1
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
2
|
Hu D, Zhang Z, Liu X, Wu Y, An Y, Wang W, Yang M, Pan Y, Qiao K, Du C, Zhao Y, Li Y, Bao J, Qin T, Pan Y, Xia Z, Zhao X, Sun K. Generalizable transcriptome-based tumor malignant level evaluation and molecular subtyping towards precision oncology. J Transl Med 2024; 22:512. [PMID: 38807223 PMCID: PMC11134716 DOI: 10.1186/s12967-024-05326-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/19/2024] [Indexed: 05/30/2024] Open
Abstract
In cancer treatment, therapeutic strategies that integrate tumor-specific characteristics (i.e., precision oncology) are widely implemented to provide clinical benefits for cancer patients. Here, through in-depth integration of tumor transcriptome and patients' prognoses across cancers, we investigated dysregulated and prognosis-associated genes and catalogued such important genes in a cancer type-dependent manner. Utilizing the expression matrices of these genes, we built models to quantitatively evaluate the malignant levels of tumors across cancers, which could add value to the clinical staging system for improved prediction of patients' survival. Furthermore, we performed a transcriptome-based molecular subtyping on hepatocellular carcinoma, which revealed three subtypes with significantly diversified clinical outcomes, mutation landscapes, immune microenvironment, and dysregulated pathways. As tumor transcriptome was commonly profiled in clinical practice with low experimental complexity and cost, this work proposed easy-to-perform approaches for practical clinical promotion towards better healthcare and precision oncology of cancer patients.
Collapse
Affiliation(s)
- Dingxue Hu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, The Second Affiliated Hospital, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Xiaoyi Liu
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Youchun Wu
- Hepato-Biliary Surgery Division, The Second Affiliated Hospital, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Wanqiu Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yuqi Pan
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Kun Qiao
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518100, China
| | - Changzheng Du
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University School of Medicine, Beijing, 102218, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yan Li
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
- Integrative Microecology Clinical Center, Shenzhen Key Laboratory of Gastrointestinal Microbiota and Disease, Shenzhen Clinical Research Center for Digestive Disease, Shenzhen Technology Research Center of Gut Microbiota Transplantation, Shenzhen Hospital, Southern Medical University, Shenzhen, 510086, China
| | - Jianqiang Bao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Tao Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat- Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat- Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518100, China.
| | - Xin Zhao
- Hepato-Biliary Surgery Division, The Second Affiliated Hospital, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, 518100, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
3
|
Deng K, Xing J, Xu G, Jin B, Wan X, Zheng Y, Du S, Sang X. Urinary biomarkers for hepatocellular carcinoma: current knowledge for clinicians. Cancer Cell Int 2023; 23:239. [PMID: 37833757 PMCID: PMC10571477 DOI: 10.1186/s12935-023-03092-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most predominant primary liver cancer, causing many illnesses and deaths worldwide. The insidious clinical presentation, difficulty in early diagnosis, and the highly malignant nature make the prognosis of HCC extremely poor. The complex and heterogeneous pathogenesis of HCC poses significant challenges to developing therapies. Urine-based biomarkers for HCC, including diagnostic, prognostic, and monitoring markers, may be valuable supplements to current tools such as serum α-fetoprotein (AFP) and seem promising for progress in precision medicine. Herein, we reviewed the major urinary biomarkers for HCC and assessed their potential for clinical application. Molecular types, testing platforms, and methods for building multimolecule models in the included studies have shown great diversity, thus providing abundant novel tools for future clinical transformation and applications.
