1
|
Gross T, Ledernez LA, Birrer L, Bergmann ME, Altenburger MJ. Guided Plasma Application in Dentistry-An Alternative to Antibiotic Therapy. Antibiotics (Basel) 2024; 13:735. [PMID: 39200035 PMCID: PMC11350922 DOI: 10.3390/antibiotics13080735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cold atmospheric plasma (CAP) is a promising alternative to antibiotics and chemical substances in dentistry that can reduce the risk of unwanted side effects and bacterial resistance. AmbiJet is a device that can ignite and deliver plasma directly to the site of action for maximum effectiveness. The aim of the study was to investigate its antimicrobial efficacy and the possible development of bacterial resistance. The antimicrobial effect of the plasma was tested under aerobic and anaerobic conditions on bacteria (five aerobic, three anaerobic (Gram +/-)) that are relevant in dentistry. The application times varied from 1 to 7 min. Possible bacterial resistance was evaluated by repeated plasma applications (10 times in 50 days). A possible increase in temperature was measured. Plasma effectively killed 106 seeded aerobic and anaerobic bacteria after an application time of 1 min per 10 mm2. Neither the development of resistance nor an increase in temperature above 40 °C was observed, so patient discomfort can be ruled out. The plasma treatment proved to be effective under anaerobic conditions, so the influence of ROS can be questioned. Our results show that AmbiJet efficiently eliminates pathogenic oral bacteria. Therefore, it can be advocated for clinical therapeutic use.
Collapse
Affiliation(s)
- Tara Gross
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (T.G.); (L.B.)
- Center for Tissue Replacement, Regeneration & Neogenesis (GERN), Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Loic Alain Ledernez
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (L.A.L.); (M.E.B.)
| | - Laurent Birrer
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (T.G.); (L.B.)
- Center for Tissue Replacement, Regeneration & Neogenesis (GERN), Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (L.A.L.); (M.E.B.)
| | - Michael Eckhard Bergmann
- Laboratory for Sensors, Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany; (L.A.L.); (M.E.B.)
| | - Markus Jörg Altenburger
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center–University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany; (T.G.); (L.B.)
- Center for Tissue Replacement, Regeneration & Neogenesis (GERN), Department of Operative Dentistry and Periodontology, Medical Center, Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| |
Collapse
|
2
|
Kim HE. Influence of Biofilm Maturity on the Antibacterial Efficacy of Cold Atmospheric Plasma in Oral Microcosm Biofilms. Biomedicines 2024; 12:1056. [PMID: 38791017 PMCID: PMC11118202 DOI: 10.3390/biomedicines12051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
As biofilms mature, biomass and extracellular polysaccharide (EPS) content increases, enhancing pathogenicity. Therefore, this study aimed to evaluate the antibacterial efficacy of cold atmospheric plasma (CAP) against oral microcosm biofilms and the influence of biofilm maturity on treatment. Oral microcosm biofilms were cultured on hydroxyapatite disks for 2 and 6 days. Based on the treatment and biofilm maturity, these were subsequently allocated into six groups (N = 19 each): Groups 1 and 2 were incubated with distilled water for 1 min; Groups 3 and 4 were treated with CAP for 2 min, and Groups 5 and 6 were treated with 0.12% chlorhexidine gluconate for 1 min. Groups 1, 3, and 5 represent 2-day biofilms, and Groups 2, 4, and 6 represent 6-day biofilms. Treatments were repeated daily for 5 days. Antibacterial efficacy was analyzed by measuring oral biofilms' red fluorescence intensity (RatioR/G) and quantifying EPS content and bacterial viability. The RatioR/G was 1.089-fold and 1.104-fold higher in Groups 4 and 6 than in Groups 3 and 5 following antibacterial treatment, respectively (p < 0.001). EPS content increased by 1.71-fold in Group 6 than in Group 5 (p < 0.001). Bacterial survival rate was the lowest in Group 3 (p = 0.005). These findings underscore the relevance of CAP treatment in maintaining antibacterial efficacy regardless of the biofilm development stage, highlighting its potential utility in oral care.
