1
|
Ponmalar YR, Manickam R, Godson HF, Ganesh KM, Saminathan S, Chandraraj V, Raman A. Peripheral dose assessment in radiation therapy using photon beams: experimental results with optically stimulated luminescence dosimeter. Radiol Phys Technol 2025:10.1007/s12194-025-00883-5. [PMID: 39862358 DOI: 10.1007/s12194-025-00883-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/03/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
The estimation of peripheral dose (PD) is vital in cancer patients with long life expectancy. Assessment of PD to radiosensitive organs is important to determine the possible risk of late effects. An attempt has been made to assess the peripheral dose using optically stimulated luminescence dosimeter (OSLD) with megavoltage photon beams as a function of field size, depth, energy, and distance from the field edge. The PD measurements were carried out at 13 locations starting from 1.5 cm to 20.8 cm from radiation field edge for three different field sizes at three different depths with 6 and 18 MV photon beams. In addition, the measurements were carried out to analyze the response in PD due to the presence of wedge. The %PD decreases gradually with an increase in distance from the radiation field edge. The %PD at surface for 10 × 10cm2 with 6MV photon beams was 6.77 ± 0.32% and 1.0 ± 0.04% at 1.5 cm and 20.8 cm away from field edge. For 20 × 20 cm2 field, %PD was found to be much higher at surface than at 5 cm depth for all distances from field edge. This study demonstrates the suitability of OSLD for PD assessment in megavoltage photon beams. The PD increases as field size increases, primarily due to greater amount of out-of-field scatter generated by larger surface area of the collimator defining the larger field size. An enhancement in PD was observed with wedge when the thick end was oriented towards the OSLDs. This study assessed PD that would be a risk factor of the normal tissue complication and secondary cancer induction.
Collapse
Affiliation(s)
- Y Retna Ponmalar
- Department of Radiation Oncology, Christian Medical College, Vellore, India
| | - Ravikumar Manickam
- Department of Radiotherapy, Sri Shankara Cancer Hospital & Research Centre, Bangalore, 560 004, India.
| | | | | | - Sathiyan Saminathan
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Varatharaj Chandraraj
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, India
| | - Arun Raman
- Department of Radiation Physics, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
2
|
Gardner SJ, Verdecchia K, Miller BM, Smith CE, Doemer A, Feldman A, Siddiqui F, Movsas B, Thind K. Institutional experience with implanted cardiac device risk level assessment: Comparing calculation and measurement. Med Phys 2025. [PMID: 39794286 DOI: 10.1002/mp.17621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND The use of in-vivo dosimetry is a long-standing but also labor-intensive component of risk-level assessment for patients with implanted devices. A calculation-only approach, using treatment planning system (TPS)-calculated doses along with imaging doses estimates when relevant, has the potential to streamline the physics workflow without negatively impacting patient safety. PURPOSE To evaluate the feasibility of using a calculation-only approach for risk level assessment for patients with implanted electronic medical devices. METHODS A total of 86 patients were included in this retrospective study. For each patient, in-vivo dosimetry measurements using optically stimulated luminescent dosimeter (OSLD) were compared to calculated doses (based on TPS calculated doses and an estimate of imaging doses when relevant). The comparison of OSLD doses and estimated predicted doses was structured in the following manner: (1) direct comparison of both absolute dose difference and percent difference for measured and calculated doses, (2) risk level assessment comparison using measured and estimated doses, and (3) sensitivity and positive predictive value assessment of each method for TG-203 risk level assessment. RESULTS For all cases, the calculation-based approach yielded a risk level that was equivalent to or more conservative than the risk level from OSLD measurement. For 79 of 86 patients (91.9%), the calculated and measured doses provided the same risk level. For 7 of 86 patients (8.1%), the calculated dose yielded the more conservative risk level. The calculation-based dose estimate provided a sensitivity of 1.00 with a positive predictive value of 0.92. CONCLUSIONS The use of a calculation-only approach has the potential to reduce workload while maintaining the efficacy of risk-level assessment for patients with implanted devices.
