1
|
Almomen M, Burgon PG. Why Craniofacial Surgeons/Researchers Need to be Aware of Native American Myopathy? Neuropediatrics 2024; 55:149-155. [PMID: 38378040 DOI: 10.1055/a-2271-8619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Congenital myopathy type 13 (CMYO13), also known as Native American myopathy, is a rare muscle disease characterized by early-onset hypotonia, muscle weakness, delayed motor milestones, and susceptibility to malignant hyperthermia. The phenotypic spectrum of congenital myopathy type 13 is expanding, with milder forms reported in non-native American patients. The first description of the disease dates to 1987 when Bailey and Bloch described an infant belonging to a Native American tribe with cleft palate, micrognathia, arthrogryposis, and general-anesthesia-induced malignant hyperthermia reaction; the cause of the latter remains poorly defined in this rare disease. The pan-ethnic distribution, as well as its predisposition to malignant hyperthermia, makes the identification of CMYO13 essential to avoid life-threatening, anesthesia-related complications. In this article, we are going to review the clinical phenotype of this disease and the pathophysiology of this rare disease with a focus on two unique features of the disease, namely cleft palate and malignant hyperthermia. We also highlight the importance of recognizing this disease's expanding phenotypic spectrum-including its susceptibility to malignant hyperthermia-and providing appropriate care to affected individuals and families.
Collapse
Affiliation(s)
- Momen Almomen
- Department of Neurosciences, King Fahad Specialist Hospital, Dammam, Kingdom of Saudi Arabia
| | - Patrick G Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, State of Qatar
| |
Collapse
|
2
|
Buchignani B, Marinella G, Pasquariello R, Sgherri G, Frosini S, Santorelli FM, Orsini A, Battini R, Astrea G. KLHL40-Related Myopathy: A Systematic Review and Insight into a Follow-up Biomarker via a New Case Report. Genes (Basel) 2024; 15:208. [PMID: 38397198 PMCID: PMC10887776 DOI: 10.3390/genes15020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Mutations in the KLHL40 gene are a common cause of severe or even lethal nemaline myopathy. Some cases with mild forms have been described, although the cases are still anecdotal. The aim of this paper was to systematically review the cases described in the literature and to describe a 12-year clinical and imaging follow-up in an Italian patient with KLHL40- related myopathy in order to suggest possible follow-up measurements. METHODS Having searched through three electronic databases (PubMed, Scopus, and EBSCO), 18 articles describing 65 patients with homozygous or compound heterozygous KLHL40 mutations were selected. A patient with a KLHL40 homozygous mutation (c.1582G>A/p.E528K) was added and clinical and genetic data were collected. RESULTS The most common mutation identified in our systematic review was the (c.1516A>C) followed by the (c.1582G>A). In our review, 60% percent of the patients died within the first 4 years of life. Clinical features were similar across the sample. Unfortunately, however, there is no record of the natural history data in the surviving patients. The 12-year follow-up of our patient revealed a slow improvement in her clinical course, identifying muscle MRI as the only possible marker of disease progression. CONCLUSIONS Due to its clinical and genotype homogeneity, KLHL40-related myopathy may be a condition that would greatly benefit from the development of new gene therapies; muscle MRI could be a good biomarker to monitor disease progression.
Collapse
Affiliation(s)
- Bianca Buchignani
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, 56126 Pisa, Italy
| | - Gemma Marinella
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Rosa Pasquariello
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Giada Sgherri
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | - Silvia Frosini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| | | | - Alessandro Orsini
- Pediatric Neurology, Azienda Ospedaliera Universitaria Pisana, 56100 Pisa, Italy;
| | - Roberta Battini
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Guja Astrea
- Department of Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy; (B.B.); (G.M.); (R.P.); (G.S.); (S.F.); (G.A.)
