1
|
Hansda S, Ghosh G, Ghosh R. The Role of Bystander Effect in Ultraviolet A Induced Photoaging. Cell Biochem Biophys 2022; 80:657-664. [PMID: 36190618 DOI: 10.1007/s12013-022-01099-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/17/2022] [Indexed: 11/03/2022]
Abstract
Exposure to sunlight, mainly UVA, leads to typical changes in the features of the skin known as photoaging. UVA irradiation induces the expression of proteases that are responsible for the degradation of the extracellular matrix proteins to results in photoaging; it also downregulates the expression of proteins that are needed for the skin structure. Since, it is known that cells in the neighborhood of irradiated cells, but not directly exposed to it, often manifest responses like their irradiated counterparts, it is important to evaluate if these bystander cells too, can contribute to photoaging. UVA induced cell cycle arrest has been associated with photoaging, from flow cytometry analysis we found that there was an induction of cell cycle arrest at the G1/S phase in the UVA-bystander cells. The expression of some key photoaging marker genes likes, matrix metalloproteinases (MMP-1, MMP-3, MMP-9), cyclooxygenase-2 (COX-2), collagen1 and elastin were assessed from qRT-PCR. Up-regulation of MMP-1 and COX-2, downregulation of collagen1 and elastin, along with suppression below normal expression for MMP-3 and MMP-9 was observed in the UVA-bystander A375 cells. Our findings suggest that UVA-bystander cells may contribute to the process of photoaging.
Collapse
Affiliation(s)
- Surajit Hansda
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Gargi Ghosh
- Department of Molecular Biology & Biotechnology, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Rita Ghosh
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
2
|
Klebowski B, Stec M, Depciuch J, Gałuszka A, Pajor-Swierzy A, Baran J, Parlinska-Wojtan M. Gold-Decorated Platinum and Palladium Nanoparticles as Modern Nanocomplexes to Improve the Effectiveness of Simulated Anticancer Proton Therapy. Pharmaceutics 2021; 13:pharmaceutics13101726. [PMID: 34684019 PMCID: PMC8539939 DOI: 10.3390/pharmaceutics13101726] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/16/2022] Open
Abstract
Noble metal nanoparticles, such as gold (Au NPs), platinum (Pt NPs), or palladium (Pd NPs), due to their highly developed surface, stability, and radiosensitizing properties, can be applied to support proton therapy (PT) of cancer. In this paper, we investigated the potential of bimetallic, c.a. 30 nm PtAu and PdAu nanocomplexes, synthesized by the green chemistry method and not used previously as radiosensitizers, to enhance the effect of colorectal cancer PT in vitro. The obtained nanomaterials were characterized by scanning transmission electron microscopy (STEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDS), UV-Vis spectroscopy, and zeta potential measurements. The effect of PtAu and PdAu NPs in PT was investigated on colon cancer cell lines (SW480, SW620, and HCT116), as well as normal colon epithelium cell line (FHC). These cells were cultured with both types of NPs and then irradiated by proton beam with a total dose of 15 Gy. The results of the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) test showed that the NPs-assisted PT resulted in a better anticancer effect than PT used alone; however, there was no significant difference in the radiosensitizing properties between tested nanocomplexes. The MTS results were further verified by defining the cell death as apoptosis (Annexin V binding assay). Furthermore, the data showed that such a treatment was more selective for cancer cells, as normal cell viability was only slightly affected.
Collapse
Affiliation(s)
- Bartosz Klebowski
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (J.D.); (M.P.-W.)