Collapse
Affiliation(s)
- Kaige Deng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Jiali Xing
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, Chengdu, China
| | - Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Xueshuai Wan
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Yongchang Zheng
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
4
|
PTGIS May Be a Predictive Marker for Ovarian Cancer by Regulating Fatty Acid Metabolism. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2023; 2023:2397728. [PMID: 36785673 PMCID: PMC9918844 DOI: 10.1155/2023/2397728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/18/2022] [Accepted: 11/24/2022] [Indexed: 02/05/2023]
Abstract
Background Ovarian cancer tends to metastasize to the omentum, which is an organ mainly composed of adipose tissue. Many studies have found that fatty acid metabolism is related to the occurrence and metastasis of cancers. Therefore, it is possible that fatty acid metabolism-related genes (FAMRG) affect the prognosis of ovarian cancer patients. Methods First, profiles of ovarian cancer and normal ovarian tissue transcriptomes were acquired from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) databases. A LASSO regression predictive model was developed via the "glmnet" R package. The nomogram was created via the "regplot." Gene Set Variation Analysis (GSVA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Ontology (GO) analyses were conducted to determine the FAMRGs' roles. The percentage of immunocyte infiltration was calculated via CIBERSORT. Using "pRRophetic," the sensitivity of eight regularly used medications and immunotherapy was anticipated. Results 125 genes were determined as different expression genes (DEGs). Based on RXRA, ECI2, PTGIS, and ACACB, a prognostic model is created and the risk score is calculated. Analyses of univariate and multivariate regressions revealed that the risk score was a distinct prognostic factor (univariate: HR: 2.855, 95% CI: 1.756-4.739, P < 0.001; multivariate: HR: 2.943, 95% CI: 1.800-4.812, P < 0.001). The nomogram demonstrated that it properly predicted the 1-year survival rate. The expression of memory B molecular units, follicular helper T molecular units, regulatory T molecular units, and M1 macrophages differed remarkably between the groups at high and low risk (P < 0.05). Adipocytokine signaling pathways, cancer pathways, and degradation of valine, leucine, and isoleucine vary between high- and low-risk populations. The findings of the GO enrichment revealed that the extracellular matrix and cellular structure were the two most enriched pathways. PTGIS, which is an important gene in fatty acid metabolism, was identified as the hub gene. This result was verified in ovarian cancer and ovarian tissues. The connection between the gene and survival was statistically remarkable (P = 0.015). The pRRophetic algorithm revealed that the low-risk group was more adaptable to cisplatin, doxorubicin, 5-fluorouracil, and etoposide (P < 0.001). Conclusion PTGIS may be an indicator of prognosis and a possible therapeutic target for the therapy of ovarian cancer patients. The fatty acid metabolism of immune cells may be controlled, which has an indirect effect on cancer cell growth.
Collapse
|
5
|
Goyal R. A Symbolic Regression Approach to Hepatocellular Carcinoma Diagnosis Using Hypermethylated CpG Islands in Circulating Cell-Free DNA. LECTURE NOTES IN COMPUTER SCIENCE 2023:282-288. [DOI: 10.1007/978-3-031-25191-7_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Huang H, Liao X, Zhu G, Han C, Wang X, Yang C, Zhou X, Liang T, Huang K, Peng T. Acyl-CoA Binding Domain Containing 4 Polymorphism rs4986172 and Expression Can Serve as Overall Survival Biomarkers for Hepatitis B Virus-Related Hepatocellular Carcinoma Patients After Hepatectomy. Pharmgenomics Pers Med 2022; 15:277-300. [PMID: 35378899 PMCID: PMC8976523 DOI: 10.2147/pgpm.s349350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 03/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background The aim of our study was to evaluate the potential of expression and single nucleotide polymorphism of Acyl-CoA binding domain containing 4 (ACBD4) gene as prognosis biomarkers in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) after hepatectomy. Methods HBV-related HCC patients from the First Affiliated Hospital of Guangxi Medical University and GSE14520 were included in the current study, as well as The Cancer Genome Atlas (TCGA) HCC verification cohort. Prognostic analysis and multiple functional enrichment analysis methods were used to evaluate the prognostic value and potential biological functions of the ACBD4 gene in HBV-related HCC. Results We found that ACBD4 gene is highly expressed in normal liver tissues and markedly down-regulated in HBV-related HCC tissues. ACBD4 gene was significantly related to overall survival (OS) of HCC in TCGA and GSE14520 cohorts, and patients with low ACBD4 expression were markedly related to poor OS. Rs4986172 was observed as an OS biomarker after hepatectomy in the Guangxi HBV-related HCC cohort. The OS of rs4986172 GG genotype was worse than that of HCC patients with A allele (AA and AG genotypes). Multifunctional enrichment analysis suggested that ACBD4 gene is closely related to the metabolic, peroxisome proliferator-activated receptor and cytochrome P450 pathway. Through connectivity map, we also identified eight compounds that may be used as targeted therapeutic agents for ACBD4 gene in HBV-related HCC; these compounds were scopoletin, alfaxalone, bephenium hydroxynaphthoate, apramycin, 4,5-dianilinophthalimide, DL-thiorphan, aminohippuric acid and quinidine. Immune microenvironment analysis revealed that there were significant differences in immune scores of HBV-related HCC tumor tissues with different ACBD4 expression levels. Conclusion Our study reveals that ACBD4 expression and rs4986172 can be serve as biomarkers of OS in HBV-related HCC patients after hepatectomy.
