1
|
Hernandez MH, Bote V, Serra-LLovich A, Cendros M, Salazar J, Mestres C, Guijarro S, Alvarez A, Lamborena C, Mendez I, Sanchez B, Hervas A, Arranz MJ. CES1 and SLC6A2 Genetic Variants As Predictors of Response To Methylphenidate in Autism Spectrum Disorders. Pharmgenomics Pers Med 2022; 15:951-957. [DOI: 10.2147/pgpm.s377210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
|
2
|
Quintero J, Gutiérrez-Casares JR, Álamo C. Molecular Characterisation of the Mechanism of Action of Stimulant Drugs Lisdexamfetamine and Methylphenidate on ADHD Neurobiology: A Review. Neurol Ther 2022; 11:1489-1517. [PMID: 35951288 DOI: 10.1007/s40120-022-00392-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common childhood-onset neurodevelopmental disorder characterised by persistent inattention, hyperactivity and impulsivity. Moreover, ADHD is commonly associated with other comorbid diseases (depression, anxiety, bipolar disorder, etc.). The ADHD symptomatology interferes with subject function and development. The treatment of ADHD requires a multidisciplinary approach based on a combination of non-pharmacological and pharmacological treatments with the aim of ameliorating the symptomatology; among first-line pharmacological treatments are stimulants [such as methylphenidate (MPH) and lisdexamfetamine dimesylate (LDX)]. In this review we explored recent ADHD- and stimulants-related literature, with the aim of compiling available descriptions of molecular pathways altered in ADHD, and molecular mechanisms of current first-line stimulants MPH and LDX. While conducting the narrative review, we applied structured search strategies covering PubMed/MEDLINE database and performed handsearching of reference lists on the results of those searches. The aetiology and pathophysiology of ADHD are incompletely understood; both genetic and environmental factors have been associated with the disorder and its grade of burden, and also the relationship between the molecular mechanisms of pharmacological treatments and their clinical implications. The lack of comprehensive understanding of the underlying molecular pathology makes both the diagnosis and treatment difficult. Few published studies evaluating molecular data on the mechanism of action (MoA) of MPH and LDX on ADHD are available and most of them are based on animal models. Further studies are necessary to improve the knowledge of ADHD pathophysiology and how the MoAs of MPH and LDX differentially modulate ADHD pathophysiology and control ADHD symptomatology.
Collapse
Affiliation(s)
- Javier Quintero
- Servicio de Psiquiatría y Salud Mental, Hospital Universitario Infanta Leonor, Universidad Complutense, Madrid, Spain
| | - José R Gutiérrez-Casares
- Unidad Ambulatoria de Psiquiatría y Salud Mental de la Infancia, Niñez y Adolescencia, Hospital Perpetuo Socorro, Badajoz, Spain.
| | - Cecilio Álamo
- Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
3
|
Buitelaar J, Bölte S, Brandeis D, Caye A, Christmann N, Cortese S, Coghill D, Faraone SV, Franke B, Gleitz M, Greven CU, Kooij S, Leffa DT, Rommelse N, Newcorn JH, Polanczyk GV, Rohde LA, Simonoff E, Stein M, Vitiello B, Yazgan Y, Roesler M, Doepfner M, Banaschewski T. Toward Precision Medicine in ADHD. Front Behav Neurosci 2022; 16:900981. [PMID: 35874653 PMCID: PMC9299434 DOI: 10.3389/fnbeh.2022.900981] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Attention-Deficit Hyperactivity Disorder (ADHD) is a complex and heterogeneous neurodevelopmental condition for which curative treatments are lacking. Whilst pharmacological treatments are generally effective and safe, there is considerable inter-individual variability among patients regarding treatment response, required dose, and tolerability. Many of the non-pharmacological treatments, which are preferred to drug-treatment by some patients, either lack efficacy for core symptoms or are associated with small effect sizes. No evidence-based decision tools are currently available to allocate pharmacological or psychosocial treatments based on the patient's clinical, environmental, cognitive, genetic, or biological characteristics. We systematically reviewed potential biomarkers that may help in diagnosing ADHD and/or stratifying ADHD into more homogeneous subgroups and/or predict clinical course, treatment response, and long-term outcome across the lifespan. Most work involved exploratory studies with cognitive, actigraphic and EEG diagnostic markers to predict ADHD, along with relatively few studies exploring markers to subtype ADHD and predict response to treatment. There is a critical need for multisite prospective carefully designed experimentally controlled or observational studies to identify biomarkers that index inter-individual variability and/or predict treatment response.