- Correspondence:
| | - Malgorzata Stec
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | - Joanna Depciuch
- Institute of Nuclear Physics Polish Academy of Sciences, 31-342 Krakow, Poland; (J.D.); (M.P.-W.)
| | - Adrianna Gałuszka
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | - Anna Pajor-Swierzy
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Sciences, 20-239 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland; (M.S.); (A.G.); (J.B.)
| | | |
Collapse
|
3
|
Jara N, Milán NS, Rahman A, Mouheb L, Boffito DC, Jeffryes C, Dahoumane SA. Photochemical Synthesis of Gold and Silver Nanoparticles-A Review. Molecules 2021; 26:4585. [PMID: 34361738 PMCID: PMC8348930 DOI: 10.3390/molecules26154585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Nanomaterials have supported important technological advances due to their unique properties and their applicability in various fields, such as biomedicine, catalysis, environment, energy, and electronics. This has triggered a tremendous increase in their demand. In turn, materials scientists have sought facile methods to produce nanomaterials of desired features, i.e., morphology, composition, colloidal stability, and surface chemistry, as these determine the targeted application. The advent of photoprocesses has enabled the easy, fast, scalable, and cost- and energy-effective production of metallic nanoparticles of controlled properties without the use of harmful reagents or sophisticated equipment. Herein, we overview the synthesis of gold and silver nanoparticles via photochemical routes. We extensively discuss the effect of varying the experimental parameters, such as the pH, exposure time, and source of irradiation, the use or not of reductants and surfactants, reagents' nature and concentration, on the outcomes of these noble nanoparticles, namely, their size, shape, and colloidal stability. The hypothetical mechanisms that govern these green processes are discussed whenever available. Finally, we mention their applications and insights for future developments.
Collapse
Affiliation(s)
- Nicole Jara
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
| | - Nataly S. Milán
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
| | - Ashiqur Rahman
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA; (A.R.); (C.J.)
| | - Lynda Mouheb
- Laboratoire de Recherche de Chimie Appliquée et de Génie Chimique, Hasnaoua I, Université Mouloud Mammeri B.P.17 RP, Tizi-Ouzou 15000, Algeria;
| | - Daria C. Boffito
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada;
| | - Clayton Jeffryes
- Center for Midstream Management and Science, Lamar University, Beaumont, TX 77710, USA; (A.R.); (C.J.)
- Center for Advances in Water and Air Quality, The Dan F. Smith Department of Chemical Engineering, Lamar University, Beaumont, TX 77710, USA
| | - Si Amar Dahoumane
- School of Biological Sciences and Engineering, Yachay Tech University, Hacienda San José s/n, San Miguel de Urcuquí 100119, Ecuador; (N.J.); (N.S.M.)
- Department of Chemical Engineering, Polytechnique Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, QC H3C 3A7, Canada;
| |
Collapse
|
4
|
Z E, R F. The Bystander Effect of Ultraviolet Radiation and Mediators. J Biomed Phys Eng 2020; 10:111-118. [PMID: 32158718 PMCID: PMC7036410 DOI: 10.31661/jbpe.v0i0.956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 06/19/2018] [Indexed: 01/01/2023]
Abstract
A bystander effect is biological changes in non-irradiated cells by transmitted signals from irradiated bystander cells, which causes the radiation toxic effects on the adjacent non-irradiated tissues. This phenomenon occurs by agents such as ionizing radiation, ultraviolet radiation (UVR) and chemotherapy. The bystander effect includes biological processes such as damage to DNA, cell death, chromosomal abnormalities, delay and premature mutations and micronuclei production. The most involved genes in creating this phenomenon are cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), the nuclear factor of kappa B (NFkB) and Mitogen-Activated Protein Kinases (MAPKs). Radiation generated reactive oxygen species (ROS) can damage DNA, membranes and protein buildings. Studies have shown that Vitamin C, Hesperidin, and melatonin can reduce the number of ROS and have a protective role. Silver nanoparticles (Ag NPs) are the most abundant nanoparticles produced and when they enter cells, they can create DNA damage. Studies have shown that combined treatment with UVR and silver nanoparticles could form γ-H2AX and 8-hydroxy-2'-deoxyguanosine (8-OHdG) synergistically. This article reviews the direct and the bystander effects of UVR on the nuclear DNA, the effect of radioprotectors and Ag NPs on these effects.
Collapse
Affiliation(s)
- Eftekhari Z
- MSc, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- MSc, Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fardid R
- PhD, Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- PhD, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|