±1.03), newly formed bone area (20.50±1.30 mm2), total healing area (22.62±0.93 mm2), defect closure rate (80.37±1.40%), bone implant contact value (23.2%±0.6%), and percentage bone volume (18.2%±0.3%) (p<0.001). Matrix metalloproteinase-3 expression was found to be highest in Group 3 by immunohistochemistry analysis. In this study it was observed that the results of the different analysis techniques supported each other. According to these findings it can be stated that a single-dose and locally applied lactoferrin solution plays an important role in the autograft healing in peri‑implant area and increasing bone implant contact value. These findings will shed light on further clinical studies of implant osseointegration.
Collapse
Affiliation(s)
- Cansu Gul Koca
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Usak University, Usak, Turkey.
| | - Bengisu Yıldırım
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ahu Dikilitas
- Department of Periodontology, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Muhammed Fatih Cicek
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Aysıla Tekeli Simsek
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | - Mehmet Ali Gungor
- Department of Prosthodontics, Faculty of Dentistry, Usak University, Usak, Turkey
| | | |
Collapse
|
6
|
Zhang F, Liu E, Radaic A, Yu X, Yang S, Yu C, Xiao S, Ye C. Diagnostic potential and future directions of matrix metalloproteinases as biomarkers in gingival crevicular fluid of oral and systemic diseases. Int J Biol Macromol 2021; 188:180-196. [PMID: 34339782 DOI: 10.1016/j.ijbiomac.2021.07.165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 02/08/2023]
Abstract
Gingival crevicular fluid (GCF) is a physiological fluid and an inflammatory serum exudate derived from the gingival plexus of blood vessels and mixed with host tissues and subgingival plaque flows. In addition to proteins, GCF contains a diverse population of cells, including desquamated epithelial cells, cytokines, electrolytes, and bacteria from adjacent plaques. Recently, matrix metalloproteinases(MMPs), which are endopeptidases that are active against extracellular macromolecules, in GCF have been revealed as potential utility biomarkers for the diagnosis and follow-up of oral and systemic diseases, thereby facilitating the early evaluation of malignancy risk and the monitoring of disease progression and treatment response. Tissue inhibitors of metalloproteinases (TIMPs) are specific inhibitors of matrixins that participate in the regulation of local activities of MMPs in tissues. This review provides an overview of the latest findings on the diagnostic and prognostic values of MMPs and TIMPs in GCF of oral and systemic diseases, including periodontal disease, pulpitis, peri-implantitis and cardiovascular disease as well as the extraction, detection and analytical methods for GCF.
Collapse
Affiliation(s)
- Fan Zhang
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China; Physical Examination Center, West China Hospital, Sichuan University, Chengdu, China
| | - Enyan Liu
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Allan Radaic
- School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Xiaotong Yu
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuting Yang
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenhao Yu
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shimeng Xiao
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Changchang Ye
- State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China, Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Xiong G, Yang Y, Guo M. Effect of resveratrol on abnormal bone remodeling and angiogenesis of subchondral bone in osteoarthritis. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2021; 14:417-425. [PMID: 33936363 PMCID: PMC8085829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
PURPOSE The effect of resveratrol on subchondral bone in osteoarthritis was explored by constructing a mouse model of osteoarthritis and giving resveratrol as intervention. METHODS The degree of proteoglycan loss in articular cartilage was assessed by safranine fast green staining. The expressions of Lubricin and Aggrecan, COLX, and MMP-13, the co-expression of CD31 and Endomucin, and the expression of angiogenesis-related factors were determined by immunohistochemistry. TRAP stain and immunostaining were used to assess abnormal subchondral bone resorption and bone formation. Angiography was employed to analyze the effect of resveratrol on the proliferation of subchondral bone vessels. RESULTS Resveratrol inhibited cartilage thickening and the increase of COLX and MMP-13 expression, delayed the loss of proteoglycan, Lubricin, and Aggrecan, and inhibited osteoclast differentiation by up-regulating osteoprotegerin (OPG) and down-regulating the expression of RANKL. Angiography showed that resveratrol can reduce the abnormally elevated number and volume of blood vessels in the subchondral bone. Immunostaining showed that resveratrol inhibited CD31hiEmcnhi angiogenesis and high expression of VEGFA and Angiopoietin-1. CONCLUSION Resveratrol inhibits osteoclast differentiation and reduces active bone resorption by regulating the OPG/RANKL/RANK pathway, and inhibits the abnormal proliferation of CD31hiEmcnhi blood vessels by downregulating the expression of VEGFA and Angiopoiein-1, thereby eliminating the pathologic coupling mechanism of osteogenesis and vascularization, and delaying the progression of osteoarthritis.