| |
Collapse
|
3
|
Yu QX, Zhen L, Lin XM, Wen YJ, Li DZ. Clinical and molecular analysis of nine fetal cases with clinically significant variants causing nemaline myopathy. Eur J Obstet Gynecol Reprod Biol 2024; 292:263-266. [PMID: 38071834 DOI: 10.1016/j.ejogrb.2023.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/17/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
OBJECTIVE To present the prenatal features and postnatal outcomes of pregnancies with fetal nemaline myopathy (NM). STUDY DESIGN This was a retrospective study of nine cases with NM diagnosed by prenatal or postnatal clinical features and confirmed by genetic testing. Clinical and laboratory data were collected and reviewed for these cases, including maternal demographics, prenatal sonographic findings, exome sequencing (ES) results, and pregnancy outcomes. RESULTS All of the nine cases were detected to have NM-causing variants, involving NEB gene in 2 cases, ACTA1 in 3 cases, KLHL40 in 3 cases, and TPM2 in 1 case. Almost all (8/9) had normal first-trimester ultrasound scans except one who had an increased nuchal translucency. Seven (7/9) cases had second-trimester abnormal ultrasounds with fetal akinesia and/or extremity anomalies. Two (2/9) had only third-trimester abnormal ultrasounds with fetal akinesia and polyhydramnios, with one combined with fetal growth restriction. Four pregnancies with a positive prenatal ES were terminated, while five having not receiving prenatal ES continued to term. Only one infant survived 1 year old, and four passed away within 12 months. CONCLUSION Prenatal ultrasound can detect clues that lead to the diagnosis of NM, such as reduced or absent fetal movements, polyhydramnios and extremity anomalies.
Collapse
Affiliation(s)
- Qiu-Xia Yu
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Li Zhen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiao-Mei Lin
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Wen
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dong-Zhi Li
- Prenatal Diagnostic Center, Guangzhou Women and Children's Medical Center affiliated to Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Draskau MK, Schwartz CL, Evrard B, Lardenois A, Pask A, Chalmel F, Svingen T. The anti-androgenic fungicide triticonazole induces region-specific transcriptional changes in the developing rat perineum and phallus. CHEMOSPHERE 2022; 308:136346. [PMID: 36084822 DOI: 10.1016/j.chemosphere.2022.136346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/05/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Intrauterine exposure to endocrine disrupting chemicals can interfere with male reproductive development. This can lead to male reproductive disorders such as hypospadias, cryptorchidism and reduced fertility, as well as shorter anogenital distance (AGD) - a biomarker for incomplete androgen-dependent fetal masculinization. However, it remains challenging to predict adverse in vivo outcomes based on in vitro effect patterns for many chemicals. This is a challenge for modern toxicology, which aims to reduce animal testing for chemical safety assessments. To enable the transition towards higher reliance on alternative test methods, we need to better map underlying mechanisms leading to adverse effects. Herein, we have analyzed the transcriptome of the perineum and phallus of male fetal rats and defined the impacts of exposure to an anti-androgenic fungicide, triticonazole. Previously we have shown that developmental exposure to triticonazole can induce short male AGD, but without a marked effect on the transcriptome of the fetal testes. In contrast, we report here significant changes to the transcriptional landscape of the perineum and phallus, including regional differences between these adjacent tissues. This highlights the importance of analyzing the correct tissue when characterizing mechanisms of complex in vivo effect outcomes. Our results provide a rich resource for the spatiotemporal gene networks that are involved in the development of male external genitalia, and that can be disrupted upon exposure to chemicals that prevent normal masculinization of the perineum and phallus. Such data will be critical in the development of novel alternative test methods to determine the endocrine disrupting potential of existing and emerging chemicals.
Collapse
Affiliation(s)
- Monica Kam Draskau
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Camilla Lindgren Schwartz
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark
| | - Bertrand Evrard
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Aurélie Lardenois
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Andrew Pask
- School of BioSciences, The University of Melbourne, Melbourne, 3010, Australia
| | - Frédéric Chalmel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kemitorvet Building 202, Kongens Lyngby DK-2800, Denmark.
