1
|
Khalifa MO, Yan C, Chai Y, Ito K, Zhang SH, Li TS. Hydrostatic pressure mediates epithelial-mesenchymal transition of cholangiocytes through RhoA/ROCK and TGF-β/smad pathways. PLoS One 2024; 19:e0300548. [PMID: 38578740 PMCID: PMC10997127 DOI: 10.1371/journal.pone.0300548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 02/28/2024] [Indexed: 04/07/2024] Open
Abstract
Biomechanical cue within the tissue microenvironment is known to play a critical role in regulating cell behaviors and maintaining tissue homeostasis. As hydrostatic pressure often increases in biliary system under pathological states, we investigated the effect of the moderate elevation of the hydrostatic pressure on biliary epithelial cells, especially on the epithelial-mesenchymal transition (EMT). Human intrahepatic biliary epithelial cells were loaded to hydrostatic pressure using a commercial device. We found that loading the cells to 50 mmHg hydrostatic pressure induced obvious morphological changes and significantly upregulated vimentin, ZEB1, and pSmad2/3, fibronectin, and collagen 1α. All changes induced by hydrostatic pressure loading were effectively mitigated by either ROCK inhibitor (Y-27632) or ALK5 inhibitor (SB-431542). Our in vitro experimental data suggests that hydrostatic pressure loading induces EMT of cholangiocytes through RhoA/ROCK and TGF-β/Smad pathways. Elevated hydrostatic pressure in biliary duct system under pathological states may promote the biliary epithelial cells shifting to profibrotic and mesenchymal characteristics.
Collapse
Affiliation(s)
- Mahmoud Osman Khalifa
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Anatomy and Embryology, Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Chen Yan
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Yong Chai
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Kosei Ito
- Department of Molecular Bone Biology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shou-Hua Zhang
- Department of General Surgery, Jiangxi Provincial Children’s Hospital, Nanchang, Jiangxi, China
| | - Tao-Sheng Li
- Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
2
|
Gasparro R, Pucci M, Costanzo E, Urzì O, Tinnirello V, Moschetti M, Conigliaro A, Raimondo S, Corleone V, Fontana S, Alessandro R. Citral-Enriched Fraction of Lemon Essential Oil Mitigates LPS-Induced Hepatocyte Injuries. BIOLOGY 2023; 12:1535. [PMID: 38132361 PMCID: PMC10740427 DOI: 10.3390/biology12121535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Lemon essential oil (LEO) is known for its aromatic and healthy properties; however, less consideration is given to the biological properties of the fractions obtained from LEO. This study aims to evaluate the ability of a citral-enriched fraction obtained from LEO (Cfr-LEO) to counteract lipopolysaccharide (LPS)-mediated inflammation, oxidative stress, and epithelial-mesenchymal transition (EMT) in healthy human hepatocytes. Human immortalized hepatocytes (THLE-2 cell line) were pretreated with Cfr-LEO and subsequently exposed to LPS at various time points. We report that the pretreatment with Cfr-LEO counteracts LPS-mediated effects by inhibiting inflammation, oxidative stress, and epithelial-mesenchymal transition in THLE-2. In particular, we found that pretreatment with Cfr-LEO reduced NF-κB activation and the subsequent proinflammatory cytokines release, ROS production, and NRF2 and p53 expression. Furthermore, the pretreatment with Cfr-LEO showed its beneficial effect in counteracting LPS-induced EMT. Taken together, these results support Cfr-LEO application in the nutraceutical research field not only for its organoleptic properties, conferred by citral enrichment, but also for its biological activity. Our study could lay the basis for the development of foods/drinks enriched with Cfr-LEO, aimed at preventing or alleviating chronic conditions associated with liver dysfunction.
Collapse
Affiliation(s)
- Roberta Gasparro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Marzia Pucci
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Elisa Costanzo
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Ornella Urzì
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Vincenza Tinnirello
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
- Agrumaria Corleone s.p.a., Via S. Corleone, 12—Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Stefania Raimondo
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Valeria Corleone
- Agrumaria Corleone s.p.a., Via S. Corleone, 12—Zona Ind. Brancaccio, 90124 Palermo, Italy;
| | - Simona Fontana
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences, and Advanced Diagnostics (Bi.N.D), Section of Biology, Via Divisi 83, University of Palermo, 90133 Palermo, Italy; (R.G.); (M.P.); (E.C.); (O.U.); (V.T.); (M.M.); (A.C.); (S.R.); (R.A.)
| |
Collapse
|
3
|
Xu X, Guo Y, Luo X, Shen Z, Sun Z, Shen B, Zhou C, Wang J, Lu J, Zhang Q, Ye Y, Luo Y, Qu Y, Cai X, Dong H, Lu L. Hydronidone ameliorates liver fibrosis by inhibiting activation of hepatic stellate cells via Smad7-mediated degradation of TGFβRI. Liver Int 2023; 43:2523-2537. [PMID: 37641479 DOI: 10.1111/liv.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 08/05/2023] [Accepted: 08/15/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND AND PURPOSE Liver fibrosis is a wound-healing reaction that eventually leads to cirrhosis. Hydronidone is a new pyridine derivative with the potential to treat liver fibrosis. In this study, we explored the antifibrotic effects of hydronidone and its potential mode of action. METHODS The anti-hepatic fibrosis effects of hydronidone were studied in carbon tetrachloride (CCl4 )- and 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)- induced animal liver fibrosis. The antifibrotic mechanisms of hydronidone were investigated in hepatic stellate cells (HSCs). The antifibrotic effect of hydronidone was further tested after Smad7 knockdown in HSCs in mouse models of fibrosis. RESULTS In animal models, hydronidone attenuated liver damage and collagen accumulation, and reduced the expression of fibrosis-related genes. Hydronidone decreased the expression of fibrotic genes in HSCs. Impressively, hydronidone significantly upregulated Smad7 expression and promoted the degradation of transforming growth factor β receptor I (TGFβRI) in HSCs and thus inhibited the TGFβ-Smad signalling pathway. Specific knockdown of Smad7 in HSCs in vivo blocked the antifibrotic effect of hydronidone. CONCLUSION Hydronidone ameliorates liver fibrosis by inhibiting HSCs activation via Smad7-mediated TGFβRI degradation. Hydronidone is a potential drug candidate for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongshang Sun
- Department of Gastroenterology, Huaian First People's Hospital, Nanjing Medical University, Huaian, China
| | - Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyi Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingqing Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanping Ye
- Continent Pharmaceuticals Co., Ltd., Beijing, China
| | - Ying Luo
- Continent Pharmaceuticals Co., Ltd., Beijing, China
| | - Ying Qu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Elabd WK, Elbakry MMM, Hassany M, Baki AA, Seoudi DM, El Azeem EMA. Evaluation of miRNA-7, miRNA-10 and miRNA-21 as diagnostic non-invasive biomarkers of hepatocellular carcinoma. Clin Exp Hepatol 2023; 9:221-227. [PMID: 37790691 PMCID: PMC10544064 DOI: 10.5114/ceh.2023.130547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/02/2023] [Indexed: 10/05/2023] Open
Abstract
Aim of the study Liver cancer (hepatocellular carcinoma - HCC) remains a serious health challenge; it is the fourth leading cause of death worldwide. Egypt ranks fifteenth worldwide and the third in Africa in terms of HCC burden. The present study aimed to assess some microRNAs (miRNAs) including miRNA-7, miRNA-10, and miRNA-21, serum markers such as cluster of differentiation-14 (CD-14) and transforming growth factor b1 (TGF-b1), and other biochemical parameters as non-invasive tools for HCC diagnosis. Material and methods The study included 100 participants divided into five groups: group I (20 normal subjects as a healthy group), group II (20 participants with chronic HCV infection but non-cirrhotic), group III (20 volunteers with chronic HCV infection and compensated cirrhosis), group IV (20 patients with chronic HCV infection and decompensated cirrhosis), and group V (20 participants with HCC). Levels of miR-7, miR-10, and miR-21 were evaluated using qRT-PCR. Serum ALT, AST, total bilirubin, total protein, albumin, PT, INR, and platelet count were determined. FIB-4 and APRI test levels were also calculated. CD-14 and TGF-β1 serum levels were estimated using enzyme-linked immunosorbent assay (ELISA) kits. Results The expression levels of miR-21 followed by miR-10 showed high sensitivity and specificity in predicting HCC. Serum CD-14 and TGF-b1 levels were significantly increased in all patient groups. Conclusions From the study, it is concluded that the expression level of miR-21 has the highest sensitivity and specificity, followed by miR-10, which has high sensitivity and low specificity as non-invasive markers for HCC detection, while miR-7 exhibits high sensitivity and reasonable specificity in fibrosis detection.
Collapse
Affiliation(s)
| | | | - Mohamed Hassany
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Amin Abdel Baki
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | | | | |
Collapse
|
5
|
Dolivo DM, Reed CR, Gargiulo KA, Rodrigues AE, Galiano RD, Mustoe TA, Hong SJ. Anti-fibrotic effects of statin drugs: a review of evidence and mechanisms. Biochem Pharmacol 2023:115644. [PMID: 37321414 DOI: 10.1016/j.bcp.2023.115644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/17/2023]
Abstract
Fibrosis is a pathological repair process common among organs, that responds to damage by replacement of tissue with non-functional connective tissue. Despite the widespread prevalence of tissue fibrosis, manifesting in numerous disease states across myriad organs, therapeutic modalities to prevent or alleviate fibrosis are severely lacking in quantity and efficacy. Alongside development of new drugs, repurposing of existing drugs may be a complementary strategy to elect anti-fibrotic compounds for pharmacologic treatment of tissue fibrosis. Drug repurposing can provide key advantages to de novo drug discovery, harnessing the benefits of previously elucidated mechanisms of action and already existing pharmacokinetic profiles. One class of drugs a wealth of clinical data and extensively studied safety profiles is the statins, a class of antilipidemic drugs widely prescribed for hypercholesterolemia. In addition to these widely utilized lipid-lowering effects, increasing data from cellular, pre-clinical mammalian, and clinical human studies have also demonstrated that statins are able to alleviate tissue fibrosis originating from a variety of pathological insults via lesser-studied, pleiotropic effects of these drugs. Here we review literature demonstrating evidence for direct effects of statins antagonistic to fibrosis, as well as much of the available mechanistic data underlying these effects. A more complete understanding of the anti-fibrotic effects of statins may enable a clearer picture of their anti-fibrotic potential for various clinical indications. Additionally, more lucid comprehension of the mechanisms by which statins exert anti-fibrotic effects may aid in development of novel therapeutic agents that target similar pathways but with greater specificity or efficacy.
Collapse
Affiliation(s)
- David M Dolivo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| | - Charlotte R Reed
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Kristine A Gargiulo
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Adrian E Rodrigues
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Robert D Galiano
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Thomas A Mustoe
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States
| | - Seok Jong Hong
- Department of Surgery-Northwestern University Feinberg School of Medicine, United States.
| |
Collapse
|
6
|
Gong Y, Liu Z, Zhang Y, Zhang J, Zheng Y, Wu Z. AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus. Cell Death Discov 2023; 9:178. [PMID: 37280194 DOI: 10.1038/s41420-023-01477-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Hyperglycemia is an independent risk factor for the rapid progression of nonalcoholic steatohepatitis (NASH) to liver fibrosis with an incompletely defined mechanism. Ferroptosis is a novel form of programmed cell death that has been identified as a pathogenic mechanism in various diseases. However, the role of ferroptosis in the development of liver fibrosis in NASH with type 2 diabetes mellitus (T2DM) is unclear. Here, we observed the histopathological features of the progression of NASH to liver fibrosis as well as hepatocyte epithelial-mesenchymal transition (EMT) in a mouse model of NASH with T2DM and high-glucose-cultured steatotic human normal liver (LO2) cells. The distinctive features of ferroptosis, including iron overload, decreased antioxidant capacity, the accumulation of reactive oxygen species, and elevated lipid peroxidation products, were confirmed in vivo and in vitro. Liver fibrosis and hepatocyte EMT were markedly alleviated after treatment with the ferroptosis inhibitor ferrostatin-1. Furthermore, a decrease in the gene and protein levels of AGE receptor 1 (AGER1) was detected in the transition from NASH to liver fibrosis. Overexpression of AGER1 dramatically reversed hepatocyte EMT in high-glucose-cultured steatotic LO2 cells, whereas the knockdown of AGER1 had the opposite effect. The mechanisms underlying the phenotype appear to be associated with the inhibitory effects of AGER1 on ferroptosis, which is dependent on the regulation of sirtuin 4. Finally, in vivo adeno-associated virus-mediated AGER1 overexpression effectively relieved liver fibrosis in a murine model. Collectively, these findings suggest that ferroptosis participates in the pathogenesis of liver fibrosis in NASH with T2DM by promoting hepatocyte EMT. AGER1 could reverse hepatocyte EMT to ameliorate liver fibrosis by inhibiting ferroptosis. The results also suggest that AGER1 may be a potential therapeutic target for the treatment of liver fibrosis in patients with NASH with T2DM. Chronic hyperglycemia is associated with increased advanced glycation end products, resulting in the downregulation of AGER1. AGER1 deficiency downregulates Sirt4, which disturbs key regulators of ferroptosis (TFR-1, FTH, GPX4, and SLC7A11). These lead to increased iron uptake, decreasing the antioxidative capacity and enhanced lipid ROS production, ultimately leading to ferroptosis, which further promotes hepatocyte epithelial-mesenchymal transition and fibrosis progression in NASH with T2DM.