Collapse
Affiliation(s)
- Huasheng Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xiangkun Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Chengkun Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tianyi Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Ketuan Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Correspondence: Tao Peng; Xiwen Liao, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Shuang Yong Road 6, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China, Tel +86-771-5356528, Fax +86-771-5350031, Email ;
| |
Collapse
|
7
|
Molina-Ortiz D, Torres-Zárate C, Santes-Palacios R. Human Orphan Cytochromes P450: An Update. Curr Drug Metab 2022; 23:942-963. [PMID: 36503398 DOI: 10.2174/1389200224666221209153032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022]
Abstract
Orphan cytochromes P450 (CYP) are enzymes whose biological functions and substrates are unknown. However, the use of new experimental strategies has allowed obtaining more information about their relevance in the metabolism of endogenous and exogenous compounds. Likewise, the modulation of their expression and activity has been associated with pathogenesis and prognosis in different diseases. In this work, we review the regulatory pathways and the possible role of orphan CYP to provide evidence that allow us to stop considering some of them as orphan enzymes and to propose them as possible therapeutic targets in the design of new strategies for the treatment of diseases associated with CYP-mediated metabolism.
Collapse
Affiliation(s)
- Dora Molina-Ortiz
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Carmen Torres-Zárate
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| | - Rebeca Santes-Palacios
- Laboratorio de Toxicología Genética, Instituto Nacional de Pediatría, Coyoacán 04530, Mexico City, México
| |
Collapse
|
8
|
Identification and validation of ADME genes as prognosis and therapy markers for hepatocellular carcinoma patients. Biosci Rep 2021; 41:228648. [PMID: 33988674 PMCID: PMC8164111 DOI: 10.1042/bsr20210583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose: ADME genes are genes involved in drug absorption, distribution, metabolism, and excretion (ADME). Previous studies report that expression levels of ADME-related genes correlate with prognosis of hepatocellular carcinoma (HCC) patients. However, the role of ADME gene expression on HCC prognosis has not been fully explored. The present study sought to construct a prediction model using ADME-related genes for prognosis of HCC. Methods: Transcriptome and clinical data were retrieved from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC), which were used as training and validation cohorts, respectively. A prediction model was constructed using univariate Cox regression and Least Absolute Shrinkage and Selection Operator (LASSO) analysis. Patients were divided into high- and low-risk groups based on the median risk score. The predictive ability of the risk signature was estimated through bioinformatics analyses. Results: Six ADME-related genes (CYP2C9, ABCB6, ABCC5, ADH4, DHRS13, and SLCO2A1) were used to construct the prediction model with a good predictive ability. Univariate and multivariate Cox regression analyses showed the risk signature was an independent predictor of overall survival (OS). A single-sample gene set enrichment analysis (ssGSEA) strategy showed a significant relationship between risk signature and immune status. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed differentially expressed genes (DEGs) in the high- and low-risk groups were enriched in biological process (BP) associated with metabolic and cell cycle pathways. Conclusion: A prediction model was constructed using six ADME-related genes for prediction of HCC prognosis. This signature can be used to improve HCC diagnosis, treatment, and prognosis in clinical use.