Collapse
Affiliation(s)
- Stephen J Gardner
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Kyle Verdecchia
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Brett M Miller
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Chadd E Smith
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Anthony Doemer
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Aharon Feldman
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Farzan Siddiqui
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Benjamin Movsas
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| | - Kundan Thind
- Department of Radiation Oncology, Henry Ford Cancer Institute, Henry Ford Health, Detroit, Michigan, USA
| |
Collapse
|
3
|
Mukwada G, Skorska M, Rowshanfarzad P, Ebert MA. Comparison of the accuracy of Monte Carlo and Ray Tracing dose calculation algorithms for multiple target brain treatments on CyberKnife. Phys Eng Sci Med 2023; 46:1477-1487. [PMID: 37552365 DOI: 10.1007/s13246-023-01312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023]
Abstract
Single plan multiple brain targets (MBT) stereotactic radiosurgery dose difference between Monte Carlo (MC) and Ray Tracing (RT) algorithms has not been studied. A retrospective study and dose measurements were performed to access factors influencing dose differences. Fifty-three RT treatment plans with a total of 209 brain metastases were extracted from Precision Treatment Planning System (TPS). These plans were generated using fixed cones and were delivered using the CyberKnife M6 system. The same treatment plans were recalculated using MC algorithm and keeping the beam parameters unchanged. MC calculated plan parameters were extracted and dose differences were normalised to MC calculated dose. Correlations were investigated. RT and MC calculated off-centre-ratio (OCR) and tissue-phantom-ratio (TPRs) were exported from the TPS and compared with measured. Plans with 5 gross tumour volumes (GTVs) were created on a phantom and dose measured using a CC04 ionisation chamber and microdiamond detector for comparison with calculated doses. Calculated and measured TPR agreed within ± 1% beyond depth of maximum dose. The OCR showed differences up to 4.3% in the penumbra and out-of-field (OOF) regions. Largest RT and MC calculated GTV mean dose difference was - 5.7%. An increase in the number of GTVs and reduction in the geometric separation of metastases were associated with increased differences between RT and MC calculated doses. In conclusion, calculated dose disagreement in MBT depends on the number of GTVs per plan, number of GTVs within a certain separation distance and plan complexity. MC dose calculation is recommended for complex CyberKnife SRS of MBT.
Collapse
Affiliation(s)
- Godfrey Mukwada
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA, Australia.
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia.
| | - Malgorzata Skorska
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA, Australia
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
| | - Martin A Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Ave, Nedlands, WA, Australia
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia
- 5D Clinics, Claremont, WA, Australia
| |
Collapse
|
4
|
Benzazon N, Colnot J, de Kermenguy F, Achkar S, de Vathaire F, Deutsch E, Robert C, Diallo I. Analytical models for external photon beam radiotherapy out-of-field dose calculation: a scoping review. Front Oncol 2023; 13:1197079. [PMID: 37228501 PMCID: PMC10203488 DOI: 10.3389/fonc.2023.1197079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
A growing body of scientific evidence indicates that exposure to low dose ionizing radiation (< 2 Gy) is associated with a higher risk of developing radio-induced cancer. Additionally, it has been shown to have significant impacts on both innate and adaptive immune responses. As a result, the evaluation of the low doses inevitably delivered outside the treatment fields (out-of-field dose) in photon radiotherapy is a topic that is regaining interest at a pivotal moment in radiotherapy. In this work, we proposed a scoping review in order to identify evidence of strengths and limitations of available analytical models for out-of-field dose calculation in external photon beam radiotherapy for the purpose of implementation in clinical routine. Papers published between 1988 and 2022 proposing a novel analytical model that estimated at least one component of the out-of-field dose for photon external radiotherapy were included. Models focusing on electrons, protons and Monte-Carlo methods were excluded. The methodological quality and potential limitations of each model were analyzed to assess their generalizability. Twenty-one published papers were selected for analysis, of which 14 proposed multi-compartment models, demonstrating that research efforts are directed towards an increasingly detailed description of the underlying physical phenomena. Our synthesis revealed great inhomogeneities in practices, in particular in the acquisition of experimental data and the standardization of measurements, in the choice of metrics used for the evaluation of model performance and even in the definition of regions considered out-of-the-field, which makes quantitative comparisons impossible. We therefore propose to clarify some key concepts. The analytical methods do not seem to be easily suitable for massive use in clinical routine, due to the inevitable cumbersome nature of their implementation. Currently, there is no consensus on a mathematical formalism that comprehensively describes the out-of-field dose in external photon radiotherapy, partly due to the complex interactions between a large number of influencing factors. Out-of-field dose calculation models based on neural networks could be promising tools to overcome these limitations and thus favor a transfer to the clinic, but the lack of sufficiently large and heterogeneous data sets is the main obstacle.