Collapse
Affiliation(s)
- Jan Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, Netherlands.,Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands
| | - Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden.,Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm, Sweden.,Curtin Autism Research Group, School of Occupational Therapy, Social Work and Speech Pathology, Curtin University, Perth, WA, Australia
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany.,Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Arthur Caye
- Department of Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Nina Christmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Samuele Cortese
- Centre for Innovation in Mental Health, Academic Unit of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.,Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom.,Solent National Health System Trust, Southampton, United Kingdom.,Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, United States.,Division of Psychiatry and Applied Psychology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - David Coghill
- Departments of Paediatrics and Psychiatry, Royal Children's Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen V Faraone
- Departments of Psychiatry, Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York, NY, United States
| | - Barbara Franke
- Departments of Human Genetics and Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Markus Gleitz
- Medice Arzneimittel Pütter GmbH & Co. KG, Iserlohn, Germany
| | - Corina U Greven
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands.,King's College London, Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Sandra Kooij
- Amsterdam University Medical Center, Location VUMc, Amsterdam, Netherlands.,PsyQ, Expertise Center Adult ADHD, The Hague, Netherlands
| | - Douglas Teixeira Leffa
- Department of Psychiatry, Hospital de Clinicas de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.,National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil
| | - Nanda Rommelse
- Karakter Child and Adolescent Psychiatry University Center, Nijmegen, Netherlands.,Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jeffrey H Newcorn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Guilherme V Polanczyk
- Department of Psychiatry, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Augusto Rohde
- National Institute of Developmental Psychiatry for Children and Adolescents, São Paulo, Brazil.,ADHD Outpatient Program and Developmental Psychiatry Program, Hospital de Clinica de Porto Alegre, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Emily Simonoff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom
| | - Mark Stein
- Department of Psychiatry and Behavioral Sciences, Seattle, WA, United States
| | - Benedetto Vitiello
- Department of Public Health and Pediatric Sciences, Section of Child and Adolescent Neuropsychiatry, University of Turin, Turin, Italy.,Department of Public Health, Johns Hopkins University, Baltimore, MA, United States
| | - Yanki Yazgan
- GuzelGunler Clinic, Istanbul, Turkey.,Yale Child Study Center, New Haven, CT, United States
| | - Michael Roesler
- Institute for Forensic Psychology and Psychiatry, Neurocenter, Saarland, Germany
| | - Manfred Doepfner
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty of the University of Cologne, Cologne, Germany.,School for Child and Adolescent Cognitive Behavioural Therapy, University Hospital of Cologne, Cologne, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| |
Collapse
|
4
|
Brown JT, Beery N, Taran A, Stevens T, Henzler C, Badalamenti J, Regal R, McCarty CA. Associations between CES1 variants and dosing and adverse effects in children taking methylphenidate. Front Pediatr 2022; 10:958622. [PMID: 36741090 PMCID: PMC9890192 DOI: 10.3389/fped.2022.958622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/21/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Methylphenidate is the most prescribed stimulant to treat attention deficit-hyperactivity disorder (ADHD). Despite its widespread usage, a fair proportion of children are classified as non-responders to the medication. Variability in response and occurrence of adverse events with methylphenidate use may be due to several factors, including drug-drug interactions as well as pharmacogenetic differences resulting in pharmacokinetic and/or pharmacodynamic variances within the general population. The objective of this study was to analyze the effect of carboxylesterase 1 (CES1) variants on the frequency of adverse effects and dosing requirements of methylphenidate in children with ADHD. METHODS This was a retrospective cohort study of children and adolescents who met the inclusion criteria and had a routine visit during the enrollment period were invited to participate. Inclusion criteria included: ADHD diagnosis by a healthcare provider, between 6 and 16 years of age at the time of permission/assent, had not previously been prescribed methylphenidate, and treatment with any methylphenidate formulation for at least three consecutive months. Three months of records were reviewed in order to assess changes in dose and frequency of discontinuing methylphenidate. Participants' ADHD symptoms, medication response, adverse effects, select vitals, and dose were extracted from the electronic health record. Saliva samples were collected by trained study coordinators. Haplotypes were assigned based on copy number in different portions of the CES1 gene. Due to limited numbers, diplotypes (combinations of two haplotypes) were grouped for analysis as CES1A1/CES1A1, CES1A1/CES1A1c and CES1A1c/CES1A1c. RESULTS A total of 99 participants (n = 30 female; n = 69 male) had both clinical data and CES1 sequencing data, with an average age of 7.7 years old (range 3-15 years). The final weight-based dose in all individuals was 0.79 mg/kg/day. The most common adverse effects reported were decreased appetite (n = 47), weight loss (n = 24), and sleep problems (n = 19). The mean final weight-based dose by haplotype was 0.92 mg/kg for CES1A2/CES1A2, 0.81 mg/kg for CES1A2/CES1P1, and 0.78 mg/kg for CES1P1/CES1P1. After correction for multiple hypothesis testing, only one SNV, rs114119971, was significantly associated with weight-based dosing in two individuals. The individuals with the rs114119971 SNV had a significantly lower weight-based dose (0.42 mg/kg) as compared to those without (0.88 mg/kg; p < 0.001). DISCUSSION Variation in CES1 activity may impact dose requirements in children who are prescribed methylphenidate, as well as other CES1 substrates. Although intriguing, this study is limited by the retrospective nature and relatively small sample size.