Collapse
Affiliation(s)
- Guangyi Xiong
- Department of Pathology, Tianjin HospitalTianjin 300201, China
| | - Yuyan Yang
- Department of Pathology, Tianjin Jinghai District HospitalTianjin 301600, China
| | - Mengyuan Guo
- Experimental Center, The First Subsidiary Hospital of Tianjin TCM UniversityTianjin 300385, China
| |
Collapse
|
8
|
Solete P, Ramesh S. Comparative evaluation of various analgesics in reducing pain in irreversible pulpitis. Bioinformation 2021; 17:313-319. [PMID: 34234390 PMCID: PMC8225598 DOI: 10.6026/97320630017313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 02/20/2021] [Accepted: 02/27/2021] [Indexed: 11/23/2022] Open
Abstract
It is of interest to evaluate a single dose of three different analgesics compared to placebo in patients with symptomatic irreversible pulpitis. 120 patients were enrolled with severe pain in this prospective clinical trial. Patients were randomly divided into four groups after shaping and cleaning of root canals. This includes placebo, piroxicam 20mg, acetaminophen 325mg with aceclofenac sodium 100mg and acetaminophen 650mg. Participants were given a questionnaire to note the pain scores at various time intervals (6 hrs, 12 hrs, and 24 hrs) along with the respective tablets in a concealed manner. Data thus collected was analyzed for statistical significance. The severity of pain decreased in all the three interventional groups compared to the control group (p <0.01) at 6 hours. Zerodol-P and dolonex showed better pain reduction in comparison to the placebo and dolo 650 group (p <0.05) at 12 and 24 hours. Data shows that both zerodol-P and dolonex groups had similar effects at all time intervals. Thus, a single dose of analgesic such as Zerodol-P and Dolonex following shaping and cleaning of root canals relieved pain at all time intervals of the treatment. However, Dolo 650 performed better during the initial 6hrs after completion of the shaping and cleaning of root canals compared to the placebo.
Collapse
Affiliation(s)
- Pradeep Solete
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Sindhu Ramesh
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College, Saveetha University, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
9
|
Janani K, Ajitha P, Sandhya R, Teja KV. Chemical constituent, minimal inhibitory concentration, and antimicrobial efficiency of essential oil from oreganum vulgare against Enterococcus faecalis: An in vitro study. J Conserv Dent 2020; 22:538-543. [PMID: 33088061 PMCID: PMC7542082 DOI: 10.4103/jcd.jcd_80_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/21/2019] [Accepted: 07/04/2020] [Indexed: 12/02/2022] Open
Abstract
Aim: The purpose of this study was to determine the chemical composition of oregano essential oil, minimal inhibitory concentration (MIC) and to assess its antimicrobial efficiency against Enterococcus faecalis. Material and Methods: Gas Chromatography and Mass Spectrometry (GC-MS) was used to determine the chemical composition of essential oil from oreganum vulgare. Broth dilution and agar diffusion method was used to evaluate the MIC. For Broth dilution, 100 μL of different concentration of oil (6.25, 12.5, 25.0, 50.0, and 100 μg/ml) was tested. Agar diffusion method was utilized to evaluate the antimicrobial efficiency of different concentration of oil (25.0, 50.0, and 100 μg/mL) against E. faecalis. Results: GC-MS analysis revealed that oregano essential oil contained carvacrol (41.2%), γ-terpinene (12.68%), p-cymene (9.47%), α-terpinene (1.19%) as the major compounds and β–caryophyllene (0.83%), β-linalool (0.67%), β–bisabolene (0.601%), α-pinene (0.6%), β-pinene (0.5%), terpinen-4-ol (0.41%), borneol (0.4%), 3-thujene (0.4%), spathulenol (0.4%), myristicin (0.25%), and apiol (0.14%). The results of the present study reported Oregano essential oil possess antimicrobial activity against E. faecalis. The MIC was 25 μg/ml and the minimum bacterial concentration (MBC) was 50 μg/ml. Conclusion: Oregano essential oil was reported to be an effective antimicrobial agent against E. faecalis. The MIC was found to be 25 μg/ml and the MBC was found to be 50 μg/ml.
Collapse
Affiliation(s)
- Krishnamachari Janani
- Department of Conservative Dentistry and Endodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - P Ajitha
- Department of Conservative Dentistry and Endodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - Raghu Sandhya
- Department of Conservative Dentistry and Endodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai, Tamil Nadu, India
| | - Kavalipurapu Venkata Teja
- Department of Conservative Dentistry and Endodontics, Saveetha Institute of Medical and Technical Sciences, Saveetha Dental College, Chennai, Tamil Nadu, India
| |
Collapse
|
10
|
Mahmoodazdeh A, Shafiee SM, Sisakht M, Khoshdel Z, Takhshid MA. Adrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1197-1206. [PMID: 32963742 PMCID: PMC7491506 DOI: 10.22038/ijbms.2020.45134.10514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 06/13/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. MATERIALS AND METHODS Rat embryonic DRG neurons were isolated and cultured. The effect of various concentrations of DOX (0.0 to 100 µM) in the absence or presence of AM (3.125 -100 nM) on cell death, apoptosis, oxidative stress, expression of tumor necrosis-α (TNF-α), interleukin1- β (IL-1β), inducible nitric oxide synthase (iNOS), matrix metalloproteinase (MMP) 3 and 13, and SRY-related protein 9 (SOX9) were examined. RESULTS Based on MTT assay data, DOX decreased the viability of DRG neurons in a dose and time-dependent manner (IC50=6.88 µm) while dose-dependently, AM protected DRG neurons against DOX-induced cell death. Furthermore, results of annexin V apoptosis assay revealed the protective effects of AM (25 nm) against DOX (6.88 µM)-induced apoptosis and necrosis of DRG neurons. Also, AM significantly ameliorated DOX-induced oxidative stress in DRG neurons. Real-time PCR results showed a significant increase in the expression of TNF-α, IL-1β, iNOS, MMP 3, and MMP 13, and a decrease in the expression of SOX9 following treatment with DOX. Treatment with AM (25 nM) significantly reversed the effects of DOX on the above-mentioned genes expression. CONCLUSION Our findings suggest that AM can be considered a novel ameliorating drug against DOX-induced neurotoxicity.
Collapse
Affiliation(s)
- Amir Mahmoodazdeh
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sayed Mohammad Shafiee
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Sisakht
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khoshdel
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Ali Takhshid
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|