Collapse
Affiliation(s)
- Nathan Benzazon
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Julie Colnot
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
- THERYQ, PMB-Alcen, Peynier, France
| | - François de Kermenguy
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Samir Achkar
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Florent de Vathaire
- Unité Mixte de Recherche (UMR) 1018 Centre de Recherche en épidémiologie et Santé des Populations (CESP), Radiation Epidemiology Team, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
| | - Eric Deutsch
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Charlotte Robert
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ibrahima Diallo
- Unité Mixte de Recherche (UMR) 1030 Radiothérapie Moléculaire et Innovation Thérapeutique, ImmunoRadAI, Université Paris-Saclay, Institut Gustave Roussy, Inserm, Villejuif, France
- Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
5
|
Savanović M, Štrbac B, Jaroš D, Loi M, Huguet F, Foulquier JN. Quantification of Lung Tumor Motion and Optimization of Treatment. J Biomed Phys Eng 2023; 13:65-76. [PMID: 36818005 PMCID: PMC9923245 DOI: 10.31661/jbpe.v0i0.2102-1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/18/2021] [Indexed: 02/02/2023]
Abstract
Background Mobility of lung tumors is induced by respiration and causes inadequate dose coverage. Objective This study quantified lung tumor motion, velocity, and stability for small (≤5 cm) and large (>5 cm) tumors to adapt radiation therapy techniques for lung cancer patients. Material and Methods In this retrospective study, 70 patients with lung cancer were included that 50 and 20 patients had a small and large gross tumor volume (GTV). To quantify the tumor motion and velocity in the upper lobe (UL) and lower lobe (LL) for the central region (CR) and a peripheral region (PR), the GTV was contoured in all ten respiratory phases, using 4D-CT. Results The amplitude of tumor motion was greater in the LL, with motion in the superior-inferior (SI) direction compared to the UL, with an elliptical motion for small and large tumors. Tumor motion was greater in the CR, rather than in the PR, by 63% and 49% in the UL compared to 50% and 38% in the LL, for the left and right lung. The maximum tumor velocity for a small GTV was 44.1 mm/s in the LL (CR), decreased to 4 mm/s for both ULs (PR), and a large GTV ranged from 0.4 to 9.4 mm/s. Conclusion The tumor motion and velocity depend on the tumor localization and the greater motion was in the CR for both lobes due to heart contribution. The tumor velocity and stability can help select the best technique for motion management during radiation therapy.
Collapse
Affiliation(s)
- Milovan Savanović
- Faculty of Medicine, University of Paris-Saclay, 94276 Le Kremlin-Bicêtre, France
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Bojan Štrbac
- MATER Private Hospital, Department of Physics, Eccles Street, Dublin 7, Ireland
| | - Dražan Jaroš
- Center for Radiotherapy, International Medical Centers, Affidea, 78000 Banja Luka, Bosnia, and Herzegovina
- Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia, and Herzegovina
| | - Mauro Loi
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Florence Huguet
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| | - Jean-Noël Foulquier
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, 75020 Paris, France
| |
Collapse
|
6
|
Wong YM, Koh CWY, Lew KS, Chua CGA, Nei W, Tan HQ, Lee JCL, Mazonakis M, Damilakis J. A review on fetal dose in Radiotherapy: A historical to contemporary perspective. Phys Med 2023; 105:102513. [PMID: 36565555 DOI: 10.1016/j.ejmp.2022.102513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
This paper aims to review on fetal dose in radiotherapy and extends and updates on a previous work1 to include proton therapy. Out-of-field doses, which are the doses received by regions outside of the treatment field, are unavoidable regardless of the treatment modalities used during radiotherapy. In the case of pregnant patients, fetal dose is a major concern as it has long been recognized that fetuses exposed to radiation have a higher probability of suffering from adverse effects such as anatomical malformations and even fetal death, especially when the 0.1Gy threshold is exceeded. In spite of the low occurrence of cancer during pregnancy, the radiotherapy team should be equipped with the necessary knowledge to deal with fetal dose. This is crucial so as to ensure that the fetus is adequately protected while not compromising the patient treatment outcomes. In this review paper, various aspects of fetal dose will be discussed ranging from biological, clinical to the physics aspects. Other than fetal dose resulting from conventional photon therapy, this paper will also extend the discussion to modern treatment modalities and techniques, namely proton therapy and image-guided radiotherapy, all of which have seen a significant increase in use in current radiotherapy. This review is expected to provide readers with a comprehensive understanding of fetal dose in radiotherapy, and to be fully aware of the steps to be taken in providing radiotherapy for pregnant patients.