Collapse
Affiliation(s)
- Jacob T Brown
- University of Minnesota College of Pharmacy, Department of Pharmacy Practice and Pharmaceutical Sciences, Duluth, MN, United States
| | - Nancy Beery
- Essentia Health Department of Pediatrics, Duluth, MN, United States
| | - Allise Taran
- Essentia Institute of Rural Health, Duluth, MN, United States
| | - Tyler Stevens
- Essentia Health Department of Pharmacy, Duluth, MN, United States
| | - Christine Henzler
- University of Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | | | - Ron Regal
- Essentia Institute of Rural Health, Duluth, MN, United States
| | - Catherine A McCarty
- Department of Family Medicine and BioBehavioral Health, University of Minnesota Medical School, Duluth Campus, Duluth, MN, United States
| |
Collapse
|
5
|
Jeiziner C, Wernli U, Suter K, Hersberger KE, Meyer zu Schwabedissen HE. HLA-associated adverse drug reactions - scoping review. Clin Transl Sci 2021; 14:1648-1658. [PMID: 34105877 PMCID: PMC8504845 DOI: 10.1111/cts.13062] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/18/2023] Open
Abstract
Alleles of the human leukocyte antigen (HLA) system have been associated with the occurrence of idiosyncratic adverse drug reactions (ADRs). Accordingly, it is assumed that pre-emptive testing for the presence of certain HLA alleles (HLA-typing) could prevent these ADRs in carriers. In order to perceive the current evidence for HLA-associated ADRs, we conducted a scoping review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The literature search on PubMed and on Embase was carried out on the July 8 and 9, 2020, respectively. To be included in the scoping review, the studies had to investigate an association of any HLA-associated ADR with any small molecule approved and available on the Swiss market. We considered English and German primary literature published since 2002. A total of 149 studies were included, whereof most were retrospective, whereas one was a prospective randomized controlled trial. The majority of the studies (n = 33) described the association of HLA-B*15:02 with carbamazepine. It was not possible to directly compare the studies, as they were too heterogeneous in terms of the ADR definition, the HLA alleles, the number of participants, and the study types. Therefore, we summarized the results in a descriptive manner. Even if an interpretation of the outcomes remains open, the descriptive overview revealed the prevailing complexity and uncertainty in the field. For the future, consistent definitions on the different phenotypes need to be established and applied and the reporting of association studies should follow a harmonized structure.
Collapse
Affiliation(s)
- Chiara Jeiziner
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Ursina Wernli
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | - Katja Suter
- European Center of Pharmaceutical MedicineFaculty of MedicineUniversity of BaselBaselSwitzerland
| | - Kurt E. Hersberger
- Pharmaceutical Care Research GroupDepartment of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| | | |
Collapse
|
6
|
Lapato DM, Moore AA, Findling R, Brown RC, Roberson-Nay R. An Update on Precision Medicine Advances In Neurodevelopmental Disorders. Psychiatr Ann 2021; 51:175-184. [PMID: 37609560 PMCID: PMC10443929 DOI: 10.3928/00485713-20210309-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Neurodevelopmental disorders, including autism spectrum disorder (ASD) and attention-deficit/hyper-activity disorder (ADHD), represent a group of conditions that manifest early in child development and produce impairments across multiple domains of functioning. Although a number of pharmacological and psychosocial treatments exist to improve the symptoms associated with these syndromes, treatment advances have lagged. The Precision Medicine Initiative was launched with the goal of revolutionizing medicine by progressing beyond the historical one-size-fits-all approach. In this review, we evaluate current research efforts to personalize treatments for ASD and ADHD. Most pharmacogenetic testing has focused on the cytochrome P450 enzyme family with a particular focus on CYP2D6 and CYP2C19, which are genes that produce an enzyme that acts as a key metabolizer of many prescribed medications. This article provides an update on the state of the field of pharmacogenetics and "therapy-genetics" in the context of ASD and ADHD, and it also encourages clinicians to follow US Food and Drug Administration recommendations regarding pharmacogenetic testing.