| |
Collapse
|
5
|
Christophers B, Lopez MA, Gupta VA, Vogel H, Baylies M. Pediatric Nemaline Myopathy: A Systematic Review Using Individual Patient Data. J Child Neurol 2022; 37:652-663. [PMID: 36960434 PMCID: PMC10032635 DOI: 10.1177/08830738221096316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Nemaline myopathy is a skeletal muscle disease that affects 1 in 50 000 live births. The objective of this study was to develop a narrative synthesis of the findings of a systematic review of the latest case descriptions of patients with NM. A systematic search of MEDLINE, Embase, CINAHL, Web of Science, and Scopus was performed using Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines using the keywords pediatric, child, NM, nemaline rod, and rod myopathy. Case studies focused on pediatric NM and published in English between January 1, 2010, and December 31, 2020, in order to represent the most recent findings. Information was collected about the age of first signs, earliest presenting neuromuscular signs and symptoms, systems affected, progression, death, pathologic description, and genetic changes. Of a total of 385 records, 55 case reports or series were reviewed, covering 101 pediatric patients from 23 countries. We review varying presentations in children ranging in severity despite being caused by the same mutation, in addition to current and future clinical considerations relevant to the care of patients with NM. This review synthesizes genetic, histopathologic, and disease presentation findings from pediatric NM case reports. These data strengthen our understanding of the wide spectrum of disease seen in NM. Future studies are needed to identify the underlying molecular mechanism of pathology, to improve diagnostics, and to develop better methods to improve the quality of life for these patients.
Collapse
Affiliation(s)
- Briana Christophers
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | | | - Vandana A. Gupta
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Mary Baylies
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
6
|
Liu D, Yu J, Wang X, Yang Y, Yu L, Zeng S, Zhang M, Xu G. Case Report: Prenatal Diagnosis of Nemaline Myopathy. Front Pediatr 2022; 10:937668. [PMID: 35928692 PMCID: PMC9343628 DOI: 10.3389/fped.2022.937668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Nemaline myopathy (NM) is a rare, hereditary heterogeneous myopathy. Fetal NM has a more severe disease course and a poorer prognosis and is usually lethal during the first few months of life. Hence, early prenatal diagnosis is especially important for clinical interventions and patient counseling. We report the case of a fetus with NM due to KLHL40 gene variation leading to arthrogryposis multiplex congenita (AMC). The ultrasonography and histopathology results revealed an enhanced echo intensity and decreased muscle thickness, which may be novel features providing early clues for the prenatal diagnosis of NM. Moreover, to our knowledge, this article is the first report to describe a case of NM associated with complex congenital heart disease (CHD).
Collapse
Affiliation(s)
- Dongmei Liu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Jiali Yu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Xin Wang
- Department of Obstetrics and Gynecology Prenatal Diagnosis Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Li Yu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Shi Zeng
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Ming Zhang
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| | - Ganqiong Xu
- Department of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Research Center of Ultrasound Diagnostic, The Second Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Medical Imaging in Hunan Province, Changsha, China
| |
Collapse
|
7
|
Suh YA, Sohn YB, Park MS, Lee JH. A Korean Case of Neonatal Nemaline Myopathy Carrying KLHL40 Mutations Diagnosed Using Next Generation Sequencing. NEONATAL MEDICINE 2021. [DOI: 10.5385/nm.2021.28.2.89] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
8
|
Blondelle J, Biju A, Lange S. The Role of Cullin-RING Ligases in Striated Muscle Development, Function, and Disease. Int J Mol Sci 2020; 21:E7936. [PMID: 33114658 PMCID: PMC7672578 DOI: 10.3390/ijms21217936] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
The well-orchestrated turnover of proteins in cross-striated muscles is one of the fundamental processes required for muscle cell function and survival. Dysfunction of the intricate protein degradation machinery is often associated with development of cardiac and skeletal muscle myopathies. Most muscle proteins are degraded by the ubiquitin-proteasome system (UPS). The UPS involves a number of enzymes, including E3-ligases, which tightly control which protein substrates are marked for degradation by the proteasome. Recent data reveal that E3-ligases of the cullin family play more diverse and crucial roles in cross striated muscles than previously anticipated. This review highlights some of the findings on the multifaceted functions of cullin-RING E3-ligases, their substrate adapters, muscle protein substrates, and regulatory proteins, such as the Cop9 signalosome, for the development of cross striated muscles, and their roles in the etiology of myopathies.
Collapse
Affiliation(s)
- Jordan Blondelle
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Andrea Biju
- Department of Medicine, University of California, La Jolla, CA 92093, USA
| | - Stephan Lange
- Department of Medicine, University of California, La Jolla, CA 92093, USA
- Department of Molecular and Clinical Medicine, University of Gothenburg, 41345 Gothenburg, Sweden
| |
Collapse
|