Collapse
Affiliation(s)
- Hee-Eun Kim
- Department of Dental Hygiene, Gachon University College of Medical Science, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Applications of Plasma Produced with Electrical Discharges in Gases for Agriculture and Biomedicine. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The use of thermal and non-thermal atmospheric pressure plasma to solve problems related to agriculture and biomedicine is the focus of this paper. Plasma in thermal equilibrium is used where heat is required. In agriculture, it is used to treat soil and land contaminated by the products of biomass, plastics, post-hospital and pharmaceutical waste combustion, and also by ecological phenomena that have recently been observed, such as droughts, floods and storms, leading to environmental pollution. In biomedical applications, thermal plasma is used in so-called indirect living tissue treatment. The sources of thermal plasma are arcs, plasma torches and microwave plasma reactors. In turn, atmospheric pressure cold (non-thermal) plasma is applied in agriculture and biomedicine where heat adversely affects technological processes. The thermodynamic imbalance of cold plasma makes it suitable for organic syntheses due its low power requirements and the possibility of conducting chemical reactions in gas at relatively low and close to ambient temperatures. It is also suitable in the treatment of living tissues and sterilisation of medical instruments made of materials that are non-resistant to high temperatures. Non-thermal and non-equilibrium discharges at atmospheric pressure that include dielectric barrier discharges (DBDs) and atmospheric pressure plasma jets (APPJs), as well as gliding arc (GAD), can be the source of cold plasma. This paper presents an overview of agriculture and soil protection problems and biomedical and health protection problems that can be solved with the aid of plasma produced with electrical discharges. In particular, agricultural processes related to water, sewage purification with ozone and with advanced oxidation processes, as well as those related to contaminated soil treatment and pest control, are presented. Among the biomedical applications of cold plasma, its antibacterial activity, wound healing, cancer treatment and dental problems are briefly discussed.
Collapse
|
4
|
Lata S, Chakravorty S, Mitra T, Pradhan PK, Mohanty S, Patel P, Jha E, Panda PK, Verma SK, Suar M. Aurora Borealis in dentistry: The applications of cold plasma in biomedicine. Mater Today Bio 2022; 13:100200. [PMID: 35036896 PMCID: PMC8743205 DOI: 10.1016/j.mtbio.2021.100200] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/22/2021] [Accepted: 12/29/2021] [Indexed: 01/11/2023] Open
Abstract
Plasma is regularly alluded to as the fourth form of matter. Its bounty presence in nature along with its potential antibacterial properties has made it a widely utilized disinfectant in clinical sciences. Thermal plasma and non-thermal (or cold atmospheric) plasma (NTP) are two types of plasma. Atoms and heavy particles are both available at the same temperature in thermal plasma. Cold atmospheric plasma (CAP) is intended to be non-thermal since its electrons are hotter than the heavier particles at ambient temperature. Direct barrier discharge (DBD), atmospheric plasma pressure jet (APPJ), etc. methods can be used to produce plasma, however, all follow a basic concept in their generation. This review focuses on the anticipated uses of cold atmospheric plasma in dentistry, such as its effectiveness in sterilizing dental instruments by eradicating bacteria, its advantage in dental cavity decontamination over conventional methods, root canal disinfection, its effects on tooth whitening, the benefits of plasma treatment on the success of dental implant placement, and so forth. Moreover, the limitations and probable solutions has also been anticipated. These conceivable outcomes thus have proclaimed the improvement of more up-to-date gadgets, for example, the plasma needle and plasma pen, which are efficient in treating the small areas like root canal bleaching, biofilm disruption, requiring treatment in dentistry. Non-thermal plasma (NTP) has regarded as an important tool for biomedical application especially dental application. The surface application of NTP can be used for disinfecting microbial infection in endodontic issues. NTP can be used to eradicate the microorganism biofilm responsible for dental caries. NTP can also be utilized in would healing, implant modifications and adhesive restoration. NTP is potential candidate for clinical application in dentistry based on the experimental proofs.