Collapse
Affiliation(s)
- Dana M. Lapato
- Department of Human and Molecular Genetics, Virginia Commonwealth University
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University
| | - Ashlee A. Moore
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University
- Department of Psychiatry Virginia Commonwealth University
| | | | - Ruth C. Brown
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University
- Department of Psychiatry Virginia Commonwealth University
| | - Roxann Roberson-Nay
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University
- Department of Psychiatry Virginia Commonwealth University
| |
Collapse
|
7
|
Forster J, Duis J, Butler MG. Pharmacodynamic Gene Testing in Prader-Willi Syndrome. Front Genet 2020; 11:579609. [PMID: 33329716 PMCID: PMC7715001 DOI: 10.3389/fgene.2020.579609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/20/2020] [Indexed: 01/14/2023] Open
Abstract
Prader-Willi syndrome (PWS) is a rare genetic disorder with a complex neurobehavioral phenotype associated with considerable psychiatric co-morbidity. This clinical case series, for the first time, describes the distribution and frequency of polymorphisms of pharmacodynamic genes (serotonin transporter, serotonin 2A and 2C receptors, catechol-o-methyltransferase, adrenergic receptor 2A, methylene tetrahydrofolate reductase, and human leucocytic antigens) across the two major molecular classes of PWS in a cohort of 33 referred patients who met medical criteria for testing. When results were pooled across PWS genetic subtypes, genotypic and allelic frequencies did not differ from normative population data. However, when the genetic subtype of PWS was examined, there were differences observed across all genes tested that may affect response to psychotropic medication. Due to small sample size, no statistical significance was found, but results suggest that pharmacodynamic gene testing should be considered before initiating pharmacotherapy in PWS. Larger scale studies are warranted.
Collapse
Affiliation(s)
| | - Jessica Duis
- Section of Genetics and Inherited Metabolic Disease, Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Merlin G Butler
- Division of Research and Genetics, Department of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
8
|
Wolraich ML, Hagan JF, Allan C, Chan E, Davison D, Earls M, Evans SW, Flinn SK, Froehlich T, Frost J, Holbrook JR, Lehmann CU, Lessin HR, Okechukwu K, Pierce KL, Winner JD, Zurhellen W. Clinical Practice Guideline for the Diagnosis, Evaluation, and Treatment of Attention-Deficit/Hyperactivity Disorder in Children and Adolescents. Pediatrics 2019; 144:e20192528. [PMID: 31570648 PMCID: PMC7067282 DOI: 10.1542/peds.2019-2528] [Citation(s) in RCA: 624] [Impact Index Per Article: 124.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is 1 of the most common neurobehavioral disorders of childhood and can profoundly affect children's academic achievement, well-being, and social interactions. The American Academy of Pediatrics first published clinical recommendations for evaluation and diagnosis of pediatric ADHD in 2000; recommendations for treatment followed in 2001. The guidelines were revised in 2011 and published with an accompanying process of care algorithm (PoCA) providing discrete and manageable steps by which clinicians could fulfill the clinical guideline's recommendations. Since the release of the 2011 guideline, the Diagnostic and Statistical Manual of Mental Disorders has been revised to the fifth edition, and new ADHD-related research has been published. These publications do not support dramatic changes to the previous recommendations. Therefore, only incremental updates have been made in this guideline revision, including the addition of a key action statement related to diagnosis and treatment of comorbid conditions in children and adolescents with ADHD. The accompanying process of care algorithm has also been updated to assist in implementing the guideline recommendations. Throughout the process of revising the guideline and algorithm, numerous systemic barriers were identified that restrict and/or hamper pediatric clinicians' ability to adopt their recommendations. Therefore, the subcommittee created a companion article (available in the Supplemental Information) on systemic barriers to the care of children and adolescents with ADHD, which identifies the major systemic-level barriers and presents recommendations to address those barriers; in this article, we support the recommendations of the clinical practice guideline and accompanying process of care algorithm.