Collapse
Affiliation(s)
- Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Zijun Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
7
|
Pucci M, Moschetti M, Urzì O, Loria M, Conigliaro A, Di Bella MA, Crescitelli R, Olofsson Bagge R, Gallo A, Santos MF, Puglisi C, Forte S, Lorico A, Alessandro R, Fontana S. Colorectal cancer-derived small extracellular vesicles induce TGFβ1-mediated epithelial to mesenchymal transition of hepatocytes. Cancer Cell Int 2023; 23:77. [PMID: 37072829 PMCID: PMC10114452 DOI: 10.1186/s12935-023-02916-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/31/2023] [Indexed: 04/20/2023] Open
Abstract
BACKGROUND Metastatic disease is the major cause of cancer-related deaths. Increasing evidence shows that primary tumor cells can promote metastasis by preparing the local microenvironment of distant organs, inducing the formation of the so-called "pre-metastatic niche". In recent years, several studies have highlighted that among the tumor-derived molecular components active in pre-metastatic niche formation, small extracellular vesicles (sEVs) play a crucial role. Regarding liver metastasis, the ability of tumor-derived sEVs to affect the activities of non-parenchymal cells such as Kupffer cells and hepatic stellate cells is well described, while the effects on hepatocytes, the most conspicuous and functionally relevant hepatic cellular component, remain unknown. METHODS sEVs isolated from SW480 and SW620 CRC cells and from clinical samples of CRC patients and healthy subjects were used to treat human healthy hepatocytes (THLE-2 cells). RT-qPCR, Western blot and confocal microscopy were applied to investigate the effects of this treatment. RESULTS Our study shows for the first time that TGFβ1-carrying CRC_sEVs impair the morphological and functional properties of healthy human hepatocytes by triggering their TGFβ1/SMAD-dependent EMT. These abilities of CRC_sEVs were further confirmed by evaluating the effects elicited on hepatocytes by sEVs isolated from plasma and biopsies from CRC patients. CONCLUSIONS Since it is known that EMT of hepatocytes leads to the formation of a fibrotic environment, a well-known driver of metastasis, these results suggest that CRC_sEV-educated hepatocytes could have an active and until now neglected role during liver metastasis formation.
Collapse
Affiliation(s)
- Marzia Pucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marta Moschetti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Ornella Urzì
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Marco Loria
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Alice Conigliaro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Maria Antonietta Di Bella
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of Surgery, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alessia Gallo
- Department of Research, IRCCS ISMETT, Palermo, Italy
| | - Mark F Santos
- Touro University College of Medicine, Henderson, NV, USA
| | | | | | - Aurelio Lorico
- Touro University College of Medicine, Henderson, NV, USA
- IOM Ricerca, Viagrande, Catania, Italy
| | - Riccardo Alessandro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council (CNR), Palermo, Italy
| | - Simona Fontana
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| |
Collapse
|
8
|
Zhan Y, Tao Q, Meng Q, Zhang R, Lin L, Li X, Zheng L, Zheng J. LncRNA-MIAT activates hepatic stellate cells via regulating Hippo pathway and epithelial-to-mesenchymal transition. Commun Biol 2023; 6:285. [PMID: 36934152 PMCID: PMC10024685 DOI: 10.1038/s42003-023-04670-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Long non-coding RNA-myocardial infarction-associated transcript (lncRNA-MIAT) has been reported to play an important role in the development of multiple cancers. However, the biological roles of MIAT in liver fibrosis are still unknown. In this study, the expression of MIAT is up-regulated during liver fibrosis. Silencing MIAT leads to the suppression of hepatic stellate cell (HSC) proliferation and collagen expression. Double immunofluorescence analysis additionally demonstrates that MIAT inhibition leads to the suppression of type I collagen and α-SMA in vitro. In vivo, MIAT knockdown contributes to the inhibition of fibrosis progression and collagen accumulation. MIAT is confirmed as a target of miR-3085-5p, and the co-location of MIAT and miR-3085-5p is found in HSC cytoplasm. Interestingly, there is a negative correlation between MIAT expression and miR-3085-5p level in cirrhotic patients as well as activated HSCs. In addition, the effects of MIAT inhibition on HSC inactivation are blocked down by miR-3085-5p inhibitor. YAP is a target of miR-3085-5p. Reduced YAP caused by loss of MIAT is reversed by miR-3085-5p inhibitor. Notably, YAP knockdown results in the suppression of MIAT-mediated epithelial-to-mesenchymal transition (EMT) process. In conclusion, we demonstrate that MIAT enhances the activation of HSCs, at least in part, via miR-3085-5p/YAP/EMT signaling pathway.
Collapse
Affiliation(s)
- Yating Zhan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qiqi Tao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qishan Meng
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rongrong Zhang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lifan Lin
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xinmiao Li
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Lei Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Laboratory Medicine Center, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjian Zheng
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
9
|
Wang D, Xu H, Fan L, Ruan W, Song Q, Diao H, He R, Jin Y. Hyperphosphorylation of EGFR/ERK signaling facilitates long-term arsenite-induced hepatocytes epithelial-mesenchymal transition and liver fibrosis in sprague-dawley rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114386. [PMID: 36508792 DOI: 10.1016/j.ecoenv.2022.114386] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/26/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Arsenic is a well known environmental hazardous material, chronic arsenic exposure results in different types of liver damage. Among them, liver fibrosis has become a research hotspot because of its reversibility, while the underlying mechanism is still unclear. Previous studies revealed that EGFR/ERK signaling appears to play an important role in fibrosis diseases. In this study, sprague-dawley rats were exposed to different doses of arsenite for 36 weeks to investigate the roles of EGFR/ERK signaling on arsenite-induced liver fibrogenesis. Our results showed that long-term arsenite exposure induced liver fibrosis, accompanied by hepatic stellate cells (HSCs) activation, excessive serum secretion of extracellular matrix (ECM), and hepatocytes epithelial-mesenchymal transformation (EMT). In addition, arsenite exposure caused hyperphosphorylation of EGFR/ERK signaling in liver tissue of rats, indicating that EGFR/ERK signaling may be involved in arsenite-induced liver fibrosis. Indeed, erlotinib (a specific phosphorylation inhibitor of EGFR) intervention significantly decreased arsenite induced hyperphosphorylation of EGFR/ERK signaling, thereby suppressed hepatocytes EMT process and alleviated liver fibrogenesis in arsenite exposed rats. In summary, the present study provides evidences showing that hyperphosphorylation of EGFR/ERK signaling facilitates long-term arsenite-induced hepatocytes EMT and liver fibrosis in rats, which brings new insights into the pathogenesis of arsenic-induced liver injury.
Collapse
Affiliation(s)
- Dapeng Wang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| | - Huifen Xu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Lili Fan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Wenli Ruan
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China; Tongren Center for Disease Control and Prevention, Tongren 554300, Guizhou, China
| | - Qian Song
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Heng Diao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rui He
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Ying Jin
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| |
Collapse
|
10
|
Liu J, Xia S, Han P, Zhang M, Wu J, Liao J. Downregulation of KIAA1199 alleviated the activation, proliferation, and migration of hepatic stellate cells by the inhibition of epithelial-mesenchymal transition. Open Med (Wars) 2023; 18:20230689. [PMID: 37034499 PMCID: PMC10080707 DOI: 10.1515/med-2023-0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
KIAA1199, a major glycosaminoglycan component of the extracellular matrix, was reported to induce a fibrosis-like process. However, the relationship between KIAA1199 and liver fibrosis remains unclear. The liver fibrosis mouse model was established with carbon tetrachloride (CCl4). Here, we found that KIAA1199 was upregulated in CCl4-induced liver fibrosis. The expression of KIAA1199 was also increased in TGF-β-stimulated LX-2 cells. To clarify the impact of KIAA1199 in hepatic stellate cells (HSCs), we downregulated the expression of KIAA1199 in LX-2 cells by RNA interference. Cell proliferation, apoptosis, and migration were determined by CCK-8, flow cytometry, and transwell assay. We found that KIAA1199 knockdown reduced the expression of fibrosis markers α-SMA and COL1A1. Depletion of KIAA1199 inhibited cell proliferation by downregulating cyclin B1 and cyclin D1 and promoted cell apoptosis by upregulating Bax and downregulating Bcl-2. Moreover, KIAA1199 knockdown decreased matrix metalloproteinase-2 (MMP-2) and MMP-9 expression to inhibit the migration ability of LX-2 cells. Silencing KIAA1199 also suppressed the epithelial-mesenchymal transition phenomenon. Collectively, our study revealed that KIAA1199 knockdown alleviated the activation, proliferation, and migration of HSCs, while promoting apoptosis of HSCs, which suggests that KIAA1199 may be a potential regulator of liver fibrosis.
Collapse
Affiliation(s)
- Jingmei Liu
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Suhong Xia
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Ping Han
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingyu Zhang
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jingwen Wu
- Department of Gastroenterology, Hainan Hospital of PLA General Hospital, Sanya, Hainan, China
| | - Jiazhi Liao
- Department of Gastroenterology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
11
|
Zhang Q, Wu Y, Ge M, Xia G, Xia H, Wang L, Wei X, He H, Lin S. Paeoniflorin-free subfraction of Paeonia lactiflora Pall. shows the potential of anti-hepatic fibrosis: an integrated analysis of network pharmacology and experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 299:115678. [PMID: 36058476 DOI: 10.1016/j.jep.2022.115678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hepatic fibrosis is a major consequence of liver disease. Radix Paeoniae Rubra (RPR), the dry root of Paeonia lactiflora Pall., has a long history of clinical application in traditional Chinese medicine (TCM) for the treatment of liver diseases. The researches of RPR active ingredients are mainly focused on paeoniflorin. However, the functional roles of other ingredients have not been clarified sufficiently in the treatment of hepatic fibrosis with RPR. AIM OF THE STUDY This study was to figure out the anti-hepatic fibrosis potential and mechanisms of CS-4, one of the paeoniflorin-free subfraction of RPR. MATERIALS AND METHODS With the guide of bioassay, CS-4, a subfraction of RPR showed in vitro inhibition of hepatic stellate cell activation, was obtained using multiple chromatographic techniques. Its ingredients were determined by UPLC-Q-TOF-MS/MS. Then, the target profiles of ingredients were obtained from the HERB database, and the disease targets were collected from the DisGeNET database. Through the network pharmacology method, a protein-protein interaction network of CS-4 against hepatic fibrosis was established to analyze and excavate the potential therapeutic targets. Combined with the KEGG analysis, a series of signaling pathways were obtained, thereby validated by western blot analysis. RESULTS The paeoniflorin-free subfraction of RPR, CS-4, was obtained and showed the most potential anti-fibrotic effect in vitro. A total of 20 main ingredients were identified from CS-4 and considered as its active ingredients. From HERB and DisGeNET databases, 1460 potential targets of CS-4 and 1180 disease targets were obtained, respectively. The overlapped 79 targets were considered to exert the potential anti-fibrosis effect of CS-4, such as JAK2, MYC, SMAD3, and IFNG. The gene enrichment analysis revealed that classical TGF-β/Smad signaling pathway and nonclassical TGF-β/PI3K-AKT signaling pathway may be two of the main mechanisms of CS-4 against hepatic fibrosis, which supported by western blot analysis. CONCLUSION In this study, a paeoniflorin-free subfraction with potential anti-hepatic fibrosis activity in vitro, CS-4, was obtained from RPR. Its multiple ingredients, multiple targets, and multiple mechanisms against hepatic fibrosis were explained by network pharmacology and verified by western blot analysis to further support the clinical applications of RPR.