Collapse
Affiliation(s)
- S Lata
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Shibani Chakravorty
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Tamoghni Mitra
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Prasanti Kumari Pradhan
- Kalinga Institute of Dental Sciences, Department of Conservative Dentistry and Endodontics, KIIT University, Bhubaneswar, 751024, India
| | - Soumyakanta Mohanty
- Department of Conservative Dentistry and Endodontics, SCB Dental College and Hospital, Cuttack, 753007, India
| | - Paritosh Patel
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Ealisha Jha
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.,Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India
| |
Collapse
|
5
|
Zarif ME, Yehia SA, Biță B, Sătulu V, Vizireanu S, Dinescu G, Holban AM, Marinescu F, Andronescu E, Grumezescu AM, Bîrcă AC, Farcașiu AT. Atmospheric Pressure Plasma Activation of Hydroxyapatite to Improve Fluoride Incorporation and Modulate Bacterial Biofilm. Int J Mol Sci 2021; 22:13103. [PMID: 34884908 PMCID: PMC8658314 DOI: 10.3390/ijms222313103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/28/2021] [Accepted: 11/30/2021] [Indexed: 11/27/2022] Open
Abstract
Despite the technological progress of the last decade, dental caries is still the most frequent oral health threat in children and adults alike. Such a condition has multiple triggers and is caused mainly by enamel degradation under the acidic attack of microbial cells, which compose the biofilm of the dental plaque. The biofilm of the dental plaque is a multispecific microbial consortium that periodically develops on mammalian teeth. It can be partially removed through mechanical forces by individual brushing or in specialized oral care facilities. Inhibition of microbial attachment and biofilm formation, as well as methods to strengthen dental enamel to microbial attack, represent the key factors in caries prevention. The purpose of this study was to elaborate a cold plasma-based method in order to modulate microbial attachment and biofilm formation and to improve the retention of fluoride (F-) in an enamel-like hydroxyapatite (HAP) model sample. Our results showed improved F retention in the HAP model, which correlated with an increased antimicrobial and antibiofilm effect. The obtained cold plasma with a dual effect exhibited through biofilm modulation and enamel strengthening through fluoridation is intended for dental application, such as preventing and treating dental caries and enamel deterioration.
Collapse
Affiliation(s)
- Maria Elena Zarif
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Sașa Alexandra Yehia
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Bogdan Biță
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Veronica Sătulu
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania
| | - Sorin Vizireanu
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania
| | - Gheorghe Dinescu
- Low Temperature Plasma Laboratory, National Institute for Laser, Plasma and Radiation Physics, 077125 Măgurele, Romania
- Faculty of Physics, University of Bucharest, 077125 Măgurele, Romania
| | - Alina Maria Holban
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Florica Marinescu
- Microbiology & Immunology Department, Faculty of Biology, University of Bucharest, 77206 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 050045 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov no. 3, 050045 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Alexandru Titus Farcașiu
- Department of Removable Prosthodontics, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 032799 Bucharest, Romania
| |
Collapse
|
6
|
Cold Atmospheric Plasma Jet as a Possible Adjuvant Therapy for Periodontal Disease. Molecules 2021; 26:molecules26185590. [PMID: 34577061 PMCID: PMC8470429 DOI: 10.3390/molecules26185590] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/27/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the limitations of traditional periodontal therapies, and reported cold atmospheric plasma anti-inflammatory/antimicrobial activities, plasma could be an adjuvant therapy to periodontitis. Porphyromonas gingivalis was grown in blood agar. Standardized suspensions were plated on blood agar and plasma-treated for planktonic growth. For biofilm, dual-species Streptococcus gordonii + P. gingivalis biofilm grew for 48 h and then was plasma-treated. XTT assay and CFU counting were performed. Cytotoxicity was accessed immediately or after 24 h. Plasma was applied for 1, 3, 5 or 7 min. In vivo: Thirty C57BI/6 mice were subject to experimental periodontitis for 11 days. Immediately after ligature removal, animals were plasma-treated for 5 min once-Group P1 (n = 10); twice (Day 11 and 13)-Group P2 (n = 10); or not treated-Group S (n = 10). Mice were euthanized on day 15. Histological and microtomography analyses were performed. Significance level was 5%. Halo diameter increased proportionally to time of exposure contrary to CFU/mL counting. Mean/SD of fibroblasts viability did not vary among the groups. Plasma was able to inhibit P. gingivalis in planktonic culture and biofilm in a cell-safe manner. Moreover, plasma treatment in vivo, for 5 min, tends to improve periodontal tissue recovery, proportionally to the number of plasma applications.
