1
|
Ning B, Ge T, Zhao QQ, Feng LS, Wu YQ, Chen H, Lian K, Zhao MJ. Research status of pathogenesis of anxiety or depression after percutaneous coronary intervention and Traditional Chinese Medicine intervention. JOURNAL OF ETHNOPHARMACOLOGY 2024; 327:118017. [PMID: 38462028 DOI: 10.1016/j.jep.2024.118017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Anxiety or depression after percutaneous coronary intervention (PCI) is a common clinical disease. Currently, conventional pharmacotherapy primarily involves the administration of anxiolytic or antidepressant medications in conjunction with anticoagulants, antiplatelet agents, and other cardiovascular drugs. However, challenges such as drug dependence, adverse reactions and related concerns persist in the treatment of this disease. Numerous pertinent studies have demonstrated that Traditional Chinese Medicine (TCM) exhibits significant therapeutic efficacy and distinctive advantages in managing post-PCI anxiety or depression. AIM OF THIS REVIEW This review attempted to summarize the characteristics of TCM for treating anxiety or depression after PCI, including single Chinese herbs, Chinese medicine monomers, compound TCM prescriptions, TCM patented drugs, and other TCM-related treatment methods, focusing on the analysis of the relevant mechanism of TCM treatment of this disease. METHODS By searching the literature on treating anxiety or depression after PCI with TCM in PubMed, Web of Science, CNKI, and other relevant databases, this review focuses on the latest research progress of TCM treatment of this disease. RESULTS In the treatment of anxiety or depression after PCI, TCM exerts significant pharmacological effects such as anti-inflammatory, antioxidant, anti-anxiety or anti-depression, cardiovascular and cerebrovascular protection, and neuroprotection, mainly by regulating the levels of related inflammatory factors, oxidative stress markers, neurotransmitter levels, and related signaling pathways. TCM has a good clinical effect in treating anxiety or depression after PCI with individualized treatment. CONCLUSIONS TCM has terrific potential and good prospects in the treatment of anxiety or depression after PCI. The main direction of future exploration is the study of the mechanism related to Chinese medicine monomers and the large sample clinical study related to compound TCM prescriptions.
Collapse
Affiliation(s)
- Bo Ning
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Teng Ge
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Qiang-Qiang Zhao
- First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Lan-Shuan Feng
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Yong-Qing Wu
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Huan Chen
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China.
| | - Kun Lian
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Ming-Jun Zhao
- First Clinical Medical College, Shaanxi University of Chinese Medicine, Xi'an, 712046, China; Academician Workstation, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, China; Shaanxi Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Cardiovascular Diseases, Xi'an, 712046, China.
| |
Collapse
|
2
|
Zhong XL, Du Y, Chen L, Cheng Y. The emerging role of long noncoding RNA in depression and its implications in diagnostics and therapeutic responses. J Psychiatr Res 2023; 164:251-258. [PMID: 37385004 DOI: 10.1016/j.jpsychires.2023.06.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 05/18/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023]
Abstract
Depression is one of the most common mental illnesses, affecting more than 350 million people worldwide. However, the occurrence of depression is a complex process involving genetic, physiological, psychological, and social factors, and the underlying mechanisms of its pathogenesis remain unclear. With advances in sequencing technology and epigenetic studies, increasing research evidence suggests that long noncoding RNAs (lncRNAs) play nonnegligible roles in the development of depression and may be involved in the pathogenesis of depression through multiple pathways, including regulating neurotrophic factors and other growth factors and affecting synaptic function. In addition, significant alterations in lncRNA expression profiles in peripheral blood and different brain regions of patients and model animals with depression suggest that lncRNAs may function as biomarkers for the differential diagnosis of depression and other psychiatric disorders and may also be potential therapeutic targets. In this paper, the biological functions of lncRNAs are briefly described, and the functional roles and abnormal expression of lncRNAs in the development, diagnosis and treatment of depression are reviewed.
Collapse
Affiliation(s)
- Xiao-Lin Zhong
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Lei Chen
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China; Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China; Institute of National Security, Minzu University of China, Beijing, China.
| |
Collapse
|
3
|
Hao WZ, Chen Q, Wang L, Tao G, Gan H, Deng LJ, Huang JQ, Chen JX. Emerging roles of long non-coding RNA in depression. Prog Neuropsychopharmacol Biol Psychiatry 2022; 115:110515. [PMID: 35077841 DOI: 10.1016/j.pnpbp.2022.110515] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 12/31/2022]
Abstract
Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.