Collapse
Affiliation(s)
- Mark L. Wolraich
- Section of Developmental and Behavioral Pediatrics, University of Oklahoma, Oklahoma City, Oklahoma
| | - Joseph F. Hagan
- Department of Pediatrics, The Robert Larner, MD, College of Medicine, The University of Vermont, Burlington, Vermont
- Hagan, Rinehart, and Connolly Pediatricians, PLLC, Burlington, Vermont
| | - Carla Allan
- Division of Developmental and Behavioral Health, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, Missouri
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri
| | - Eugenia Chan
- Division of Developmental Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Harvard Medical School, Harvard University, Boston, Massachusetts
| | - Dale Davison
- Children and Adults with Attention-Deficit/Hyperactivity Disorder, Lanham, Maryland
- Dale Davison, LLC, Skokie, Illinois
| | - Marian Earls
- Community Care of North Carolina, Raleigh, North Carolina
- School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Steven W. Evans
- Department of Psychology, Ohio University, Athens, Ohio
- Center for Intervention Research in Schools, Ohio University, Athens, Ohio
| | | | - Tanya Froehlich
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
- Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jennifer Frost
- Swope Health Services, Kansas City, Kansas
- American Academy of Family Physicians, Leawood, Kansas
| | - Joseph R. Holbrook
- National Center on Birth Defects and Developmental Disabilities, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Christoph Ulrich Lehmann
- Departments of Biomedical Informatics and Pediatrics, Vanderbilt University, Nashville, Tennessee
| | | | | | - Karen L. Pierce
- American Academy of Child and Adolescent Psychiatry, Washington, District of Columbia
- Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | | | | | | |
Collapse
|
9
|
Soleimani R, Salehi Z, Soltanipour S, Hasandokht T, Jalali MM. SLC6A3 polymorphism and response to methylphenidate in children with ADHD: A systematic review and meta-analysis. Am J Med Genet B Neuropsychiatr Genet 2018; 177:287-300. [PMID: 29171685 DOI: 10.1002/ajmg.b.32613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/13/2017] [Indexed: 01/29/2023]
Abstract
Methylphenidate (MPH) is the most commonly used treatment for attention-deficit hyperactivity disorder (ADHD) in children. However, the response to MPH is not similar in all patients. This meta-analysis investigated the potential role of SLC6A3 polymorphisms in response to MPH in children with ADHD. Clinical trials or naturalistic studies were selected from electronic databases. A meta-analysis was conducted using a random-effects model. Cohen's d effect size and 95% confidence intervals (CIs) were determined. Sensitivity analysis and meta-regression were performed. Q-statistic and Egger's tests were conducted to evaluate heterogeneity and publication bias, respectively. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) system was used to assess the quality of evidence. Sixteen studies with follow-up periods of 1-28 weeks were eligible. The mean treatment acceptability of MPH was 97.2%. In contrast to clinical trials, the meta-analysis of naturalistic studies indicated that children without 10/10 repeat carriers had better response to MPH (Cohen's d: -0.09 and 0.44, respectively). The 9/9 repeat polymorphism had no effect on the response rate (Cohen's d: -0.43). In the meta-regression, a significant association was observed between baseline severity of ADHD, MPH dosage, and combined type of ADHD in some genetic models. Sensitivity analysis indicated the robustness of our findings. No publication bias was observed in our meta-analysis. The GRADE evaluations revealed very low levels of confidence for each outcome of response to MPH. The results of clinical trials and naturalistic studies regarding the effect size between different polymorphisms of SLC6A3 were contradictory. Therefore, further research is recommended.
Collapse
Affiliation(s)
- Robabeh Soleimani
- Psychiatry, Kavosh Behavioral, Cognitive and Addiction Research Center, Shafa Hospital, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Zivar Salehi
- Molecular Genetics, Department of Biology, University of Guilan, Rasht, Guilan, Iran
| | - Soheil Soltanipour
- Public Health and Preventive Medicine, Medical Faculty, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Tolou Hasandokht
- Public Health and Preventive Medicine, Medical Faculty, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| | - Mir Mohammad Jalali
- Otolaryngology, RhinoSinus diseases Research Center, Amiralmomenin Hospital, Guilan University of Medical Sciences, Rasht, Guilan, Iran
| |
Collapse
|