Collapse
|
9
|
Bannaga AS, Tyagi H, Daulton E, Covington JA, Arasaradnam RP. Exploratory Study Using Urinary Volatile Organic Compounds for the Detection of Hepatocellular Carcinoma. Molecules 2021; 26:2447. [PMID: 33922256 PMCID: PMC8122735 DOI: 10.3390/molecules26092447] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) biomarkers are lacking in clinical practice. We therefore explored the pattern and composition of urinary volatile organic compounds (VOCs) in HCC patients. This was done in order to assess the feasibility of a potential non-invasive test for HCC, and to enhance our understanding of the disease. This pilot study recruited 58 participants, of whom 20 were HCC cases and 38 were non-HCC cases. The non-HCC cases included healthy individuals and patients with various stages of non-alcoholic fatty liver disease (NAFLD), including those with and without fibrosis. Urine was analysed using gas chromatography-ion mobility spectrometry (GC-IMS) and gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). GC-IMS was able to separate HCC from fibrotic cases with an area under the curve (AUC) of 0.97 (0.91-1.00), and from non-fibrotic cases with an AUC of 0.62 (0.48-0.76). For GC-TOF-MS, a subset of samples was analysed in which seven chemicals were identified and tentatively linked with HCC. These include 4-methyl-2,4-bis(p-hydroxyphenyl)pent-1-ene (2TMS derivative), 2-butanone, 2-hexanone, benzene, 1-ethyl-2-methyl-, 3-butene-1,2-diol, 1-(2-furanyl)-, bicyclo(4.1.0)heptane, 3,7,7-trimethyl-, [1S-(1a,3β,6a)]-, and sulpiride. Urinary VOC analysis using both GC-IMS and GC-TOF-MS proved to be a feasible method of identifying HCC cases, and was also able to enhance our understanding of HCC pathogenesis.
Collapse
Affiliation(s)
- Ayman S. Bannaga
- Department of Gastroenterology and Hepatology, University Hospital, Coventry CV2 2DX, UK;
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
| | - Heena Tyagi
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.); (J.A.C.)
| | - Emma Daulton
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.); (J.A.C.)
| | - James A. Covington
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK; (H.T.); (E.D.); (J.A.C.)
| | - Ramesh P. Arasaradnam
- Department of Gastroenterology and Hepatology, University Hospital, Coventry CV2 2DX, UK;
- Warwick Medical School, University of Warwick, Coventry CV4 7HL, UK
- Faculty of Health & Life Sciences, Coventry University, Coventry CV1 5FB, UK
- Leicester Cancer Research Centre, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
10
|
Jiang T, Zhu AS, Yang CQ, Xu CY, Yang DQ, Lou ZH, Zhang GJ. Cytochrome P450 2A6 is associated with macrophage polarization and is a potential biomarker for hepatocellular carcinoma. FEBS Open Bio 2021; 11:670-683. [PMID: 33455085 PMCID: PMC7931228 DOI: 10.1002/2211-5463.13089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/29/2020] [Accepted: 01/14/2021] [Indexed: 01/06/2023] Open
Abstract
Cytochrome P450 2A6 (CYP2A6) is an important metabolic enzyme and is involved in the progression of hepatocellular carcinoma (HCC). However, its specific function and the mechanism of modulation remain to be elucidated. In this study, we found that CYP2A6 is dramatically downregulated in HCC. CYP2A6 expression is closely associated with pathological grading, histologic grade, hepatitis, vascular metastasis, liver inflammation, and worse prognosis. Reduced expression of CYP2A6 contributes to alternative activation of macrophage polarization and impairs macrophage maturation and phagocytosis. Mechanistically, CYP2A6 participates in arachidonic acid metabolism, initiates 20‐hydroxyeicosatetraenoic acid (HETE) generation, and inhibits epoxyeicosatrienoic acid (EET) generation. Disruption of the equilibrium between 20‐HETE and EETs can induce macrophage polarization, thereby modulating antitumor immunity.