Collapse
Affiliation(s)
- Wen-Zhi Hao
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Qian Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Lu Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Gabriel Tao
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, United States
| | - Hua Gan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Li-Juan Deng
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
4
|
Bhattacharyya N, Pandey V, Bhattacharyya M, Dey A. Regulatory role of long non coding RNAs (lncRNAs) in neurological disorders: From novel biomarkers to promising therapeutic strategies. Asian J Pharm Sci 2021; 16:533-550. [PMID: 34849161 PMCID: PMC8609388 DOI: 10.1016/j.ajps.2021.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/28/2021] [Accepted: 02/18/2021] [Indexed: 01/12/2023] Open
Abstract
Long non coding RNAs (lncRNAs) are non-protein or low-protein coding transcripts that contain more than 200 nucleotides. They representing a large share of the cell's transcriptional output, demonstrate functional attributes viz. tissue-specific expression, determination of cell fate, controlled expression, RNA processing and editing, dosage compensation, genomic imprinting, conserved evolutionary traits etc. These long non coding variants are well associated with pathogenicity of various diseases including the neurological disorders like Alzheimer's disease, schizophrenia, Huntington's disease, Parkinson's disease etc. Neurological disorders are widespread and there knowing the underlying mechanisms become crucial. The lncRNAs take part in the pathogenesis by a plethora of mechanisms like decoy, scaffold, mi-RNA sequestrator, histone modifiers and in transcriptional interference. Detailed knowledge of the role of lncRNAs can help to use them further as novel biomarkers for therapeutic aspects. Here, in this review we discuss regulation and functional roles of lncRNAs in eight neurological diseases and psychiatric disorders, and the mechanisms by which they act. With these, we try to establish their roles as potential markers and viable diagnostic tools in these disorders.
Collapse
Affiliation(s)
| | - Vedansh Pandey
- Department of Life Sciences, Presidency University, Kolkata, India
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| |
Collapse
|
5
|
Gibbons A, Sundram S, Dean B. Changes in Non-Coding RNA in Depression and Bipolar Disorder: Can They Be Used as Diagnostic or Theranostic Biomarkers? Noncoding RNA 2020; 6:E33. [PMID: 32846922 PMCID: PMC7549354 DOI: 10.3390/ncrna6030033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022] Open
Abstract
The similarities between the depressive symptoms of Major Depressive Disorders (MDD) and Bipolar Disorders (BD) suggest these disorders have some commonality in their molecular pathophysiologies, which is not apparent from the risk genes shared between MDD and BD. This is significant, given the growing literature suggesting that changes in non-coding RNA may be important in both MDD and BD, because they are causing dysfunctions in the control of biochemical pathways that are affected in both disorders. Therefore, understanding the changes in non-coding RNA in MDD and BD will lead to a better understanding of how and why these disorders develop. Furthermore, as a significant number of individuals suffering with MDD and BD do not respond to medication, identifying non-coding RNA that are altered by the drugs used to treat these disorders offer the potential to identify biomarkers that could predict medication response. Such biomarkers offer the potential to quickly identify patients who are unlikely to respond to traditional medications so clinicians can refocus treatment strategies to ensure more effective outcomes for the patient. This review will focus on the evidence supporting the involvement of non-coding RNA in MDD and BD and their potential use as biomarkers for treatment response.
Collapse
Affiliation(s)
- Andrew Gibbons
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Suresh Sundram
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Department of Psychiatry, Monash University, 27-31 Wright Street, Clayton, Victoria 3168, Australia
| | - Brian Dean
- The Florey Institute for Neuroscience and Mental Health, Parkville, The University of Melbourne, Melbourne, Victoria 3052, Australia; (S.S.); (B.D.)
- The Centre for Mental Health, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
6
|
Depression and anxiety with exposure to ozone and particulate matter: An epidemiological claims data analysis. Int J Hyg Environ Health 2020; 228:113562. [DOI: 10.1016/j.ijheh.2020.113562] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
|
7
|
Malan-Müller S, de Souza VBC, Daniels WMU, Seedat S, Robinson MD, Hemmings SMJ. Shedding Light on the Transcriptomic Dark Matter in Biological Psychiatry: Role of Long Noncoding RNAs in D-cycloserine-Induced Fear Extinction in Posttraumatic Stress Disorder. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2020; 24:352-369. [PMID: 32453623 DOI: 10.1089/omi.2020.0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biological psychiatry scholarship on posttraumatic stress disorder (PTSD) is making strides with new omics technologies. In this context, there is growing recognition that noncoding RNAs are vital for the regulation of gene and protein expression. Long noncoding RNAs (lncRNAs) can modulate splicing, influence RNA editing, messenger RNA (mRNA) stability, translation activation, and microRNA-mRNA interactions, are highly abundant in the brain, and have been implicated in neurodevelopmental disorders. The largest subclass of lncRNAs is long intergenic noncoding RNAs (lincRNAs). We report on lincRNAs and their predicted mRNA targets associated with fear extinction induced by co-administration of D-cycloserine and behavioral fear extinction in a PTSD animal model. Forty-three differentially expressed lincRNAs and 190 differentially expressed mRNAs were found to be associated with fear extinction. Eight lincRNAs were predicted to interact with and regulate 108 of these mRNAs, while seven lincRNAs were predicted to interact with 22 of their pre-mRNA transcripts. Based on the functions of their target mRNAs, we inferred that these lincRNAs bind to nucleotides, ribonucleotides, and proteins; subsequently influence nervous system development, morphology, and immune system functioning; and could be associated with nervous system and mental health disorders. We found the quantitative trait loci that overlapped with fear extinction-related lincRNAs included traits such as serum corticosterone level, neuroinflammation, anxiety, stress, and despair-related responses. To the best of our knowledge, this is the first study to identify lincRNAs and their RNA targets with a putative role in transcriptional regulation during fear extinction in the context of an animal model of PTSD.
Collapse
Affiliation(s)
- Stefanie Malan-Müller
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Vladimir B C de Souza
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Willie M U Daniels
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Mark D Robinson
- Department of Molecular Life Sciences and SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Sîan M J Hemmings
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|