Collapse
|
7
|
Nam G, Kim M, Jang Y, Cho S. Cold Atmospheric Pressure Microplasma Pipette for Disinfection of Methicillin-Resistant Staphylococcus aureus. MICROMACHINES 2021; 12:1103. [PMID: 34577746 PMCID: PMC8465082 DOI: 10.3390/mi12091103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/20/2022]
Abstract
Microbial infections should be controlled and prevented for successful wound healing and tissue regeneration. Various disinfection methods exist that use antibiotics, ultraviolet (UV), heat, radiation, or chemical disinfectants; however, cold atmospheric pressure plasma has exhibited a unique and effective antibacterial ability that is not affected by antibiotic resistance or pain. This study develops a cold atmospheric pressure microplasma pipette (CAPMP) that outputs an Ar plasma plume through a tube with an inner radius of 180 μm for disinfection in a small area. The CAPMP was evaluated using Staphylococcus aureus and methicillin-resistant Staphylococcus aureus diluted in liquid media, spread on solid agar, or covered by dressing gauze. An increase in the treatment time of CAPMP resulted in a decrease in the number of colonies of the grown microorganism (colony forming unit) and an increase in the disinfected area for both bacteria. The disinfection ability of CAPMP was observed when the bacteria were covered with dressing gauze and was dependent on the number of gauze layers.
Collapse
Affiliation(s)
- Geunyoung Nam
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
| | - Muhwan Kim
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Yeonsook Jang
- Femto Science Inc., 557 Dongtangiheung-ro, Hwaseong-si 18469, Gyeonggi-do, Korea; (M.K.); (Y.J.)
| | - Sungbo Cho
- Department of Biomedical Engineering, Gachon Advanced Institute for Health Science & Technology, Gachon University, 191 Hambakmoe-ro, Incheon 21999, Korea;
- Department of Electronic Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Korea
| |
Collapse
|
8
|
Abstract
Nonthermal atmospheric pressure biocompatible plasma (NBP), alternatively called bio-cold plasma, is a partially ionized gas that consists of charged particles, neutral atoms and molecules, photons, an electric field, and heat. Recently, nonthermal plasma-based technology has been applied to bioscience, medicine, agriculture, food processing, and safety. Various plasma device configurations and electrode layouts has fast-tracked plasma applications in the treatment of biological and material surfaces. The NBP action mechanism may be related to the synergy of plasma constituents, such as ultraviolet radiation or a reactive species. Recently, plasma has been used in the inactivation of viruses and resistant microbes, such as fungal cells, bacteria, spores, and biofilms made by microbes. It has also been used to heal wounds, coagulate blood, degrade pollutants, functionalize material surfaces, kill cancers, and for dental applications. This review provides an outline of NBP devices and their applications in bioscience and medicine. We also discuss the role of plasma-activated liquids in biological applications, such as cancer treatments and agriculture. The individual adaptation of plasma to meet specific medical requirements necessitates real-time monitoring of both the plasma performance and the target that is treated and will provide a new paradigm of plasma-based therapeutic clinical systems.
Collapse
Affiliation(s)
- Eun H. Choi
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| | - Han S. Uhm
- Canode # 702, 136-11 Tojeong-ro, Mapo-gu, Seoul, 04081 Republic of Korea
| | - Nagendra K. Kaushik
- Plasma Bioscience Research Center/Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul, 01897 Republic of Korea
| |
Collapse
|
9
|
Abstract
Plasma is an electrically conducting medium that responds to electric and magnetic fields. It consists of large quantities of highly reactive species, such as ions, energetic electrons, exited atoms and molecules, ultraviolet photons, and metastable and active radicals. Non-thermal or cold plasmas are partially ionized gases whose electron temperatures usually exceed several tens of thousand degrees K, while the ions and neutrals have much lower temperatures. Due to the presence of reactive species at low temperature, the biological effects of non-thermal plasmas have been studied for application in the medical area with promising results. This review outlines the application of cold atmospheric pressure plasma (CAPP) in dentistry for the control of several pathogenic microorganisms, induction of anti-inflammatory, tissue repair effects and apoptosis of cancer cells, with low toxicity to healthy cells. Therefore, CAPP has potential to be applied in many areas of dentistry such as cariology, periodontology, endodontics and oral oncology.