Collapse
Affiliation(s)
- Yun Ming Wong
- Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | | | - Kah Seng Lew
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | | | - Wenlong Nei
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore.
| | - James Cheow Lei Lee
- Division of Radiation Oncology, National Cancer Centre Singapore, Singapore; Division of Physics and Applied Physics, Nanyang Technological University, Singapore
| | - Michael Mazonakis
- Department of Medical Physics, School of Medicine, University of Crete, Greece
| | - John Damilakis
- Department of Medical Physics, School of Medicine, University of Crete, Greece
| |
Collapse
|
7
|
Sá AC, Barateiro A, Bednarz BP, Almeida P, Vaz P, Madaleno T. Comparison of 3DCRT and IMRT out-of-field doses in pediatric patients using Monte Carlo simulations with treatment planning system calculations and measurements. Front Oncol 2022; 12:879167. [PMID: 35992845 PMCID: PMC9388939 DOI: 10.3389/fonc.2022.879167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
3DCRT and IMRT out-of-field doses in pediatric patients were compared using Monte Carlo simulations with treatment planning system calculations and measurements. Purpose Out-of-field doses are given to healthy tissues, which may allow the development of second tumors. The use of IMRT in pediatric patients has been discussed, as it leads to a "bath" of low doses to large volumes of out-of-field organs and tissues. This study aims to compare out-of-field doses in pediatric patients comparing IMRT and 3DCRT techniques using measurements, Monte Carlo (MC) simulations, and treatment planning system (TPS) calculations. Materials and methods A total dose of 54 Gy was prescribed to a PTV in the brain of a pediatric anthropomorphic phantom, for both techniques. To assess the out-of-field organ doses for both techniques, two treatment plans were performed with the 3DCRT and IMRT techniques in TPS. Measurements were carried out in a LINAC using a pediatric anthropomorphic phantom and thermoluminescent dosimeters to recreate the treatment plans, previously performed in the TPS. A computational model of a LINAC, the associated multileaf collimators, and a voxelized pediatric phantom implemented in the Monte Carlo N-Particle 6.1 computer program were also used to perform MC simulations of the out-of-field organ doses, for both techniques. Results The results obtained by measurements and MC simulations indicate a significant increase in dose using the IMRT technique when compared to the 3DCRT technique. More specifically, measurements show higher doses with IMRT, namely, in right eye (13,041 vs. 593 mGy), left eye (6,525 vs. 475 mGy), thyroid (79 vs. 70 mGy), right lung (37 vs. 28 mGy), left lung (27 vs. 20 mGy), and heart (31 vs. 25 mGy). The obtained results indicate that out-of-field doses can be seriously underestimated by TPS. Discussion This study presents, for the first time, out-of-field dose measurements in a realistic scenario and calculations for IMRT, centered on a voxelized pediatric phantom and an MC model of a medical LINAC, including MLC with log file-based simulations. The results pinpoint significant discrepancies in out-of-field doses for the two techniques and are a cause of concern because TPS calculations cannot accurately predict such doses. The obtained doses may presumably increase the risk of development of second tumors.