Collapse
Affiliation(s)
- Qian Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Yuzhuo Wu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Maoxu Ge
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacy, Qilu Hospital of Shandong University, Jinan, 250012, China.
| | - Guiyang Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Huan Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Lingyan Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Xiaohong Wei
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| | - Hongwei He
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Sheng Lin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China.
| |
Collapse
|
12
|
20-Hydroxytetraenoic acid induces hepatic fibrosis via the TGF-β1/Smad3 signaling pathway. Toxicol Lett 2022; 373:1-12. [PMID: 36368619 DOI: 10.1016/j.toxlet.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022]
Abstract
Hepatic fibrosis is caused by excessive accumulation of extracellular matrix (ECM) due to repeated liver injury. Hepatic stellate cells (HSCs) play a key role in the pathogenesis and progression of hepatic fibrosis. A study showed that CYP4A14 gene defect can inhibit hepatic fibrosis, but the specific mechanism was not clear. In this experiment, patients with hepatic fibrosis, LX-2 cells (a human HSCs line), and mice with liver fibrosis induced by carbon tetrachloride (CCl4) were used to study the effect of 20-Hydroxytetraenoic acid (20-HETE), one of the main metabolites of arachidonic acid (AA) catalyzed by CYP4A enzyme, on hepatic fibrosis and its mechanism. Our experimental results showed that the 20-HETE of patients with hepatic fibrosis is significantly higher than that of normal people and is closely related to the degree of fibrosis. 20-HETE could induce activation of LX-2 cells and 20-HETE antagonist could inhibit the induction of 20-HETE. 20-HETE was significantly increased in CCl4-induced liver fibrosis mice and inhibition of 20-HETE production could attenuate hepatic fibrosis. 20-HETE induced hepatic fibrosis mainly via the TGF- β1/Smad3 signal pathway. In conclusion, the results suggest that 20-HETE plays an important role in hepatic fibrosis and may be a possible target for the clinical treatment of hepatic fibrosis.
Collapse
|
13
|
Motofei IG. Biology of cancer; from cellular and molecular mechanisms to developmental processes and adaptation. Semin Cancer Biol 2022; 86:600-615. [PMID: 34695580 DOI: 10.1016/j.semcancer.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/21/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023]
Abstract
Cancer research has been largely focused on the cellular and molecular levels of investigation. Recent data show that not only the cell but also the extracellular matrix plays a major role in the progression of malignancy. In this way, the cells and the extracellular matrix create a specific local microenvironment that supports malignant development. At the same time, cancer implies a systemic evolution which is closely related to developmental processes and adaptation. Consequently, there is currently a real gap between the local investigation of cancer at the microenvironmental level, and the pathophysiological approach to cancer as a systemic disease. In fact, the cells and the matrix are not only complementary structures but also interdependent components that act synergistically. Such relationships lead to cell-matrix integration, a supracellular form of biological organization that supports tissue development. The emergence of this supracellular level of organization, as a structure, leads to the emergence of the supracellular control of proliferation, as a supracellular function. In humans, proliferation is generally involved in developmental processes and adaptation. These processes suppose a specific configuration at the systemic level, which generates high-order guidance for local supracellular control of proliferation. In conclusion, the supracellular control of proliferation act as an interface between the downstream level of cell division and differentiation, and upstream level of developmental processes and adaptation. Understanding these processes and their disorders is useful not only to complete the big picture of malignancy as a systemic disease, but also to open new treatment perspectives in the form of etiopathogenic (supracellular or informational) therapies.
Collapse
Affiliation(s)
- Ion G Motofei
- Department of Oncology/ Surgery, Carol Davila University, St. Pantelimon Hospital, Dionisie Lupu Street, No. 37, Bucharest, 020021, Romania.
| |
Collapse
|
14
|
Gong F, Qu R, Li Y, Lv Y, Dai J. Astragalus Mongholicus: A review of its anti-fibrosis properties. Front Pharmacol 2022; 13:976561. [PMID: 36160396 PMCID: PMC9490009 DOI: 10.3389/fphar.2022.976561] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Fibrosis-related diseases (FRD) include cerebral fibrosis, pulmonary fibrosis, cardiac fibrosis, liver fibrosis, renal fibrosis, peritoneal fibrosis, etc. The effects of fibrosis can be severe, resulting in organ dysfunction, functional decline, and even organ failure, which can cause serious health problems.Aim: Currently, there is no effective modern medicine for anti-fibrosis in the clinics; however, Chinese medicine has a certain beneficial effect on treating such diseases. Astragalus Mongholicus (AM) has rich medicinal value, and its anti-fibrosis effect has been recently investigated. In recent years, more and more experimental studies have been conducted on the intervention of astragaloside IV (AS-IV), astragalus polysaccharide (APS), astragalus flavone, cycloastragalus alcohol, astragalus water extract and other pharmacological components in fibrosis-related diseases, attracting the interest of researchers. We aim to provide ideas for future research by summarizing recent research advances of AM in treating fibrosis-related diseases.Methods: A literature search was conducted from the core collections of electronic databases such as Baidu Literature, Sciencen.com, Google Scholar, PubMed, and Science Direct using the above keywords and the pharmacological and phytochemical details of the plant.Results: AM can be used to intervene in fibrosis-disease progression by regulating inflammation, oxidative stress, the immune system, and metabolism.Conclusion: AS-IV, APS, and astragalus flavone were studied and discussed in detail. These components have high potential anti-fibrosis activity. Overall, this review aims to gain insight into the AM’s role in treating fibro-related diseases.
Collapse
Affiliation(s)
- Fengying Gong
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Rongmei Qu
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongchun Li
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Ying Lv
- Department of Traditional Chinese Medicine, Nanfang Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Medical Biomechanics and Guangdong Engineering Research Center for Translation of Medical 3D Printing Application and National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Ying Lv, ; Jingxing Dai,
| |
Collapse
|
15
|
Liu N, Bowen CM, Shoja MM, Castro de Pereira KL, Dongur LP, Saad A, Russell WK, Broderick TC, Fair JH, Fagg WS. Comparative Analysis of Co-Cultured Amniotic Cell-Conditioned Media with Cell-Free Amniotic Fluid Reveals Differential Effects on Epithelial–Mesenchymal Transition and Myofibroblast Activation. Biomedicines 2022; 10:biomedicines10092189. [PMID: 36140291 PMCID: PMC9495976 DOI: 10.3390/biomedicines10092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Myofibroblast activation is a cellular response elicited by a variety of physiological or pathological insults whereby cells initiate a coordinated response intended to eradicate the insult and then revert back to a basal state. However, an underlying theme in various disease states is persistent myofibroblast activation that fails to resolve. Based on multiple observations, we hypothesized that the secreted factors harvested from co-culturing amniotic stem cells might mimic the anti-inflammatory state that cell-free amniotic fluid (AF) elicits. We optimized an amnion epithelial and amniotic fluid cell co-culture system, and tested this hypothesis in the context of myofibroblast activation. However, we discovered that co-cultured amniotic cell conditioned media (coACCM) and AF have opposing effects on myofibroblast activation: coACCM activates the epithelial–mesenchymal transition (EMT) and stimulates gene expression patterns associated with myofibroblast activation, while AF does the opposite. Intriguingly, extracellular vesicles (EVs) purified from AF are necessary and sufficient to activate EMT and inflammatory gene expression patterns, while the EV-depleted AF potently represses these responses. In summary, these data indicate that coACCM stimulates myofibroblast activation, while AF represses it. We interpret these findings to suggest that coACCM, AF, and fractionated AF represent unique biologics that elicit different cellular responses that are correlated with a wide variety of pathological states, and therefore could have broad utility in the clinic and the lab.
Collapse
Affiliation(s)
- Naiyou Liu
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Charles M. Bowen
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mohammadali M. Shoja
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Laxmi Priya Dongur
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- John Sealy School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Antonio Saad
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas Christopher Broderick
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, NC 27709, USA
- Golden LEAF Biomanufacturing Training and Education Center, North Carolina State University, Raleigh, NC 27606, USA
| | - Jeffrey H. Fair
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - William Samuel Fagg
- Division of Transplant, Department of Surgery, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Merakris Therapeutics, RTP Frontier, Research Triangle Park, NC 27709, USA
- Correspondence: ; Tel.: +1-(409)-772-2412; Fax: +1-(409)-747-7364
| |
Collapse
|
16
|
Deficiency in Inactive Rhomboid Protein2 (iRhom2) Alleviates Alcoholic Liver Fibrosis by Suppressing Inflammation and Oxidative Stress. Int J Mol Sci 2022; 23:ijms23147701. [PMID: 35887045 PMCID: PMC9317380 DOI: 10.3390/ijms23147701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/04/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Chronic alcohol exposure can lead to liver pathology relating to inflammation and oxidative stress, which are two of the major factors in the incidence of liver fibrosis and even liver cancer. The underlying molecular mechanisms regarding hepatic lesions associated with alcohol are not fully understood. Considering that the recently identified iRhom2 is a key pathogenic mediator of inflammation, we performed in vitro and in vivo experiments to explore its regulatory role in alcohol-induced liver fibrosis. We found that iRhom2 knockout significantly inhibited alcohol-induced inflammatory responses in vitro, including elevated expressions of inflammatory cytokines (IL-1β, IL-6, IL-18, and TNF-α) and genes associated with inflammatory signaling pathways, such as TACE (tumor necrosis factor-alpha converting enzyme), TNFR1 (tumor necrosis factor receptor 1), and TNFR2, as well as the activation of NF-κB. The in vivo results confirmed that long-term alcohol exposure leads to hepatocyte damage and fibrous accumulation. In this pathological process, the expression of iRhom2 is promoted to activate the TACE/NF-κB signaling pathway, leading to inflammatory responses. Furthermore, the deletion of iRhom2 blocks the TACE/NF-κB signaling pathway and reduces liver damage and fibrosis caused by alcohol. Additionally, the activation of the JNK/Nrf2/HO-1 signaling pathway caused by alcohol exposure was also noted in vitro and in vivo. In the same way, knockout or deleting iRhom2 blocked the JNK/Nrf2/HO-1 signaling pathway to regulate the oxidative stress. Therefore, we contend that iRhom2 is a key regulator that promotes inflammatory responses and regulates oxidative stress in alcoholic liver fibrosis lesions. We posit that iRhom2 is potentially a new therapeutic target for alcoholic liver fibrosis.
Collapse
|
17
|
Xu L, Zhang Y, Ji N, Du Y, Jia T, Wei S, Wang W, Zhang S, Chen W. Tanshinone IIA regulates the TGF‑β1/Smad signaling pathway to ameliorate non‑alcoholic steatohepatitis‑related fibrosis. Exp Ther Med 2022; 24:486. [PMID: 35761808 PMCID: PMC9214595 DOI: 10.3892/etm.2022.11413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/04/2022] [Indexed: 11/19/2022] Open
Abstract
Tanshinone IIA (TIIA) is a major component extracted from the traditional herbal medicine Salvia miltiorrhiza and has been indicated to play a role in the treatment of organ fibrosis. However, the evidence supporting its antifibrotic effect is insufficient and the underlying mechanism is unclear. To investigate the therapeutic effect of TIIA on non-alcoholic steatohepatitis-related fibrosis (NASH-F), the present study used a methionine choline deficiency diet to induce NASH-F in rats, and explored the effect of TIIA on the transforming growth factor-β1 (TGF-β1)/Smad signaling pathway. Wistar rats were randomly divided into control, NASH-F and TIIA groups. After 8 weeks of treatment, the levels of serum markers associated with liver function and fibrosis were measured, liver fat vacuoles and inflammation were assessed by haematoxylin and eosin staining, and liver fibrosis was assessed by Masson's trichrome staining. TGF-β1, Smad2, Smad3, Smad7 and α-smooth muscle actin (α-SMA) mRNA expression, and TGF-β1, Smad2/3, phosphorylated (p)-Smad2/3, Smad7 and α-SMA protein levels were determined. The results revealed that TIIA could remarkably ameliorate liver fat vacuoles and inflammation in NASH-F rats, and could decrease the levels of serum aspartate aminotransferase, alanine aminotransferase, total bilirubin, total bile acid, hyaluronic acid, type Ⅳ collagen, laminin and type III collagen, while increasing the levels of total cholesterol and triglycerides; however, this was not statistically significance. TIIA markedly suppressed the increased TGF-β1, Smad2, Smad3 and α-SMA mRNA expression levels observed in the liver of NASH-F rats, while it increased the mRNA expression level of Smad7. Similarly, TIIA suppressed the increased TGF-β1, p-Smad2/3 and α-SMA protein levels observed in the liver of NASH-F rats, while it increased the protein expression level of Smad7 in vitro and in vivo. TIIA had no significant cytotoxic effect at 10, 20, 40 and 80 µmol/l on human LX-2 cell. In conclusion, the findings of the present study indicated that TIIA alleviated NASH-F by regulating the TGF-β1/Smad signaling pathway. TIIA may be a useful tool in the prevention and treatment of NASH-F.