Collapse
|
10
|
Comprehensive biomedical applications of low temperature plasmas. Arch Biochem Biophys 2020; 693:108560. [PMID: 32857998 PMCID: PMC7448743 DOI: 10.1016/j.abb.2020.108560] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 02/08/2023]
Abstract
The main component of plasma medicine is the use of low-temperature plasma (LTP) as a powerful tool for biomedical applications. LTP generates high reactivity at low temperatures and can be activated with noble gases with molecular mixtures or compressed air. LTP reactive species are quickly produced, and are a remarkably good source of reactive oxygen and nitrogen species including singlet oxygen (O2), ozone (O3), hydroxyl radicals (OH), nitrous oxide (NO), and nitrogen dioxide (NO2). Its low gas temperature and highly reactive non-equilibrium chemistry make it appropriate for the alteration of inorganic surfaces and delicate biological systems. Treatment of oral biofilm-related infections, treatment of wounds and skin diseases, assistance in cancer treatment, treatment of viruses' infections (e.g. herpes simplex), and optimization of implants surfaces are included among the extensive plasma medicine applications. Each of these applications will be discussed in this review article.
Collapse
|
11
|
Braný D, Dvorská D, Halašová E, Škovierová H. Cold Atmospheric Plasma: A Powerful Tool for Modern Medicine. Int J Mol Sci 2020; 21:E2932. [PMID: 32331263 PMCID: PMC7215620 DOI: 10.3390/ijms21082932] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/20/2020] [Accepted: 04/20/2020] [Indexed: 12/15/2022] Open
Abstract
Cold atmospheric plasma use in clinical studies is mainly limited to the treatment of chronic wounds, but its application in a wide range of medical fields is now the goal of many analyses. It is therefore likely that its application spectrum will be expanded in the future. Cold atmospheric plasma has been shown to reduce microbial load without any known significant negative effects on healthy tissues, and this should enhance its possible application to any microbial infection site. It has also been shown to have anti-tumour effects. In addition, it acts proliferatively on stem cells and other cultivated cells, and the highly increased nitric oxide levels have a very important effect on this proliferation. Cold atmospheric plasma use may also have a beneficial effect on immunotherapy in cancer patients. Finally, it is possible that the use of plasma devices will not remain limited to surface structures, because current endeavours to develop sufficiently miniature microplasma devices could very likely lead to its application in subcutaneous and internal structures. This study summarises the available literature on cold plasma action mechanisms and analyses of its current in vivo and in vitro use, primarily in the fields of regenerative and dental medicine and oncology.
Collapse
Affiliation(s)
| | - Dana Dvorská
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia; (D.B.); (E.H.); (H.Š.)