Collapse
Affiliation(s)
- Tao Jiang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ai-Song Zhu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chu-Qi Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chu-Yun Xu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dan-Qian Yang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhao-Huan Lou
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guang-Ji Zhang
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
11
|
Yu J, Xia X, Dong Y, Gong Z, Li G, Chen GG, Lai PBS. CYP1A2 suppresses hepatocellular carcinoma through antagonizing HGF/MET signaling. Am J Cancer Res 2021; 11:2123-2136. [PMID: 33500715 PMCID: PMC7797680 DOI: 10.7150/thno.49368] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/27/2020] [Indexed: 02/06/2023] Open
Abstract
Rationale: Hyperactivation of HGF/MET signaling pathway is a critical driver in liver tumorigenesis. Cytochrome P450 1A2 (CYP1A2) was significantly down-regulated in hepatocellular carcinoma (HCC). However, little is explored about its tumor suppressive role in HCC. In this study, we examined the functional mechanisms and clinical implication of CYP1A2 in HCC. Methods: The clinical impact of CYP1A2 was evaluated in HCC patients in Hong Kong cohort. The biological functions of CYP1A2 were investigated in vitro and in vivo. A series of biochemical experiments including Western blot assay, immunohistochemistry, quantitative reverse transcription-polymerase chain reaction, and Co-immunoprecipitation assay were conducted. Results: CYP1A2 expression was prominently silenced in HCC tumor tissues and the high expression of CYP1A2 was significantly correlated with lower AFP level, less vascular invasion, and better tumor-free survival in local cohort of HCC patients. The overexpression of CYP1A2 inhibited HCC cell viability and clonogenicity, reduced cell migration and invasion abilities in vitro, and suppressed tumorigenicity in vivo, whereas CYP1A2 knockdown exhibited the opposite effects. CYP1A2 significantly hindered HGF/MET signaling and Matrix metalloproteinases (MMPs) expression in HCC cells. Mechanically, CYP1A2 decreased HGF level and diminished HIF-1α expression, both of which are recognized as key regulators of MET activation. As the transcriptional activator of MET, HIF-1α was identified as a binding partner of CYP1A2. Direct binding of CYP1A2 with HIF-1α induced ubiquitin-mediated degradation of HIF-1α, inhibiting HIF-1α-mediated transcriptions. Conclusions: In conclusion, our results have identified CYP1A2 as a novel antagonist of HGF/MET signaling, and CYP1A2 may serve as an independent new biomarker for the prognosis of HCC patients.
Collapse
|
12
|
Yu J, Wang N, Gong Z, Liu L, Yang S, Chen GG, Lai PBS. Cytochrome P450 1A2 overcomes nuclear factor kappa B-mediated sorafenib resistance in hepatocellular carcinoma. Oncogene 2020; 40:492-507. [PMID: 33184472 DOI: 10.1038/s41388-020-01545-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Sorafenib resistance has become the main obstacle in the effective treatment of advanced hepatocellular carcinoma (HCC) patients. Activation of nuclear factor kappa B (NF-κB) is a newly identified mechanism that contributes to desensitized sorafenib. Cytochrome P450 1A2 (CYP1A2) functions as a tumor suppressor in HCC and its expression is negatively associated with NF-κB in the liver. This study aimed to study whether CYP1A2 could overcome sorafenib resistance. To investigate whether CYP1A2 and NF-κB p65 played roles in sorafenib desensitization, we established sorafenib-resistant (SR) HCC cells. SR cells decreased the expression of CYP1A2 along with the upregulation of NF-κB p65. CYP1A2 overexpression attenuated SR cell proliferation, increased sorafenib sensitivity, and inhibited the NF-κB pathway, whereas CYP1A2 silence showed opposite effects. Sorafenib, in combination with omeprazole, a CYP1A2 inducer, significantly hindered the growth and invasion of SR cells in vitro as well as decreased the tumor growth in vivo. The combination treatment markedly increased CYP1A2 expression and inhibited the sorafenib-induced NF-κB signaling. In addition, the overexpression of NF-κB p65 stimulated the SR cell growth and desensitized sorafenib in SR cells, where CYP1A2 overexpression reversed the phenomenon. Lastly, the majority of HCC tissue samples displayed decreased CYP1A2 but increased NF-κB p65 protein expression. Collectively, CYP1A2 can sensitize SR cells to sorafenib via inhibiting NF-κB p65 axis. Omeprazole in combination with sorafenib exerts a synergistic effect in alleviating acquired sorafenib resistance.