Collapse
Affiliation(s)
- Lianjie Xu
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yurong Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Nengbo Ji
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Yan Du
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Tao Jia
- Department of Orthopedics, First Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650021, P.R. China
| | - Shanshan Wei
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wei Wang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Shan Zhang
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| | - Wenhui Chen
- Faculty of Basic Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
18
|
Huang Q, Xu J, Ge Y, Shi Y, Wang F, Zhu M. NR4A1 inhibits the epithelial–mesenchymal transition of hepatic stellate cells: Involvement of TGF-β–Smad2/3/4–ZEB signaling. Open Life Sci 2022; 17:447-454. [PMID: 35600274 PMCID: PMC9070444 DOI: 10.1515/biol-2022-0047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to examine whether nuclear receptor 4a1 (NR4A1) is involved in inhibiting hepatic stellate cell (HSC) activation and liver fibrosis through the epithelial–mesenchymal transition (EMT). HSC-T6 cells were divided into the control group, the acetaldehyde (200 μM, an EMT activator) group, and the NR4A1 activation group (Cytosporone B; 1 μM). The expression levels of the epithelial marker E-cadherin, the mesenchymal markers fibronectin (FN), vimentin, smooth muscle alpha-actin (α-SMA), and fibroblast-specific protein 1 (FSP-1), and the components of the transforming growth factor (TGF)-β pathway were detected by real-time polymerase chain reaction and western blotting. Compared with the control group, E-cadherin in the acetaldehyde group was downregulated, whereas FN, FSP-1, vimentin, α-SMA, and COL1A1/COL1A2 were upregulated (P < 0.05). Compared with the acetaldehyde group, NR4A1 agonist upregulated E-cadherin and downregulated FN, FSP-1, vimentin, α-SMA, and COL1A1/COL1A2 (P < 0.05). After acetaldehyde stimulation, TGF-β, Smad2/3/4, and zinc finger E-box-binding homeobox (ZEB) were upregulated, while Smad7 mRNA levels were downregulated (all P < 0.05). Compared with acetaldehyde alone, NR4A1 agonist increased Smad7 mRNA levels and reduced TGF-β, Smad2/3/4, and ZEB mRNA levels (all P < 0.05). NR4A1 activation suppresses acetaldehyde-induced EMT, as shown by epithelial and mesenchymal marker expression. The inhibition of the TGF-β–Smad2/3/4–ZEB signaling during HSC activation might be involved.
Collapse
Affiliation(s)
- Qian Huang
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Zhejiang University of Traditional Chinese Medicine , Hangzhou , 310023 , China
| | - Jingying Xu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Zhejiang University of Traditional Chinese Medicine , Hangzhou , 310023 , China
| | - Yanyan Ge
- Department of Internal Medicine, Hangzhou Third People’s Hospital, Zhejiang University of Traditional Chinese Medicine , Hangzhou , 310009 , China
| | - Yue Shi
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Zhejiang University of Traditional Chinese Medicine , Hangzhou , 310023 , China
| | - Fei Wang
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Zhejiang University of Traditional Chinese Medicine , Hangzhou , 310023 , China
| | - Mingli Zhu
- Department of Laboratory Medicine, Hangzhou Xixi Hospital, Zhejiang University of Traditional Chinese Medicine , Hangzhou , 310023 , China
| |
Collapse
|
19
|
Fang L, Hu M, Xia F, Bai W. LINC01272 activates epithelial-mesenchymal transition through miR-153-5p in Crohn's disease. Am J Transl Res 2022; 14:2331-2342. [PMID: 35559411 PMCID: PMC9091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Long noncoding RNAs (lncRNAs) have different functions in different diseases. There is little research on the functions of lncRNAs in Crohn's disease (CD). By using RNA-seq technology, we identified a lncRNA associated with Crohn's disease. However, the mechanism of lncRNA regulation remains unknown. This study aimed to determine the association of LINC01272 with epithelial cell-mesenchymal transition and the underlying mechanism in CD. METHODS RNA was detected by qRT-PCR. The interaction of protein and RNA was determined by RNA binding protein immunoprecipitation. Luciferase reporter assays were used to detect the targeted miRNA of LINC01272. Tissue fibrosis was observed by Masson and H&E staining. Protein expression was determined by western blotting and immunofluorescence. RESULTS LINC01272 was highly expressed in patients with CD. Knockdown of LINC01272 inhibited TGF-β1-induced epithelial-mesenchymal transition (EMT). Additionally, LINC01272 regulated TGF-β1-induced EMT through the miR-153-5p axis, and knockdown of LINC01272 inhibited EMT in CD mice in vivo. CONCLUSION LINC01272 activated the epithelial-mesenchymal transition through miR-153-5p in CD.
Collapse
Affiliation(s)
- Lin Fang
- Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University Nanjing 211100, Jangsu, China
| | - Mengcheng Hu
- Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University Nanjing 211100, Jangsu, China
| | - Fei Xia
- Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University Nanjing 211100, Jangsu, China
| | - Wenxia Bai
- Department of Gastroenterology, The Affiliated Jiangning Hospital of Nanjing Medical University Nanjing 211100, Jangsu, China
| |
Collapse
|
20
|
Shen R, Shao X, Chen D, Wang C, Lu T, Chen D, Zhu X, Lin J, Ye Q, Zhao L, Ge X, Wang K, Yi J. High expression of RASAL1, a hub gene in the progression of liver cancer, suggests a poor prognostis. Am J Transl Res 2022; 14:2540-2549. [PMID: 35559415 PMCID: PMC9091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Liver cancer (LC) is a frequently occurring lethal malignancy worldwide, yet the molecular mechanisms of carcinogenesis and their development remain uncharacterized. In this study, bioinformatics methods were used to find candidate hub genes for prognosis assessment and clinical treatment of LC. METHODS Differential analysis was carried out based on the evidence of gene expression profiling in LC on The Cancer Genome Atlas (TCGA). The differentially expressed genes (DEGs) were constructed into co-expression networks and divided into modules by virtue of weighted gene co-expression network analysis (WGCNA). Based on the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG), the module genes were subjected to functional enrichment analysis. The LC microarray (GSE105130) in the Gene Expression Omnibus was selected to verify the hub genes' expression profiles. The validity of the hub genes was verified via survival analysis, as well as expression correlation with the clinicopathological features. Thereafter, gene set variation analysis (GSVA) and single-sample gene set enrichment analysis (GSEA) were applied to investigate the possible biological functions of the hub genes. RESULTS In total, 3780 DEGs and 17 co-expression modules were obtained. The blue module had the strongest correlation with the tumour stage and the module genes were principally enriched in tumour-associated GO terms, as well as pathways such as Ras protein signal transduction, ERK1/2 cascade, Ras signal pathway, and ECM-receptor interaction. RASAL1, which is highly expressed in LC, was identified as a hub gene for LC progression. Its high expression suggested unfavorable patient prognosis and was correlated with T stage, gender and tumour stage. Further analysis identified that the overexpression of RASAL1 was substantially enriched in cancer-associated gene sets. CONCLUSION RASAL1 is a hub gene that influences LC progression, constituting a novel biomarker and molecular target in the future diagnosis and therapy of LC.
Collapse
Affiliation(s)
- Ruiwei Shen
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Xiaona Shao
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Dawei Chen
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Chen Wang
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Ting Lu
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Dahua Chen
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Xian Zhu
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Jieqiong Lin
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Qunqun Ye
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Liang Zhao
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Xingfeng Ge
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Kai Wang
- Department of GI Medicine, Ningbo Medical Centre Lihuili Hospital, Ningbo UniversityNingbo 315040, Zhejiang, China
| | - Juan Yi
- Department of Anesthesiology, Ningbo First Hospital59 Liuting Street, Ningbo 315000, Zhejiang, China
| |
Collapse
|
21
|
Wang G, Duan J, Pu G, Ye C, Li Y, Xiu W, Xu J, Liu B, Zhu Y, Wang C. The Annexin A2-Notch regulatory loop in hepatocytes promotes liver fibrosis in NAFLD by increasing osteopontin expression. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166413. [PMID: 35413401 DOI: 10.1016/j.bbadis.2022.166413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND The mechanisms underlying the progression of liver disease from simple hepatic steatosis to advanced nonalcoholic steatohepatitis (NASH) and liver fibrosis warrant further investigation. Increased mRNA levels of Annexin A2 protein (Anxa2) have been observed in patients with NASH. However, the role of Anxa2 in NASH remains unclear. METHODS The protein levels of Anxa2 were analyzed in the livers of mice and patients with NASH. Anxa2-knockout and -knockdown mice were generated, and NASH was induced through a high fructose, palmitate, and cholesterol (FPC) diet or methionine- and choline-deficient (MCD) diet. FINDINGS We found elevated expression of Anxa2 in the livers of patients and mice with NASH. Anxa2 knockdown but not knockout ameliorated liver fibrosis in both FPC and MCD diet-fed mice. Liver-specific Anxa2 overexpression increased collagen deposition in mice fed a normal diet. Mechanistically, Anxa2 overexpression in hepatocytes promoted hepatic stellate cell activation in a paracrine manner by increasing osteopontin expression. Notch inhibition suppressed the exogenous overexpression of Anxa2-induced osteopontin and endogenous Anxa2 expression. Additionally, Anxa2 overexpression accelerated the progression of nonalcoholic fatty liver disease (NAFLD) in mice fed a high-fat diet. Moreover, Anxa2 levels were higher in NAFLD patients with advanced liver fibrosis than in those with mild liver fibrosis, as determined using the Gene Expression Omnibus database. INTERPRETATION In conclusion, we found increased Anxa2 expression in hepatocytes promoted liver fibrosis in NASH mice by increasing osteopontin expression. The Anxa2-Notch positive regulatory loop contributes to this process and represents a novel target for the treatment of NASH-related liver fibrosis.
Collapse
Affiliation(s)
- Guangyan Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Guangyin Pu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chenji Ye
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yue Li
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wenjing Xiu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jingwen Xu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Ben Liu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yi Zhu
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China; School of Nursing, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
22
|
Worlikar T, Zhang M, Ganguly A, Hall TL, Shi J, Zhao L, Lee FT, Mendiratta-Lala M, Cho CS, Xu Z. Impact of Histotripsy on Development of Intrahepatic Metastases in a Rodent Liver Tumor Model. Cancers (Basel) 2022; 14:1612. [PMID: 35406383 PMCID: PMC8996987 DOI: 10.3390/cancers14071612] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Histotripsy has been used for tumor ablation, through controlled, non-invasive acoustic cavitation. This is the first study to evaluate the impact of partial histotripsy ablation on immune infiltration, survival outcomes, and metastasis development, in an in vivo orthotopic, immunocompetent rat HCC model (McA-RH7777). At 7−9 days post-tumor inoculation, the tumor grew to 5−10 mm, and ~50−75% tumor volume was treated by ultrasound-guided histotripsy, by delivering 1−2 cycle histotripsy pulses at 100 Hz PRF (focal peak negative pressure P− >30 MPa), using a custom 1 MHz transducer. Complete local tumor regression was observed on MRI in 9/11 histotripsy-treated rats, with no local recurrence or metastasis up to the 12-week study end point, and only a <1 mm residual scar tissue observed on histology. In comparison, 100% of untreated control animals demonstrated local tumor progression, developed intrahepatic metastases, and were euthanized at 1−3 weeks. Survival outcomes in histotripsy-treated animals were significantly improved compared to controls (p-value < 0.0001). There was evidence of potentially epithelial-to-mesenchymal transition (EMT) in control tumor and tissue healing in histotripsy-treated tumors. At 2- and 7-days post-histotripsy, increased immune infiltration of CD11b+, CD8+ and NK cells was observed, as compared to controls, which may have contributed to the eventual regression of the untargeted tumor region in histotripsy-treated tumors.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (M.Z.); (M.M.-L.)