Collapse
Affiliation(s)
- Ana Cravo Sá
- Radiation Protection and Safety Group, Centro de Ciências e Tecnologias Nucleares (C2TN), Bobadela, Portugal
- Diagnostic, Therapeutic and Public Health Sciences Department, Escola Superior de Tecnologia da Saúde de Lisboa (ESTeSL), Lisbon, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Barateiro
- Radiotherapy Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| | - Bryan P. Bednarz
- Department of Medical Physics, Wisconsin Institutes for Medical Research, University of Wisconsin Hospital and Clinics, Madison, WI, United States
| | - Pedro Almeida
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Pedro Vaz
- Radiation Protection and Safety Group, Centro de Ciências e Tecnologias Nucleares (C2TN), Bobadela, Portugal
| | - Tiago Madaleno
- Radiotherapy Department, Portuguese Institute of Oncology Francisco Gentil, Lisbon, Portugal
| |
Collapse
|
8
|
Tillery H, Moore M, Gallagher KJ, Taddei PJ, Leuro E, Argento DC, Moffitt GB, Kranz M, Carey M, Heymsfield S, Newhauser WD. Personalized 3D-printed anthropomorphic whole-body phantom irradiated by protons, photons, and neutrons. Biomed Phys Eng Express 2022; 8. [PMID: 35045408 DOI: 10.1088/2057-1976/ac4d04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/19/2022] [Indexed: 11/12/2022]
Abstract
The objective of this study was to confirm the feasibility of three-dimensionally-printed (3D-printed), personalized whole-body anthropomorphic phantoms for radiation dose measurements in a variety of charged and uncharged particle radiation fields. We 3D-printed a personalized whole-body phantom of an adult female with a height of 154.8 cm, mass of 90.7 kg, and body mass index of 37.8 kg/m2. The phantom comprised of a hollow plastic shell filled with water and included a watertight access conduit for positioning dosimeters. It is compatible with a wide variety of radiation dosimeters, including ionization chambers that are suitable for uncharged and charged particles. Its mass was 6.8 kg empty and 98 kg when filled with water. Watertightness and mechanical robustness were confirmed after multiple experiments and transportations between institutions. The phantom was irradiated to the cranium with therapeutic beams of 170-MeV protons, 6-MV photons, and fast neutrons. Radiation absorbed dose was measured from the cranium to the pelvis along the longitudinal central axis of the phantom. The dose measurements were made using established dosimetry protocols and well-characterized instruments. For the therapeutic environments considered in this study, stray radiation from intracranial treatment beams was the lowest for proton therapy, intermediate for photon therapy, and highest for neutron therapy. An illustrative example set of measurements at the location of the thyroid for a square field of 5.3 cm per side resulted in 0.09, 0.59, and 1.93 cGy/Gy from proton, photon, and neutron beams, respectively. In this study, we found that 3D-printed personalized phantoms are feasible, inherently reproducible, and well-suited for therapeutic radiation measurements. The measurement methodologies we developed enabled the direct comparison of radiation exposures from neutron, proton, and photon beam irradiations.
Collapse
Affiliation(s)
- Hunter Tillery
- Radiation Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, KPV4, Portland, Oregon, 97239-3098, UNITED STATES
| | - Meagan Moore
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Kyle Joseph Gallagher
- Radiation Medicine, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Road, KPV4, Portland, Oregon, 97239-3098, UNITED STATES
| | - Phillip J Taddei
- Department of Radiation Oncology, Mayo Clinic, 200 First St. SW, Rochester, Minnesota, 55905, UNITED STATES
| | - Eric Leuro
- Seattle Cancer Care Alliance, 1570 N 115th St, Seattle, Washington, 98133, UNITED STATES
| | - David C Argento
- Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Gregory B Moffitt
- Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Marissa Kranz
- University of Washington School of Medicine, 1959 NE Pacific St, Seattle, Washington, 98195, UNITED STATES
| | - Margaret Carey
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Steven Heymsfield
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| | - Wayne David Newhauser
- Louisiana State University, 439-B Nicholson Hall, Tower Dr., Baton Rouge, Louisiana, 70803-4001, UNITED STATES
| |
Collapse
|
9
|
Assessment of Fetal Dose and Health Effect to the Fetus from Breast Cancer Radiotherapy during Pregnancy. Life (Basel) 2022; 12:life12010084. [PMID: 35054476 PMCID: PMC8780279 DOI: 10.3390/life12010084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 01/26/2023] Open
Abstract
Decision for radiotherapy during the first trimester of pregnancy may occur, as patients may not realize their pregnancy at the very early stage. Since radiation dose can affect fetal development, the aim of this study was to evaluate fetal dose and associated deterministic effects and risks to the fetus from breast cancer radiotherapy of an 8-week pregnant patient. PHITS (Particle and Heavy Ion Transport code System) Monte Carlo simulation and the J-45 computational pregnancy phantom were used to simulate breast cancer radiotherapy from a 6 MV TrueBeam linear accelerator using the three dimensional-conformal radiotherapy (3D-CRT) technique with a prescribed dose to the planning target volume (PTV) of 50 Gy. Once the fetal dose was evaluated, the occurrence of the deterministic effects and risks for developing stochastic effects in the fetus were assessed using the recommendations of NCRP Report No. 174, AAPM Report No. 50, and ICRP Publication 84. The fetal dose was evaluated to be 3.37 ± 2.66 mGy, suggesting that the fetus was expected to have no additional deterministic effects, while the risks for developing cancer and malfunctions were similar to that expected from exposure to background radiation. The comparison with the other studies showed that accurate consideration of fetal position and size was important for dose determination in the fetus, especially at the early pregnancy stage when the fetus is very small.
