1
|
Sun X, Ni S, Zhou Q, Zou D. Exogenous NT-3 Promotes Phenotype Switch of Resident Macrophages and Improves Sciatic Nerve Injury through AMPK/NF-κB Signaling Pathway. Neurochem Res 2024; 49:2600-2614. [PMID: 38904909 DOI: 10.1007/s11064-024-04198-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Neurotrophin-3 (NT-3) is an important family of neurotrophic factors with extensive neurotrophic activity, which can maintain the survival and regeneration of nerve cells. However, the mechanism of NT-3 on macrophage phenotype transformation after sciatic nerve injury is not clear. In this study, we constructed a scientific nerve compression injury animal model and administered different doses of NT-3 treatment through osmotic minipump. 7 days after surgery, we collected sciatic nerve tissue and observed the distribution of macrophage phenotype through iNOS and CD206 immunofluorescence. During the experiment, regular postoperative observations were conducted on rats. After the experiment, sciatic nerve tissue was collected for HE staining, myelin staining, immunofluorescence staining, and Western blot analysis. To verify the role of the AMPK/NF-κB pathway, we applied the AMPK inhibitor Compound C and the NF-κB inhibitor BAY11-7082 to repeat the above experiment. Our experimental results reveal that NT-3 promotes sciatic nerve injury repair and polarization of M2 macrophage phenotype, promotes AMPK activation, and inhibits NF-κB activation. The repair effect of high concentration NT-3 on sciatic nerve injury is significantly enhanced compared to low concentration. Compound C administration can weaken the effect of NT-3, while BAY 11-7082 can enhance the effect of NT-3. In short, NT-3 significantly improves sciatic nerve injury in rats, promotes sciatic nerve function repair, accelerates M2 macrophage phenotype polarization, and improves neuroinflammatory response. The protective effects of NT-3 mentioned above are partially related to the AMPK/NF-κB signal axis.
Collapse
Affiliation(s)
- Xuri Sun
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Shuqin Ni
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Qingsheng Zhou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China
| | - Dexin Zou
- Department of Spine Surgery, Yantaishan Hospital, No.10087, Science and Technology Avenue, Laishan District, Yantai, Shandong, China.
| |
Collapse
|
2
|
Mattar M, Umutoni F, Hassan MA, Wamburu MW, Turner R, Patton JS, Chen X, Lei W. Chemotherapy-Induced Peripheral Neuropathy: A Recent Update on Pathophysiology and Treatment. Life (Basel) 2024; 14:991. [PMID: 39202733 PMCID: PMC11355765 DOI: 10.3390/life14080991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a major long-lasting side effect of some chemotherapy drugs, which threatens cancer survival rate. CIPN mostly affects sensory neurons and occasionally motor neurons, causing numbness, tingling, discomfort, and burning pain in the upper and lower extremities. The pathophysiology of CIPN is not completely understood; however, it is believed that chemotherapies induce peripheral neuropathy via directly damaging mitochondria, impairing the function of ion channels, triggering immunological mechanisms, and disrupting microtubules. The treatment of CIPN is a medical challenge, and there are no approved pharmacological options. Currently, duloxetine and other antidepressants, antioxidant, anti-inflammatory, and ion-channel targeted therapies are commonly used in clinics to relieve the symptoms of CIPN. Several other types of drugs, such as cannabinoids, sigma-1 receptor antagonists, and nicotinamides ribose, are being evaluated in preclinical and clinical studies. This paper summarizes the information related to the physiology of CIPN and medicines that could be used for treating this condition.
Collapse
Affiliation(s)
- Marina Mattar
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - Florence Umutoni
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Marwa A. Hassan
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
| | - M. Wambui Wamburu
- Department of Pharmacy Practice, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA;
| | - Reagan Turner
- Department of Biology, Presbyterian College, Clinton, SC 29325, USA;
| | - James S. Patton
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| | - Xin Chen
- Department of Pharmaceutical and Clinical Sciences, College of Pharmacy and Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Wei Lei
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, SC 29325, USA; (M.M.); (M.A.H.)
- Department of Pharmaceutical and Graduate Life Sciences, College of Health Sciences, Nursing, and Pharmacy, Manchester University, Fort Wayne, IN 46845, USA; (F.U.); (J.S.P.)
| |
Collapse
|
3
|
Chirumbolo S, Valdenassi L, Tirelli U, Ricevuti G, Pandolfi S, Vaiano F, Galoforo A, Loprete F, Simonetti V, Chierchia M, Bellardi D, Richelmi T, Franzini M. The Oxygen-Ozone Adjunct Medical Treatment According to the Protocols from the Italian Scientific Society of Oxygen-Ozone Therapy: How Ozone Applications in the Blood Can Influence Clinical Therapy Success via the Modulation of Cell Biology and Immunity. BIOLOGY 2023; 12:1512. [PMID: 38132338 PMCID: PMC10740843 DOI: 10.3390/biology12121512] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Ozone is an allotrope of oxygen whose use in medicine has rapidly grown in recent years. Ozonated blood allows for the use of ozone in a safe modality, as plasma and blood cells are endowed with an antioxidant system able to quench ozone's pro-oxidant property and to elicit the Nrf2/Kwap1/ARE pathway. METHODS We present two clinical studies, a case-series (six patients) observational study adopting ozone as a major autohemotherapy and topical ozone to address infected post-surgical wounds with multi-drug resistant bacteria and an observational study (250 patients) using ozonated blood for treating knee osteoarthritis. RESULTS Ozonated blood via major autohemotherapy reduced the extent of infections in wounds, reduced the inflammatory biomarkers by more than 75% and improved patients' QoL, whereas ozonated blood via minor autohemotherapy improved significantly (p < 0.001) WOMAC and Lequesne's parameters in knee osteoarthritis. CONCLUSIONS The models described, i.e., ozone autohemotherapy in wound antimicrobial treatment and ozonated blood in knee osteoarthrosis, following our protocols, share the outstanding ability of ozone to modulate the innate immune response and address bacterial clearance as well as inflammation and pain.
Collapse
Affiliation(s)
- Salvatore Chirumbolo
- Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy
| | - Luigi Valdenassi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | | | - Giovanni Ricevuti
- Department of Drug Science, University of Pavia, 27100 Pavia, Italy;
| | - Sergio Pandolfi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Francesco Vaiano
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Antonio Galoforo
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Fortunato Loprete
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Vincenzo Simonetti
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Marianna Chierchia
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | | | - Tommaso Richelmi
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| | - Marianno Franzini
- Italian Scientific Society of Oxygen–Ozone Therapy (SIOOT), High Master School of Oxygen-Ozone Therapy, University of Pavia, 27100 Pavia, Italy; (L.V.); (S.P.); (F.V.); (A.G.); (F.L.); (V.S.); (M.C.); or (T.R.); (M.F.)
| |
Collapse
|