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (A.G.); (C.S.C.)
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Fred T. Lee
- Department of Radiology, University of Wisconsin, Madison, WI 53705, USA;
| | - Mishal Mendiratta-Lala
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (M.Z.); (M.M.-L.)
| | - Clifford S. Cho
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (A.G.); (C.S.C.)
- Department of Surgery, Ann Arbor VA Healthcare, Ann Arbor, MI 48105, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| |
Collapse
|
23
|
Ren P, Wang K, Ma J, Cao X, Zhao J, Zhao C, Guo Y, Ye H. Autoantibody Against Ferritin Light Chain is a Serum Biomarker for the Detection of Liver Cirrhosis but Not Liver Cancer. J Hepatocell Carcinoma 2022; 9:221-232. [PMID: 35378780 PMCID: PMC8976487 DOI: 10.2147/jhc.s352057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Ferritin is a protein that plays an important role in iron metabolism, it consists of two subunits: heavy chain (FTH) and light chain (FTL). Elevated expression of FTL is observed in multiple malignancies. Recent studies have found that the frequency of circulating autoantibody against FTL (anti-FTL) increased significantly in hepatocellular carcinoma (HCC). The aim of this study is to verify circulating anti-FTL as a biomarker for the early detection of HCC. Patients and Methods A total of 1565 participants were enrolled and assigned to two independent validation cohorts, including 393 HCC patients, 379 liver cirrhosis (LC) patients, 400 chronic hepatitis (CH) patients, and 393 healthy subjects. The concentration of serum anti-FTL was measured by indirect Enzyme-Linked Immunosorbent Assay (ELISA). Kruskal–Wallis test was used to compare anti-FTL concentrations between HCC group and three control groups. Percentile 95 of anti-FTL absorbance value of healthy group was selected as the cut-off value to calculate the positive rate in each group. The area under receiver operating characteristic curve (AUC) was used to quantitatively describe its diagnostic value. Results The median concentration of anti-FTL in HCC patients was higher than that in CH patients and healthy subjects, but there was no difference between HCC patients and LC patients. Further analysis showed that there was no difference between early stage LC, advanced stage LC, Child-Pugh A HCC, Child-Pugh B HCC and Child-Pugh C HCC. The positive rate of anti-FTL was 12.2% (48/393) in HCC, 13.5% (51/379) in LC, 6.3% (25/400) in CH and 5.1% (20/393) in healthy subjects, respectively. The AUC of anti-FTL to distinguish LC from CH or healthy subjects were 0.654 (95% CI: 0.615–0.692) and 0.642 (95% CI: 0.602–0.681), respectively. Conclusion Anti-FTL is not a biomarker for the early diagnosis of HCC due to specificity deficiency, but may be helpful for the early detection of LC.
Collapse
Affiliation(s)
- Pengfei Ren
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Keyan Wang
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People’s Republic of China
| | - Jie Ma
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Xiaoqin Cao
- Department of Cancer Epidemiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Jiuzhou Zhao
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Chengzhi Zhao
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
| | - Yongjun Guo
- Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Molecular Pathology, Zhengzhou, People’s Republic of China
- Correspondence: Yongjun Guo, Department of Molecular Pathology, The Affiliated Cancer Hospital of Zhengzhou University, 127 Dongming Road, Zhengzhou, 450008, People’s Republic of China, Fax +86 371 65587506 Email
| | - Hua Ye
- College of Public Health, Zhengzhou University, Zhengzhou, People’s Republic of China
- Henan Key Laboratory of Tumor Epidemiology and State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, People’s Republic of China
- Hua Ye, College of Public Health, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, People’s Republic of China, Fax +86 371 67781248, Email
| |
Collapse
|
24
|
Wang T, Peng B, Luo T, Tian D, Zhao Z, Fu Z, Li Q. ZEB1 recruit Brg1 to regulate airway remodeling epithelial-mesenchymal transition in asthma. Exp Physiol 2022; 107:515-526. [PMID: 35138000 DOI: 10.1113/ep090212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/08/2022]
Abstract
What is the central question of this study? The aim was to investigate the function of Brg1 in airway remodeling epithelial-mesenchymal transition (EMT) of asthma and identify the transcription factor (TF) of Brg1 which bind to the protomer of E-cadherin. What is the main finding and its importance? This study highlighted an important molecular mechanism involving chromatin remodeling factor Brahma-related gene-1 (Brg1) that played a critical role in airway remodeling EMT of asthma and demonstrated ZEB1 was the key TF recruiting Brg1. This finding might offer new insights into gene-based therapy for asthma. ABSTRACT: Epithelial-mesenchymal transition (EMT) of airway remodeling happens in children with asthma. Reduction of epithelial marker E-cadherin is reported to be one of the initiating factors of EMT. Our previous study shows that chromatin remodeling factor Brahma-related gene-1 (Brg1) could regulate the expression of E-cadherin indirectly, but the transcription factor (TF) involved in the recruitment of Brg1 in asthma is unknown. Here, we studied the function of Brg1 in an ovalbumin (OVA)-induced asthma model (lung-specific conditional Brg1 (Brg1-/- ) knockdown mice) and human bronchial epithelial 16HBE cells stably expressing Brg1 shRNA. Our results showed that Brg1 was involved in epithelial-mesenchymal transition in asthmatic mice by detecting the expression of EMT markers. Meanwhile, we identified that Brg1 participated in the TGF-β induced EMT of 16HBE cells. We observed that Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Brg1 colocalized in the EMT of TGF-β induced 16HBE cells. Further results revealed that ZEB1 recruited Brg1 and bound to the promoter region (+3563/3715) to regulate E-cadherin expression. Thus, ZEB1 might be the key TF to recruit Brg1 in airway remodeling EMT of asthma and might be a novel therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ting Wang
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Bingming Peng
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Tingting Luo
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Daiyin Tian
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhihua Zhao
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhou Fu
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qubei Li
- Department of Respiratory Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.,Chongqing Key Laboratory of Pediatrics, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| |
Collapse
|
25
|
Immunomodulatory Effect of Lycium barbarum Polysaccharides against Liver Fibrosis Based on the Intelligent Medical Internet of Things. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6280265. [PMID: 35126934 PMCID: PMC8808186 DOI: 10.1155/2022/6280265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 01/14/2023]
Abstract
Lycium barbarum polysaccharide (LBP) is the main active component of Lycium barbarum and has many beneficial effects, including neuroprotection, antiaging, and antioxidation. This study mainly explores the immunomodulatory effect of Lycium barbarum polysaccharides against liver fibrosis based on the intelligent medical Internet of Things. This measure emphasizes that the current effective methods and methods for the treatment of liver cancer are mainly combined treatments of Western medicine and Chinese medicine. These treatments have a certain effect in preventing liver cancer, reducing recurrence, and reducing side effects. Among them, chemotherapy has unique advantages in improving the quality of life and prolonging survival. With the development of medical science and technology, the clinical efficacy and efficacy of traditional Chinese medicine in the treatment of liver cancer are constantly improving. The mechanism is also studied from many aspects. The treatment time of LBPs on fibrotic hepatocytes was set to 24 h. Take liver fiber cells in logarithmic growth phase and incubate them at 37°C for 24 h. The whole process uses a temperature sensor for intelligent temperature control. In the experiment, groups of LBPs with different concentrations and different molecular weight ranges were set up and each group had 6 multiple holes. The original medium was aspirated and replaced with a medium containing different concentrations of LBPs (12.5, 25, 50, 100, and 200 μg/mL) and cultured for 24 h. Based on the previous research, this study used in vitro cell experiments, microscopic observation, and MTT method to verify whether Lycium barbarum polysaccharides inhibit the proliferation of human liver cancer cells in vitro and whether they cooperate with the chemotherapy drug fluorouracil to play a tumor-killing effect. Animal experiments, using ELISA, HE staining, and other methods, explore the molecular and immunological mechanisms of LBP's antiliver cancer effect from the perspective of Th/Th2 differentiation balance and DC function, in order to provide experimental evidence for Chinese medicine polysaccharides in cancer immunotherapy and application. At different LBP concentrations (0 μmol/L, 5 μmol/L, 10 μmol/L, and 15 μmol/L), the inhibition rates were 0.80%, 20.06%, 35.44%, and 55.39%, respectively. This study provides a new method for large-scale expansion of hepatocytes in vitro, laying a stronger foundation for biological treatment of liver fibrosis.
Collapse
|
26
|
Baghaei K, Mazhari S, Tokhanbigli S, Parsamanesh G, Alavifard H, Schaafsma D, Ghavami S. Therapeutic potential of targeting regulatory mechanisms of hepatic stellate cell activation in liver fibrosis. Drug Discov Today 2021; 27:1044-1061. [PMID: 34952225 DOI: 10.1016/j.drudis.2021.12.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/11/2021] [Accepted: 12/17/2021] [Indexed: 11/03/2022]
Abstract
Hepatic fibrosis is a manifestation of different etiologies of liver disease with the involvement of multiple mediators in complex network interactions. Activated hepatic stellate cells (aHSCs) are the central driver of hepatic fibrosis, given their potential to induce connective tissue formation and extracellular matrix (ECM) protein accumulation. Therefore, identifying the cellular and molecular pathways involved in the activation of HSCs is crucial in gaining mechanistic and therapeutic perspectives to more effectively target the disease. In addition to a comprehensive summary of our current understanding of the role of HSCs in liver fibrosis, we also discuss here the proposed therapeutic strategies based on targeting HSCs.
Collapse
Affiliation(s)
- Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Sogol Mazhari
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Samaneh Tokhanbigli
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Gilda Parsamanesh
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | - Helia Alavifard
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
| | | | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
27
|
Ala M, Eftekhar SP. Target Sestrin2 to Rescue the Damaged Organ: Mechanistic Insight into Its Function. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8790369. [PMID: 34765085 PMCID: PMC8577929 DOI: 10.1155/2021/8790369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Sestrin2 is a stress-inducible metabolic regulator and a conserved antioxidant protein which has been implicated in the pathogenesis of several diseases. Sestrin2 can protect against atherosclerosis, heart failure, hypertension, myocardial infarction, stroke, spinal cord injury neurodegeneration, nonalcoholic fatty liver disease (NAFLD), liver fibrosis, acute kidney injury (AKI), chronic kidney disease (CKD), and pulmonary inflammation. Oxidative stress and cellular damage signals can alter the expression of Sestrin2 to compensate for organ damage. Different stress signals such as those mediated by P53, Nrf2/ARE, HIF-1α, NF-κB, JNK/c-Jun, and TGF-β/Smad signaling pathways can induce Sestrin2 expression. Subsequently, Sestrin2 activates Nrf2 and AMPK. Furthermore, Sestrin2 is a major negative regulator of mTORC1. Sestrin2 indirectly regulates the expression of several genes and reprograms intracellular signaling pathways to attenuate oxidative stress and modulate a large number of cellular events such as protein synthesis, cell energy homeostasis, mitochondrial biogenesis, autophagy, mitophagy, endoplasmic reticulum (ER) stress, apoptosis, fibrogenesis, and lipogenesis. Sestrin2 vigorously enhances M2 macrophage polarization, attenuates inflammation, and prevents cell death. These alterations in molecular and cellular levels improve the clinical presentation of several diseases. This review will shed light on the beneficial effects of Sestrin2 on several diseases with an emphasis on underlying pathophysiological effects.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Parsa Eftekhar
- Student Research Committee, Health Research Center, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
28
|
Feng S, Tong H, Gao JH, Tang SH, Yang WJ, Wang GM, Zhou HY, Wen SL. Anti-inflammation treatment for protection of hepatocytes and amelioration of hepatic fibrosis in rats. Exp Ther Med 2021; 22:1213. [PMID: 34584558 PMCID: PMC8422404 DOI: 10.3892/etm.2021.10647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation is considered as an important pathophysiologic mechanism of hepatic cirrhosis, which induces hepatocyte injury and activates hepatic stellate cells (HSCs), thus resulting in hepatic fibrosis. Previous studies have reported that cyclooxygenase-2 (COX-2) inhibitor can effectively treat liver fibrosis, while somatostatin (SST) analogues inhibit the activation of HSCs. The present study aimed to investigate the effects of a COX-2 inhibitor, celecoxib, combined with a SST analogue, octreotide, for protection of hepatocytes and prevention of fibrosis in a rat model of hepatic fibrosis. Therefore, a hepatic fibrosis rat model was established following peritoneal injection of thioacetamide (TAA), and the rats were then treated with a combination of celecoxib and octreotide (TAA + C). Immunohistochemistry and western blotting assays were used to assess the expression levels of proteins associated with inflammation, epithelial-mesenchymal transition (EMT), proliferation, apoptosis and autophagy. H&E staining, transmission electron microscopy and scanning electron microscopy were used to evaluate the destruction of hepatocytes. Masson's Trichrome and Sirius Red were used to measure the degree of liver fibrosis. The results demonstrated that, compared with those of the control group, the degree of liver fibrosis and the expression of the intrahepatic inflammation factors were aggravated in the TAA group. Furthermore, the apoptosis rate, EMT and autophagy of hepatocytes were also increased in the TAA group. However, treatment with TAA + C restored the aforementioned increased levels compared with the TAA group. In conclusion, treatment of rats with the combination of celecoxib and octreotide could attenuate the progress of hepatic fibrosis via protection of hepatocytes by reducing apoptosis, EMT and autophagy in hepatocytes.