Collapse
|
10
|
De Saint-Hubert M, Tymińska K, Stolarczyk L, Brkić H. Fetus dose calculation during proton therapy of pregnant phantoms using MCNPX and MCNP6.2 codes. RADIAT MEAS 2021. [DOI: 10.1016/j.radmeas.2021.106665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Neutron and photon out-of-field doses at cardiac implantable electronic device (CIED) depths. Appl Radiat Isot 2021; 176:109895. [PMID: 34419874 DOI: 10.1016/j.apradiso.2021.109895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 08/08/2021] [Accepted: 08/08/2021] [Indexed: 11/20/2022]
Abstract
The accuracy of an out-of-field dose from an Elekta Synergy accelerator calculated using the X-ray Voxel Monte Carlo (XVMC) dose algorithm in the Monaco treatment planning system (TPS) for both low-energy (6 MV) and high-energy (15 MV) photons at cardiac implantable electronic device (CIED) depths was investigated through a comparison between MCNPX simulated out-of-field doses and measured out-of-field doses using three high spatial and sensitive active detectors. In addition, total neutron equivalent dose and fluence at CIED depths of a 15-MV dose from an Elekta Synergy accelerator were calculated, and the corresponding CIED relative neutron damage was quantified. The results showed that for 6-MV photons, the XVMC dose algorithm in Monaco underestimated out-of-field doses in all off-axis distances (average errors: -17% at distances X < 10 cm from the field edge and -31% at distances between 10 < X ≤ 16 cm from the field edge), with an increasing magnitude of underestimation for high-energy (15 MV) photons (up to 11%). According to the results, an out-of-field photon dose at a shallower CIED depth of 1 cm was associated with greater statistical uncertainty in the dose estimate compared to a CIED depth of 2 cm and clinical depth of 10 cm. Our results showed that the relative neutron damage at a CIED depth range for 15 MV photon is 36% less than that reported for 18 MV photon in the literature.
Collapse
|
12
|
Kang DJ, Shin YJ, Jeong S, Jung JY, Lee H, Lee B. Development of clinical application program for radiotherapy induced cancer risk calculation using Monte Carlo engine in volumetric-modulated arc therapy. Radiat Oncol 2021; 16:108. [PMID: 34118968 PMCID: PMC8199704 DOI: 10.1186/s13014-020-01722-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 12/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background The purpose of this study is to develop a clinical application program that automatically calculates the effect for secondary cancer risk (SCR) of individual patient. The program was designed based on accurate dose calculations using patient computed tomography (CT) data and Monte Carlo engine. Automated patient-specific evaluation program was configured to calculate SCR. Methods The application program is designed to re-calculate the beam sequence of treatment plan using the Monte Carlo engine and patient CT data, so it is possible to accurately calculate and evaluate scatter and leakage radiation, difficult to calculate in TPS. The Monte Carlo dose calculation system was performed through stoichiometric calibration using patient CT data. The automatic SCR evaluation program in application program created with a MATLAB was set to analyze the results to calculate SCR. The SCR for organ of patient was calculated based on Biological Effects of Ionizing Radiation (BEIR) VII models. The program is designed to sequentially calculate organ equivalent dose (OED), excess absolute risk (EAR), excess relative risk (ERR), and the lifetime attributable risk (LAR) in consideration of 3D dose distribution analysis. In order to confirm the usefulness of the developed clinical application program, the result values from clinical application program were compared with the manual calculation method used in the previous study. Results The OED values calculated in program were calculated to be at most approximately 13.3% higher than results in TPS. The SCR result calculated by the developed clinical application program showed a maximum difference of 1.24% compared to the result of the conventional manual calculation method. And it was confirmed that EAR, ERR and LAR values can be easily calculated by changing the biological parameters. Conclusions We have developed a patient-specific SCR evaluation program that can be used conveniently in the clinic. The program consists of a Monte Carlo dose calculation system for accurate calculation of scatter and leakage radiation and a patient-specific automatic SCR evaluation program using 3D dose distribution. The clinical application program that improved the disadvantages of the existing process can be used as an index for evaluating a patient treatment plan.
Collapse
Affiliation(s)
- Dong-Jin Kang
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, Korea
| | - Young-Joo Shin
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, Korea.
| | - Seonghoon Jeong
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Jae-Yong Jung
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, 1342, Dongil-ro, Nowon-gu, Seoul, Korea
| | | | - Boram Lee
- Department of Radiation Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, 81, Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|