Collapse
Affiliation(s)
- Jianqing Yu
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Nuozhou Wang
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhongqin Gong
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Liping Liu
- Department of Hepatobiliary and Pancreas Surgery, the Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 524000, Guangdong, China
| | - Shengli Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - George Gong Chen
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Prince of Walves Hospital, The Chinese University of Hong Kong, Hong Kong, China. .,Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, Guangdong, China.
| | - Paul Bo San Lai
- Department of Surgery, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
13
|
Bai K, He S, Shu L, Wang W, Lin S, Zhang Q, Li L, Cheng L, Dai Y. Identification of cancer stem cell characteristics in liver hepatocellular carcinoma by WGCNA analysis of transcriptome stemness index. Cancer Med 2020; 9:4290-4298. [PMID: 32311840 PMCID: PMC7300398 DOI: 10.1002/cam4.3047] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/07/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) are characterized by self-renewal and -differential potential as compared to common cancer cells and play an important role in the development and therapeutic resistance of liver hepatocellular carcinoma (LIHC). However, the specific pathogenesis of LIHC stem cells is still unclear, and the genes involved in the stemness of LIHC stem cells are currently unknown. In this study, we investigated novel biomarkers associated with LIHC and explored the expression characteristics of stem cell-related genes in LIHC. We found that mRNA expression-based stemness index (mRNAsi) was significantly overexpressed in liver cancer tissues. Further, mRNAsi expression in LIHC increased with the tumor pathological grade, with grade 4 tumors harboring the greatest stem cell features. Upon establishing mRNAsi scores based on mRNA expression of every gene, we found an association with poor overall survival in LIHC. Moreover, modules of interest were determined based on weighted gene co-expression network analysis (WGCNA) inclusion criteria, and three significant modules (red, green, and brown) and 21 key genes (DCN, ECM1, HAND2, PTGIS, SFRP1, SRPX, COLEC10, GRP182, ADAMTS7, CD200, CDH11, COL8A1, FAP, LZTS1, MAP1B, NAV1, NOTCH3, OLFML2A, PRR16, TMEM119, and VCAN) were identified. Functional analysis of these 21 genes demonstrated their enrichment in pathways involved in angiogenesis, negative regulation of DNA-binding transcription factor activity, apoptosis, and autophagy. Causal relationship with proteins indicated that the Wnt, Notch, and Hypoxia pathways are closely related to LIHC tumorigenesis. To our knowledge, this is the first report of a novel CSC biomarker, mRNAsi, to predict the prognosis of LIHC. Further, we identified 21 key genes through mRNA expression network analysis, which could be potential therapeutic targets to inhibit the stemness of cancer cells in LIHC.