Collapse
Affiliation(s)
- Shi Feng
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Huan Tong
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Hang Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen-Juan Yang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Gui-Ming Wang
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Ying Zhou
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Lei Wen
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
29
|
Khanam A, Saleeb PG, Kottilil S. Pathophysiology and Treatment Options for Hepatic Fibrosis: Can It Be Completely Cured? Cells 2021; 10:cells10051097. [PMID: 34064375 PMCID: PMC8147843 DOI: 10.3390/cells10051097] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatic fibrosis is a dynamic process that occurs as a wound healing response against liver injury. During fibrosis, crosstalk between parenchymal and non-parenchymal cells, activation of different immune cells and signaling pathways, as well as a release of several inflammatory mediators take place, resulting in inflammation. Excessive inflammation drives hepatic stellate cell (HSC) activation, which then encounters various morphological and functional changes before transforming into proliferative and extracellular matrix (ECM)-producing myofibroblasts. Finally, enormous ECM accumulation interferes with hepatic function and leads to liver failure. To overcome this condition, several therapeutic approaches have been developed to inhibit inflammatory responses, HSC proliferation and activation. Preclinical studies also suggest several targets for the development of anti-fibrotic therapies; however, very few advanced to clinical trials. The pathophysiology of hepatic fibrosis is extremely complex and requires comprehensive understanding to identify effective therapeutic targets; therefore, in this review, we focus on the various cellular and molecular mechanisms associated with the pathophysiology of hepatic fibrosis and discuss potential strategies to control or reverse the fibrosis.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Paul G. Saleeb
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Correspondence: ; Tel.: +1-410-706-4872
| |
Collapse
|
30
|
Ma X, Long C, Wang F, Lou B, Yuan M, Duan F, Yang Y, Li J, Qian X, Zeng J, Lin S, Shen H, Lin X. METTL3 attenuates proliferative vitreoretinopathy and epithelial-mesenchymal transition of retinal pigment epithelial cells via wnt/β-catenin pathway. J Cell Mol Med 2021; 25:4220-4234. [PMID: 33759344 PMCID: PMC8093987 DOI: 10.1111/jcmm.16476] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Proliferative vitreoretinopathy (PVR) is a refractory vitreoretinal fibrosis disease, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells is the key pathological mechanism of PVR. However, few studies focused on the role of METTL3, the dominating methyltransferase for m6A RNA modification in PVR pathogenesis. Immunofluorescence staining and qRT-PCR were used to determine the expression of METTL3 in human tissues. Lentiviral transfection was used to stably overexpress and knockdown METTL3 in ARPE-19 cells. MTT assay was employed to study the effects of METTL3 on cell proliferation. The impact of METTL3 on the EMT of ARPE-19 cells was assessed by migratory assay, morphological observation and expression of EMT markers. Intravitreal injection of cells overexpressing METTL3 was used to assess the impact of METTL3 on the establishment of the PVR model. We found that METTL3 expression was less in human PVR membranes than in the normal RPE layers. In ARPE-19 cells, total m6A abundance and the METTL3 expression were down-regulated after EMT. Additionally, METTL3 overexpression inhibited cell proliferation through inducing cell cycle arrest at G0/G1 phase. Furthermore, METTL3 overexpression weakened the capacity of TGFβ1 to trigger EMT by regulating wnt/β -catenin pathway. Oppositely, knockdown of METTL3 facilitated proliferation and EMT of ARPE-19 cells. In vivo, intravitreal injection of METTL3-overexpressing cells delayed the development of PVR compared with injection of control cells. In summary, this study suggested that METTL3 is involved in the PVR process, and METTL3 overexpression inhibits the EMT of ARPE-19 cells in vitro and suppresses the PVR process in vivo.
Collapse
Affiliation(s)
- Xinqi Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Chongde Long
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fangyu Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Bingsheng Lou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Miner Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Fang Duan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jiaqing Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaobing Qian
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jieting Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huangxuan Shen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China.,Biobank of Eye, State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaofeng Lin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Malik A, Thanekar U, Mourya R, Shivakumar P. Recent developments in etiology and disease modeling of biliary atresia: a narrative review. ACTA ACUST UNITED AC 2020; 3. [PMID: 33615212 PMCID: PMC7891552 DOI: 10.21037/dmr-20-97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Biliary atresia (BA) is a rare but severe fibroinflammatory disease of the extrahepatic and the intrahepatic bile ducts. Without prompt interventions, BA has fatal outcomes and is the most common indicator for pediatric liver transplantation (LTx). While the mainstay of treatment involves surgically correcting the extrahepatic biliary obstruction via Kasai hepato-portoenterostomy (KHPE), activation of a multitude of biological pathways and yet-to-be-determined etiology in BA continue to foster liver inflammation, cirrhosis and need for LTx. However, important caveats still exist in our understandings of the biliary pathophysiology, the rapidity of liver fibrosis and progression to liver failure, largely due to limited knowledge of the triggers of biliary injury and the inability to accurately model human BA. Although inconclusive, a large body of existing literature points to a potential viral infection in the early peri- or postnatal period as triggers of epithelial injury that perpetuates the downstream biliary disease. Further confounding this issue, are the lack of in-vivo and in-vitro models to efficiently recapitulate the cardinal features of BA, primarily liver fibrosis. To overcome these barriers in BA research, new directions in recent years have enabled (I) identification of additional triggers of biliary injury linked mostly to environmental toxins, (II) development of models to investigate liver fibrogenesis, and (III) translational research using patient-derived organoids. Here, we discuss recent advances that undoubtedly will stimulate future efforts investigating these new and exciting avenues towards mechanistic and drug discovery efforts and disease-preventive measures. The implications of these emerging scientific investigations and disease modeling in severe fibrosing cholangiopathies like BA are enormous and contribute substantially in our understandings of this rare but deadly disease. These findings are also expected to facilitate expeditious identification of translationally targetable pathways and bring us one step closer in treating an infant with BA, a population highly vulnerable to life-long liver related complications.
Collapse
Affiliation(s)
- Astha Malik
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Unmesha Thanekar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Reena Mourya
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Pranavkumar Shivakumar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.,Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
32
|
Zheng JH, Zhang JK, Kong DS, Song YB, Zhao SD, Qi WB, Li YN, Zhang ML, Huang XH. Quantification of the CM-Dil-labeled human umbilical cord mesenchymal stem cells migrated to the dual injured uterus in SD rat. Stem Cell Res Ther 2020; 11:280. [PMID: 32660551 PMCID: PMC7359016 DOI: 10.1186/s13287-020-01806-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 05/29/2020] [Accepted: 07/01/2020] [Indexed: 12/23/2022] Open
Abstract
Background Human umbilical cord mesenchymal stem cell (hUC-MSC) therapy is considered as a promising approach in the treatment of intrauterine adhesions (IUAs). Considerable researches have already detected hUC-MSCs by diverse methods. This paper aims at exploring the quantitative distribution of CM-Dil-labeled hUC-MSCs in different regions of the uterus tissue of the dual injury-induced IUAs in rats and the underlying mechanism of restoration of fertility after implantation of hUC-MSCs in the IUA model. Methods In this study, we investigated the quantification of the CM-Dil-labeled hUC-MSCs migrated to the dual injured uterus in Sprague Dawley rats. Additionally, we investigated the differentiation of CM-Dil-labeled hUC-MSCs. The differentiation potential of epithelial cells, vascular endothelial cells, and estrogen receptor (ER) cells were assessed by an immunofluorescence method using CK7, CD31, and ERα. The therapeutic impact of hUC-MSCs in the IUA model was assessed by hematoxylin and eosin, Masson, immunohistochemistry staining, and reproductive function test. Finally, the expression of TGF-β1/Smad3 pathway in uterine tissues was determined by qRT-PCR and Western blotting. Results The CM-Dil-labeled cells in the stroma region were significantly higher than those in the superficial myometrium (SM) (71.67 ± 7.98 vs. 60.92 ± 3.96, p = 0.005), in the seroma (71.67 ± 7.98 vs. 23.67 ± 8.08, p = 0.000) and in the epithelium (71.67 ± 7.98 vs. 4.17 ± 1.19, p = 0.000). From the 2nd week of treatment, hUC-MSCs began to differentiate into epithelial cells, vascular endothelial cells, and ER cells. The therapeutic group treated with hUC-MSCs exhibited a significant decrease in fibrosis (TGF-β1/Smad3) as well as a significant increase in vascularization (CD31) compared with the untreated rats. Conclusion Our findings suggested that the distribution of the migrated hUC-MSCs in different regions of the uterine tissue was unequal. Most cells were in the stroma and less were in the epithelium of endometrium and gland. Injected hUC-MSCs had a capacity to differentiate into epithelial cells, vascular endothelial cells, and ER cells; increase blood supply; inhibit fibration; and then restore the fertility of the IUA model.
Collapse
Affiliation(s)
- Jia-Hua Zheng
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jing-Kun Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - De-Sheng Kong
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan-Biao Song
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shuang-Dan Zhao
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wen-Bo Qi
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ya-Nan Li
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ming-le Zhang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiang-Hua Huang
- Department of Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China.
| |
Collapse
|
33
|
Chen M, Guo J, Ruan J, Yang Z, He C, Zuo Z. Neonatal exposure to environment-relevant levels of tributyltin leads to uterine dysplasia in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137615. [PMID: 32325588 DOI: 10.1016/j.scitotenv.2020.137615] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 05/12/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural/synthetic compounds that mimic or inhibit the biological actions of endogenous hormones. Studies have revealed that environmental estrogen, such as bisphenol A (BPA), causes developmental defects in the uterus. Tributyltin (TBT) is a typical environmental androgen. In this study, we aimed to explore the effect and mechanism of TBT on uterine development. Neonatal female rats were exposed to TBT (10 and 100 ng/kg bw) from postnatal days 1 to 16. BPA (50 μg/kg bw) was used as a positive control. Neonatal exposure to environmental concentrations of TBT resulted in pathological changes in the uterus, including thickening of the uterine luminal epithelium, a low density of glands, endometrial inflammation and fibrosis. Further, TBT affected the Wnt signaling pathway, which might mediate developmental disorders of the endometrial epithelial cells and glands in the uterus. TBT exposure also activated the NF-κB signaling pathway, which triggered inflammation. Moreover, TBT exposure upregulated the TGF-β/Smads signaling pathway, possibly leading to endometrial fibrosis. In summary, our results demonstrate that neonatal exposure to an environment-relevant level of TBT leads to uterine dysplasia and provide potential molecular mechanisms. Our study is helpful for clarifying the effects of environmental androgens on the female reproduction system.