| | | | | |
Collapse
|
12
|
Adhikari M, Adhikari B, Ghimire B, Baboota S, Choi EH. Cold Atmospheric Plasma and Silymarin Nanoemulsion Activate Autophagy in Human Melanoma Cells. Int J Mol Sci 2020; 21:ijms21061939. [PMID: 32178401 PMCID: PMC7139470 DOI: 10.3390/ijms21061939] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Autophagy is reported as a survival or death-promoting pathway that is highly debatable in different kinds of cancer. Here, we examined the co-effect of cold atmospheric plasma (CAP) and silymarin nanoemulsion (SN) treatment on G-361 human melanoma cells via autophagy induction. Methods: The temperature and pH of the media, along with the cell number, were evaluated. The intracellular glucose level and PI3K/mTOR and EGFR downstream pathways were assessed. Autophagy-related genes, related transcriptional factors, and autophagy induction were estimated using confocal microscopy, flow cytometry, and ELISA. Results: CAP treatment increased the temperature and pH of the media, while its combination with SN resulted in a decrease in intracellular ATP with the downregulation of PI3K/AKT/mTOR survival and RAS/MEK transcriptional pathways. Co-treatment blocked downstream paths of survival pathways and reduced PI3K (2 times), mTOR (10 times), EGFR (5 times), HRAS (5 times), and MEK (10 times). CAP and SN co-treated treatment modulates transcriptional factor expressions (ZKSCAN3, TFEB, FOXO1, CRTC2, and CREBBP) and specific genes (BECN-1, AMBRA-1, MAP1LC3A, and SQSTM) related to autophagy induction. Conclusion: CAP and SN together activate autophagy in G-361 cells by activating PI3K/mTOR and EGFR pathways, expressing autophagy-related transcription factors and genes.
Collapse
Affiliation(s)
- Manish Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
- Correspondence: (M.A.); (E.H.C.)
| | - Bhawana Adhikari
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
| | - Bhagirath Ghimire
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, Delhi 110062, India;
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Applied Plasma Medicine Center, Department of Electrical and Biological Physics, Kwangwoon University, Seoul 01897, Korea; (B.A.); (B.G.)
- Correspondence: (M.A.); (E.H.C.)
| |
Collapse
|
13
|
Handorf O, Weihe T, Bekeschus S, Graf AC, Schnabel U, Riedel K, Ehlbeck J. Nonthermal Plasma Jet Treatment Negatively Affects the Viability and Structure of Candida albicans SC5314 Biofilms. Appl Environ Microbiol 2018; 84:e01163-18. [PMID: 30143511 PMCID: PMC6193392 DOI: 10.1128/aem.01163-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Microorganisms are predominantly organized in biofilms, where cells live in dense communities and are more resistant to external stresses than are their planktonic counterparts. With in vitro experiments, the susceptibility of Candida albicans biofilms to a nonthermal plasma treatment (plasma source, kINPen09) in terms of growth, survival, and cell viability was investigated. C. albicans strain SC5314 (ATCC MYA-2876) was plasma treated for different time periods (30 s, 60 s, 120 s, 180 s, 300 s). The results of the experiments, encompassing CFU, fluorescence Live/Dead, and 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide salt (XTT) assays, revealed a negative influence of the plasma treatment on the proliferation ability, vitality, and metabolism of C. albicans biofilms, respectively. Morphological analysis of plasma-treated biofilms using atomic force microscopy supported the indications for lethal plasma effects concomitant with membrane disruptions and the loss of intracellular fluid. Yielding controversial results compared to those of other publications, fluorescence and confocal laser scanning microscopic inspection of plasma-treated biofilms indicated that an inactivation of cells appeared mainly on the bottom of the biofilms. If this inactivation leads to a detachment of the biofilms from the overgrown surface, it might offer completely new approaches in the plasma treatment of biofilms. Because of plasma's biochemical-mechanical mode of action, resistance of microbial cells against plasma is unknown at this state of research.IMPORTANCE Microbial communities are an increasing problem in medicine but also in industry. Thus, an efficient and rapid removal of biofilms is becoming increasingly important. With the aid of the kINPen09, a radiofrequency plasma jet (RFPJ) instrument, decisive new findings on the effects of plasma on C. albicans biofilms were obtained. This work showed that the inactivation of biofilms takes place mainly on the bottom, which in turn offers new possibilities for the removal of biofilms by other strategies, e.g., mechanical treatment. This result demonstrated that nonthermal atmospheric pressure plasma is well suited for biofilm decontamination.
Collapse
Affiliation(s)
- O Handorf
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - T Weihe
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - S Bekeschus
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - A C Graf
- Ernst Moritz Arndt University, Microbial Physiology and Molecular Biology, Greifswald, Germany
| | - U Schnabel
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| | - K Riedel
- Ernst Moritz Arndt University, Microbial Physiology and Molecular Biology, Greifswald, Germany
| | - J Ehlbeck
- Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
| |
Collapse
|