Collapse
Affiliation(s)
- Kun‐Hao Bai
- Department of EndoscopySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Si‐Yuan He
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical SciencesHoustonTXUSA
| | - Ling‐Ling Shu
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Wei‐Da Wang
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Shi‐Yong Lin
- Department of EndoscopySun Yat‐Sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Qian‐Yi Zhang
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Liang Li
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| | - Lei Cheng
- Collaborative Innovation Center for Cancer MedicineCancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Yu‐Jun Dai
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
- Collaborative Innovation Center for Cancer MedicineGuangzhouChina
- Department of Hematological OncologySun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
14
|
Nekvindova J, Mrkvicova A, Zubanova V, Hyrslova Vaculova A, Anzenbacher P, Soucek P, Radova L, Slaby O, Kiss I, Vondracek J, Spicakova A, Bohovicova L, Fabian P, Kala Z, Palicka V. Hepatocellular carcinoma: Gene expression profiling and regulation of xenobiotic-metabolizing cytochromes P450. Biochem Pharmacol 2020; 177:113912. [PMID: 32173367 DOI: 10.1016/j.bcp.2020.113912] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a highly prevalent and deadly disease, being among the top causes of cancer-related deaths worldwide. Despite the fact that the liver is the major site of biotransformation, studies on drug metabolizing enzymes in HCC are scarce. It is known that malignant transformation of hepatocytes leads to a significant alteration of their metabolic functions and overall deregulation of gene expression. Advanced stages of the disease are thus frequently associated with liver failure, and severe alteration of drug metabolism. However, the impact of dysregulation of metabolic enzymes on therapeutic efficacy and toxicity in HCC patients is largely unknown. Here we demonstrate a significant down-regulation in European Caucasian patients of cytochromes P450 (CYPs), the major xenobiotic-metabolizing enzymes, in HCC tumour samples as compared to their surrounding non-cancerous (reference) tissue. Moreover, we report for the first time the association of the unique CYP profiles with specific transcriptome changes, and interesting correlations with expression levels of nuclear receptors and with the histological grade of the tumours. Integrated analysis has suggested certain co-expression profiles of CYPs with lncRNAs that need to be further characterized. Patients with large tumours with down-regulated CYPs could be more vulnerable to drug toxicity; on the other hand, such tumours would eliminate drugs more slowly and should be more sensitive to pharmacotherapy (except in the case of pro-drugs where activation is necessary).
Collapse
Affiliation(s)
- Jana Nekvindova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic.
| | - Alena Mrkvicova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic; Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.
| | - Veronika Zubanova
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic.
| | - Alena Hyrslova Vaculova
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Pavel Soucek
- Center for Toxicology and Health Safety, National Institute of Public Health, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Lenka Radova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic.
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | - Igor Kiss
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Masaryk University, Brno, Czech Republic.
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Alena Spicakova
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic.
| | - Lucia Bohovicova
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute and Masaryk University, Brno, Czech Republic.
| | - Pavel Fabian
- Department of Oncological and Experimental Pathology, Cancer Institute, Brno, Czech Republic.
| | - Zdenek Kala
- Department of Surgery, University Hospital Brno, Czech Republic.
| | - Vladimir Palicka
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Czech Republic.
| |
Collapse
|
15
|
Mining TCGA Database for Tumor Microenvironment-Related Genes of Prognostic Value in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2408348. [PMID: 31828095 PMCID: PMC6885833 DOI: 10.1155/2019/2408348] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/29/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and lethal malignancies. Recent studies reveal that tumor microenvironment (TME) components significantly affect HCC growth and progression, particularly the infiltrating stromal and immune cells. Thus, mining of TME-related biomarkers is crucial to improve the survival of patients with HCC. Public access of The Cancer Genome Atlas (TCGA) database allows convenient performance of gene expression-based analysis of big data, which contributes to the exploration of potential association between genes and prognosis of a variety of malignancies, including HCC. The "Estimation of STromal and Immune cells in MAlignant Tumors using Expression data" algorithm renders the quantification of the stromal and immune components in TME possible by calculating the stromal and immune scores. Differentially expressed genes (DEGs) were screened by dividing the HCC cohort of TCGA database into high- and low-score groups according to stromal and immune scores. Further analyses of functional enrichment and protein-protein interaction networks show that the DEGs are mainly involved in immune response, cell adhesion, and extracellular matrix. Finally, seven DEGs have significant association with HCC poor outcomes. These genes contain FABP3, GALNT5, GPR84, ITGB6, MYEOV, PLEKHS1, and STRA6 and may be candidate biomarkers for HCC prognosis.
Collapse
|