Collapse
Affiliation(s)
- Mingyue Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jiaojiao Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Jinpeng Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhibing Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China; Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, China.
| |
Collapse
|
34
|
Ríos-López DG, Aranda-López Y, Sosa-Garrocho M, Macías-Silva M. La plasticidad del hepatocito y su relevancia en la fisiología y la patología hepática. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2020. [DOI: 10.22201/fesz.23958723e.2020.0.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
El hígado es uno de los principales órganos encargados de mantener la homeostasis en vertebrados, además de poseer una gran capacidad regenerativa. El hígado está constituido por diversos tipos celulares que de forma coordinada contribuyen para que el órgano funcione eficientemente. Los hepatocitos representan el tipo celular principal de este órgano y llevan a cabo la mayoría de sus actividades; además, constituyen una población heterogénea de células epiteliales con funciones especializadas en el metabolismo. El fenotipo de los hepatocitos está controlado por diferentes vías de señalización, como la vía del TGFβ/Smads, la ruta Hippo/YAP-TAZ y la vía Wnt/β-catenina, entre otras. Los hepatocitos son células que se encuentran normalmente en un estado quiescente, aunque cuentan con una plasticidad intrínseca que se manifiesta en respuesta a diversos daños en el hígado; así, estas células reactivan su capacidad proliferativa o cambian su fenotipo a través de procesos celulares como la transdiferenciación o la transformación, para contribuir a mantener la homeostasis del órgano en condiciones saludables o desarrollar diversas patologías.
Collapse
|
35
|
Role of plasminogen activator inhibitor-1 in methotrexate-induced epithelial-mesenchymal transition in alveolar epithelial A549 cells. Biochem Biophys Res Commun 2020; 525:543-548. [PMID: 32113686 DOI: 10.1016/j.bbrc.2020.02.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022]
Abstract
There is increasing evidence that epithelial-mesenchymal transition (EMT) contributes to the development of organ fibrosis. We demonstrated that methotrexate (MTX) clearly induced EMT through the transforming growth factor (TGF)-β-related signaling pathway in human alveolar epithelial cell line, A549. However, critical factors associated with MTX-induced EMT have not yet been identified. In our study, we attempted to identify factors playing a crucial role in MTX-induced EMT in A549 cells. We focused on plasminogen activator inhibitor-1 (PAI-1) as the possible target for the prevention of MTX-induced EMT-related lung injury. Comprehensive gene expression analysis by microarray revealed that mRNA expression level of PAI-1 was clearly increased by MTX treatment. In addition, using several cloned A549 cells, we found a good correlation between MTX-induced increase in mRNA expression levels of α-smooth muscle actin (SMA), a representative EMT marker, and PAI-1. Furthermore, MTX upregulated mRNA and protein expression levels of PAI-1 in A549 cells; this upregulation was canceled by co-treatment with SB431542, a TGF-β-related signaling pathway inhibitor. Notably, tiplaxtinin, a PAI-1 inhibitor, and knockdown of urokinase-type plasminogen activator receptor (uPAR) prevented MTX-induced EMT in A549 cells. These findings indicate that MTX may induce EMT via upregulation of PAI-1 expression and interaction of PAI-1 with uPAR in A549 cells.
Collapse
|
36
|
Zhang Q, Chang X, Wang H, Liu Y, Wang X, Wu M, Zhan H, Li S, Sun Y. TGF-β1 mediated Smad signaling pathway and EMT in hepatic fibrosis induced by Nano NiO in vivo and in vitro. ENVIRONMENTAL TOXICOLOGY 2020; 35:419-429. [PMID: 31737983 DOI: 10.1002/tox.22878] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 10/20/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Nickel oxide nanoparticles (Nano NiO) bears hepatotoxicity, while whether it leads to liver fibrosis remains unclear. The aim of this study was to establish the Nano NiO-induced hepatic fibrosis model in vivo and investigate the roles of transforming growth factor β1 (TGF-β1) in Smad pathway activation, epithelial-mesenchymal transition (EMT) occurrence, and extracellular matrix (ECM) deposition in vitro. Male Wistar rats were exposed to 0.015, 0.06, and 0.24 mg/kg Nano NiO by intratracheal instilling twice a week for 9 weeks. HepG2 cells were treated with 100 μg/mL Nano NiO and TGF-β1 inhibitor (SB431542) to explore the mechanism of collagen formation. Results of Masson staining as well as the elevated levels of type I collagen (Col-I) and Col-III suggested that Nano NiO resulted in hepatic fibrosis in rats. Furthermore, Nano NiO increased the protein expression of TGF-β1, p-Smad2, p-Smad3, alpha-smooth muscle actin (α-SMA), matrix metalloproteinase9 (MMP9), and tissue inhibitors of metalloproteinase1 (TIMP1), while decreased the protein content of E-cadherin and Smad7 in rat liver and HepG2 cells. Most importantly, Nano NiO-triggered the abnormal expression of the abovementioned proteins were all alleviated by co-treatment with SB431542, implying that TGF-β1-mediated Smad pathway, EMT and MMP9/TIMP1 imbalance were involved in overproduction of collagen in HepG2 cells. In conclusion, these findings indicated that Nano NiO induced hepatic fibrosis via TGF-β1-mediated Smad pathway activation, EMT occurrence, and ECM deposition.
Collapse
Affiliation(s)
- Qiong Zhang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xuhong Chang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Yunlan Liu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiaoxia Wang
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Minmin Wu
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Haibing Zhan
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| | - Sheng Li
- Department occupational disease control, Lanzhou Municipal Center for Disease Control, Lanzhou, China
| | - Yingbiao Sun
- Department of Toxicology, School of Public Health, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Epithelial to Mesenchymal Transition: A Mechanism that Fuels Cancer Radio/Chemoresistance. Cells 2020; 9:cells9020428. [PMID: 32059478 PMCID: PMC7072371 DOI: 10.3390/cells9020428] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/27/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) contributes to tumor progression, cancer cell invasion, and therapy resistance. EMT is regulated by transcription factors such as the protein products of the SNAI gene family, which inhibits the expression of epithelial genes. Several signaling pathways, such as TGF-beta1, IL-6, Akt, and Erk1/2, trigger EMT responses. Besides regulatory transcription factors, RNA molecules without protein translation, micro RNAs, and long non-coding RNAs also assist in the initialization of the EMT gene cluster. A challenging novel aspect of EMT research is the investigation of the interplay between tumor microenvironments and EMT. Several microenvironmental factors, including fibroblasts and myofibroblasts, as well as inflammatory, immune, and endothelial cells, induce EMT in tumor cells. EMT tumor cells change their adverse microenvironment into a tumor friendly neighborhood, loaded with stromal regulatory T cells, exhausted CD8+ T cells, and M2 (protumor) macrophages. Several EMT inhibitory mechanisms are instrumental in reversing EMT or targeting EMT cells. Currently, these mechanisms are also significant for clinical use.
Collapse
|
38
|
Ferraz LR, Moreira BC, de Queiroz GDSR, Formigari RDF, Esquisatto MAM, Felonato M, Alves AA, Thomazini BF, de Oliveira CA. Tissue-specific transcriptional regulation of epithelial/endothelial and mesenchymal markers during renovascular hypertension. Mol Med Rep 2019; 20:4467-4476. [PMID: 31702037 PMCID: PMC6797995 DOI: 10.3892/mmr.2019.10722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/22/2019] [Indexed: 01/03/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition are processes that can occur under different biological conditions, including tissue healing due to hypertension and oxidative stress. The purpose of the present study was to evaluate the differences in gene expression of epithelial/endothelial and mesenchymal markers in different tissues. A two-kidney, one-clip (2K1C) renovascular hypertension rat model was used. Hypertension was induced by the clipping of the left renal artery; the rats were randomized into sham and 2K1C groups and monitored for up to 4 weeks. The gene expressions of E-cadherin (E-cad), N-cadherin (N-cad), α-smooth muscle actin (α-SMA), collagen I (COL1A1), collagen III (COL3A1) and hepatocyte growth factor (HGF) were determined by reverse transcription-PCR. The levels of the cytokines transforming growth factor-β1, tumor necrosis factor-α, interleukin (IL)-4, IL-6 and IL-10 were evaluated using ELISAs. The levels of thiobarbituric acid reactive substances and thiol groups were measured to evaluate oxidative stress. All analyses were performed on the liver, heart and kidneys tissues of sham and model rats. The 2K1C animals exhibited a higher systolic blood pressure, as well as cardiac hypertrophy and atrophy of the left kidney. Fibrotic alterations in the heart and kidneys were observed, as was an increase in the collagen fiber areas, and higher levels of inflammatory cytokines, which are associated with the increased expression of fibroproliferative and anti-fibrotic genes. Renovascular hypertension regulated epithelial/endothelial and mesenchymal markers, including E-cad, N-cad, α-SMA and COL1A1 in the kidneys and heart. EMT in the kidneys was mediated by an increased level of inflammatory and profibrotic cytokines, as well as by oxidative stress. The data in the present study suggested that the expression of epithelial/endothelial and mesenchymal markers are differentially regulated by hypertension in the liver, heart and kidneys.
Collapse
Affiliation(s)
- Leandro Ricardo Ferraz
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Bianca Caruso Moreira
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | | | - Regiane de Freitas Formigari
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | | | - Maira Felonato
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Armindo Antonio Alves
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Bruna Fontana Thomazini
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| | - Camila Andréa de Oliveira
- Graduate Program in Biomedical Sciences, University Center of the Hermínio Ometto Foundation, Araras, São Paulo 13607-339, Brazil
| |
Collapse
|
39
|
Yang YZ, Zhao XJ, Xu HJ, Wang SC, Pan Y, Wang SJ, Xu Q, Jiao RQ, Gu HM, Kong LD. Magnesium isoglycyrrhizinate ameliorates high fructose-induced liver fibrosis in rat by increasing miR-375-3p to suppress JAK2/STAT3 pathway and TGF-β1/Smad signaling. Acta Pharmacol Sin 2019; 40:879-894. [PMID: 30568253 DOI: 10.1038/s41401-018-0194-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 11/08/2018] [Indexed: 12/26/2022] Open
Abstract
Increasing evidence has demonstrated that excessive fructose intake induces liver fibrosis. Epithelial-mesenchymal transition (EMT) driven by transforming growth factor-β1 (TGF-β1)/mothers against decapentaplegic homolog (Smad) signaling activation promotes the occurrence and development of liver fibrosis. Magnesium isoglycyrrhizinate is clinically used as a hepatoprotective agent to treat liver fibrosis, but its underlying molecular mechanism has not been identified. Using a rat model, we found that high fructose intake reduced microRNA (miR)-375-3p expression and activated the janus-activating kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) cascade and TGF-β1/Smad signaling, which is consistent with the EMT and liver fibrosis. To further verify these observations, BRL-3A cells and/or primary rat hepatocytes were exposed to high fructose and/or transfected with a miR-375-3p mimic or inhibitor or treated with a JAK2 inhibitor, and we found that the low expression of miR-375-3p could induce the JAK2/STAT3 pathway to activate TGF-β1/Smad signaling and promote the EMT. Magnesium isoglycyrrhizinate was found to ameliorate high fructose-induced EMT and liver fibrosis in rats. More importantly, magnesium isoglycyrrhizinate increased miR-375-3p expression to suppress the JAK2/STAT3 pathway and TGF-β1/Smad signaling in these animal and cell models. This study provides evidence showing that magnesium isoglycyrrhizinate attenuates liver fibrosis associated with a high fructose diet.
Collapse
|
40
|
Yuan F, Sun Z, Feng Y, Liu S, Du Y, Yu S, Yang M, Lv G. Epithelial–mesenchymal transition in the formation of hypertrophic scars and keloids. J Cell Physiol 2019; 234:21662-21669. [PMID: 31106425 DOI: 10.1002/jcp.28830] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Feng‐Lai Yuan
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Zi‐Li Sun
- Nanjing University of Chinese Medicine Nanjing Jiangsu China
| | - Yi Feng
- Yangzhou University Yangzhou Jiangsu China
| | - Si‐Yu Liu
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Yong Du
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Shun Yu
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Ming‐Lie Yang
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| | - Guo‐Zhong Lv
- Department of Orthopaedics and Central Laboratory The Third Hospital Affiliated to Nantong University Wuxi Jiangsu China
| |
Collapse
|
41
|
Miao H, Zhang Y, Huang Z, Lu B, Ji L. Lonicera japonica Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Mice: Molecular Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:351-367. [PMID: 30871359 DOI: 10.1142/s0192415x19500174] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Liver fibrosis is a worldwide clinical issue that generally causes hepatic cirrhosis. Lonicerae Japonicae Flos (dried flower buds of Lonicera japonica Thunb) is a traditional heat-clearing and detoxifying herbal medicine in China. This study aims to observe the protection of the water extract of Lonicerae Japonicae Flos (FL) from carbon tetrachloride (CCl4)-induced liver fibrosis in mice. Liver fibrosis was induced in mice by intraperitoneal injection of 2 ml/kg CCl4 twice a week for 4 weeks. FL's attenuation of CCl4-induced liver fibrosis in mice was evidenced by the results of Masson's trichrome and Sirius red staining, liver hydroxyproline content and serum amount of collagen IV. FL reduced hepatic stellate cells (HSCs) activation and reversed the epithelial-mesenchymal transition (EMT) process in mice treated with CCl4. FL also alleviated liver oxidative stress injury and enhanced the activation of nuclear factor erythroid 2-related factor 2 (Nrf2) anti-oxidant signaling pathway in mice treated with CCl4. Additionally, the main phenolic acids in FL including chlorogenic acid (CGA) and caffeic acid (CA) both reduced HSCs activation in vitro. In summary, FL attenuates CCl4-induced liver fibrosis in mice by inhibiting HSCs activation, reversing EMT and reducing liver oxidative stress injury via inducing Nrf2 activation. CGA may be the main active compound contributing to the antifibrotic activity of FL.
Collapse
Affiliation(s)
- Hui Miao
- 1 The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China
| | - Yi Zhang
- 1 The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China
| | - Zhenlin Huang
- 1 The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China
| | - Bin Lu
- 1 The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China
| | - Lili Ji
- 1 The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, P. R. China
| |
Collapse
|
42
|
New Insights into the Role of Epithelial⁻Mesenchymal Transition during Aging. Int J Mol Sci 2019; 20:ijms20040891. [PMID: 30791369 PMCID: PMC6412502 DOI: 10.3390/ijms20040891] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/08/2019] [Accepted: 02/15/2019] [Indexed: 12/29/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is a cellular process by which differentiated epithelial cells undergo a phenotypic conversion to a mesenchymal nature. The EMT has been increasingly recognized as an essential process for tissue fibrogenesis during disease and normal aging. Higher levels of EMT proteins in aged tissues support the involvement of EMT as a possible cause and/or consequence of the aging process. Here, we will highlight the existing understanding of EMT supporting the phenotypical alterations that occur during normal aging or pathogenesis, covering the impact of EMT deregulation in tissue homeostasis and stem cell function.
Collapse
|
43
|
Renoprotective effect and mechanism of polysaccharide from Polyporus umbellatus sclerotia on renal fibrosis. Carbohydr Polym 2019; 212:1-10. [PMID: 30832835 DOI: 10.1016/j.carbpol.2019.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/25/2019] [Accepted: 02/08/2019] [Indexed: 01/02/2023]
Abstract
As a fungal polysaccharide, polysaccharide (PPUS) from Polyporus umbellatus sclerotia have showed remarkable anti-inflammatory activities. In view of the closely relationship between inflammation and renal fibrosis, and considering the significant role of other fungal polysaccharides on treatment of renal fibrosis, we speculated that PPUS may have therapeutic effects on renal fibrosis. However, there was not any reports about PPUS treatment this disease. The purpose of this paper is to investigate renoprotective effect and mechanism of PPUS on renal fibrosis. The results indicated that PPUS can improve renal function and ameliorate the degree of renal collagen deposition and further fibrosis. Its mechanism was found to be related with decreased inflammation, suppressive epithelial-mesenchymal transition, reconstructed the balance of matrix metalloproteinases and tissue inhibitor of metalloproteinases, and pro-fibrotic and anti-fibrotic factors. The data implied that PPUS can serve as a clinical candidate on treatment of renal interstitial fibrosis.
Collapse
|
44
|
You ZP, Chen SS, Yang ZY, Li SR, Xiong F, Liu T, Fu SH. GEP100/ARF6 regulates VEGFR2 signaling to facilitate high-glucose-induced epithelial-mesenchymal transition and cell permeability in retinal pigment epithelial cells. Am J Physiol Cell Physiol 2018; 316:C782-C791. [PMID: 30540496 DOI: 10.1152/ajpcell.00312.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell permeability and epithelial-mesenchymal transition (EMT) were found to be enhanced in diabetic retinopathy, and the aim of this study was to investigate the underlying mechanism. ARPE-19 cell line or primary retinal pigment epithelial (RPE) cells were cultured under high or normal glucose conditions. Specific shRNAs were employed to knock down ADP-ribosylation factor 6 (ARF6), GEP100, or VEGF receptor 2 (VEGFR2) in ARPE-19 or primary RPE cells. Cell migration ability was measured using Transwell assay. Western blotting was used to measure indicated protein levels. RPE cells treated with high glucose showed increased cell migration, paracellular permeability, EMT, and expression of VEGF. Knockdown of VEGFR2 inhibited the high-glucose-induced effects on RPE cells via inactivation of ARF6 and MAPK pathways. Knockdown ARF6 or GEP100 led to inhibition of high-glucose-induced effects via inactivation of VEGFR2 pathway. Knockdown of ARF6, but not GEP100, decreased high-glucose-induced internalization of VEGFR2. High-glucose enhances EMT and cell permeability of RPE cells through activation of VEGFR2 and ARF6/GEP100 pathways, which form a positive feedback loop to maximize the activation of VEGF/VEGFR2 signaling.
Collapse
Affiliation(s)
- Zhi-Peng You
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Shan-Shan Chen
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Zhong-Yi Yang
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Shu-Rong Li
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Fan Xiong
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Ting Liu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| | - Shu-Hua Fu
- Department of Ophthalmology, The Second Affiliated Hospital of Nanchang University , Nanchang , People's Republic of China
| |
Collapse
|
45
|
Hua K, Li Y, Zhou H, Hu X, Chen Y, He R, Luo R, Zhou R, Bi D, Jin H. Haemophilus parasuis Infection Disrupts Adherens Junctions and Initializes EMT Dependent on Canonical Wnt/β-Catenin Signaling Pathway. Front Cell Infect Microbiol 2018; 8:324. [PMID: 30258822 PMCID: PMC6143654 DOI: 10.3389/fcimb.2018.00324] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/24/2018] [Indexed: 12/16/2022] Open
Abstract
In this study, animal experimentation verified that the canonical Wnt/β-catenin signaling pathway was activated under a reduced activity of p-β-catenin (Ser33/37/Thr41) and an increased accumulation of β-catenin in the lungs and kidneys of pigs infected with a highly virulent strain of H. parasuis. In PK-15 and NPTr cells, it was also confirmed that infection with a high-virulence strain of H. parasuis induced cytoplasmic accumulation and nuclear translocation of β-catenin. H. parasuis infection caused a sharp degradation of E-cadherin and an increase of the epithelial cell monolayer permeability, as well as a broken interaction between β-catenin and E-cadherin dependent on Wnt/β-catenin signaling pathway. Moreover, Wnt/β-catenin signaling pathway also contributed to the initiation of epithelial-mesenchymal transition (EMT) during high-virulence strain of H. parasuis infection with expression changes of epithelial/mesenchymal markers, increased migratory capabilities as well as the morphologically spindle-like switch in PK-15 and NPTr cells. Therefore, we originally speculated that H. parasuis infection activates the canonical Wnt/β-catenin signaling pathway leading to a disruption of the epithelial barrier, altering cell structure and increasing cell migration, which results in severe acute systemic infection characterized by fibrinous polyserositis during H. parasuis infection.
Collapse
Affiliation(s)
- Kexin Hua
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yangjie Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hufeng Zhou
- Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States.,Department of Immunology and Microbiology, Harvard Medical School, Boston, MA, United States
| | - Xueying Hu
- College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yushan Chen
- Brain and Cognition Research Institute, Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazard Identification and Control in Hubei Province, Wuhan University of Science and Technology, Wuhan, China
| | - Rongrong He
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dingren Bi
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Hui Jin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,College of Animal Medicine, Huazhong Agricultural University, Wuhan, China.,Hubei Provincial Key Laboratory of Preventive Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
46
|
Polydatin attenuates reactive oxygen species-induced airway remodeling by promoting Nrf2-mediated antioxidant signaling in asthma mouse model. Life Sci 2018; 218:25-30. [PMID: 30092299 DOI: 10.1016/j.lfs.2018.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/18/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and epithelial-mesenchymal transition (EMT) play a critical role in transforming growth factor (TGF)-β1-mediated fibrotic airway remodeling in asthma. Polydatin (PD) is a small natural molecule in Chinese medicine; it is isolated from Polygonum cuspidatum and has antioxidative properties. In this study, we aimed to determine whether PD was protective against ROS-induced pulmonary fibrosis in asthma. Ovalbumin (OVA) was used to induce asthma in a mouse model that was treated with or without PD. We also created nuclear factor erythroid 2-related factor 2 (Nrf2) knockdown BEAS-2B cells and investigated whether PD reversed TGF-β1-induced pulmonary epithelial cell EMT by promotion of Nrf2-mediated antioxidation. Immunofluorescence showed that ROS and TGF-β1 expression was significantly increased in lung tissue from the OVA-induced asthma model. PD treatment inhibited activity of ROS and TGF-β1. Immunohistochemistry showed that PD treatment decreased OVA-induced lung ROS, TGF-β1 expression and fibroblasts. Western blotting showed that PD treatment reversed OVA-induced NADPH oxidase (NOX)1/4 expression by promoting Nrf2-mediated heme oxygenase-1 and NADPH dehydrogenase (quinone)-1 expression. PD treatment suppressed OVA-induced EMT and lung fibroblast protein expression in lung tissue. Nrf2 downregulation suppressed the protective effect of PD by promoting TGF-β1-induced ROS and EMT and accumulation of extracellular-matrix-related protein. All these data indicate that PD has potential therapeutic effects in asthma by promoting Nrf2-mediated antioxidation.
Collapse
|
47
|
Hu HH, Chen DQ, Wang YN, Feng YL, Cao G, Vaziri ND, Zhao YY. New insights into TGF-β/Smad signaling in tissue fibrosis. Chem Biol Interact 2018; 292:76-83. [PMID: 30017632 DOI: 10.1016/j.cbi.2018.07.008] [Citation(s) in RCA: 712] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/01/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
Abstract
Transforming growth factor-β1 (TGF-β1) is considered as a crucial mediator in tissue fibrosis and causes tissue scarring largely by activating its downstream small mother against decapentaplegic (Smad) signaling. Different TGF-β signalings play different roles in fibrogenesis. TGF-β1 directly activates Smad signaling which triggers pro-fibrotic gene overexpression. Excessive studies have demonstrated that dysregulation of TGF-β1/Smad pathway was an important pathogenic mechanism in tissue fibrosis. Smad2 and Smad3 are the two major downstream regulator that promote TGF-β1-mediated tissue fibrosis, while Smad7 serves as a negative feedback regulator of TGF-β1/Smad pathway thereby protects against TGF-β1-mediated fibrosis. This review presents an overview of the molecular mechanisms of TGF-β/Smad signaling pathway in renal, hepatic, pulmonary and cardiac fibrosis, followed by an in-depth discussion of their molecular mechanisms of intervention effects both in vitro and in vivo. The role of TGF-β/Smad signaling pathway in tumor or cancer is also discussed. Additionally, the current advances also highlight targeting TGF-β/Smad signaling pathway for the prevention of tissue fibrosis. The review reveals comprehensive pathophysiological mechanisms of tissue fibrosis. Particular challenges are presented and placed within the context of future applications against tissue fibrosis.
Collapse
Affiliation(s)
- He-He Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Yan-Ni Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Ya-Long Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang, 310053, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California Irvine, Irvine, CA, 92897, USA
| | - Ying-Yong Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi, 710069, China.
| |
Collapse
|