1
|
Jurcau MC, Jurcau A, Diaconu RG, Hogea VO, Nunkoo VS. A Systematic Review of Sporadic Creutzfeldt-Jakob Disease: Pathogenesis, Diagnosis, and Therapeutic Attempts. Neurol Int 2024; 16:1039-1065. [PMID: 39311352 PMCID: PMC11417857 DOI: 10.3390/neurolint16050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/09/2024] [Accepted: 09/14/2024] [Indexed: 09/26/2024] Open
Abstract
Creutzfeldt-Jakob disease is a rare neurodegenerative and invariably fatal disease with a fulminant course once the first clinical symptoms emerge. Its incidence appears to be rising, although the increasing figures may be related to the improved diagnostic tools. Due to the highly variable clinical picture at onset, many specialty physicians should be aware of this disease and refer the patient to a neurologist for complete evaluation. The diagnostic criteria have been changed based on the considerable progress made in research on the pathogenesis and on the identification of reliable biomarkers. Moreover, accumulated knowledge on pathogenesis led to the identification of a series of possible therapeutic targets, although, given the low incidence and very rapid course, the evaluation of safety and efficacy of these therapeutic strategies is challenging.
Collapse
Affiliation(s)
- Maria Carolina Jurcau
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, University of Oradea, 410087 Oradea, Romania
| | - Razvan Gabriel Diaconu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vlad Octavian Hogea
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania; (M.C.J.)
| | - Vharoon Sharma Nunkoo
- Neurorehabilitation Ward, Clinical Emergency County Hospital Bihor, 410169 Oradea, Romania
| |
Collapse
|
2
|
La-Beck NM, Owoso J. Updates and emerging trends in the management of immune-related adverse events associated with immune checkpoint inhibitor therapy. Asia Pac J Oncol Nurs 2024; 11:100549. [PMID: 39234578 PMCID: PMC11372807 DOI: 10.1016/j.apjon.2024.100549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/26/2024] [Indexed: 09/06/2024] Open
Abstract
The rapidly expanding class of therapies targeting immune checkpoints for the treatment of various cancers now includes 8 clinically approved agents: a lymphocyte-activation gene 3 (LAG-3) inhibitor (relatlimab), a cytotoxic T lymphocyte associated protein 4 (CTLA-4) inhibitor (ipilimumab), three programmed cell death protein 1 (PD-1) inhibitors (nivolumab, pembrolizumab and cemiplimab), and three programmed cell death ligand-1 (PD-L1) inhibitors (atezolizumab, durvalumab, and avelumab). Previously, we reviewed the mechanisms of immune-related adverse events (irAEs), strategies for management of irAEs, and highlighted similarities as well as differences amongst clinical guidelines from the National Comprehensive Cancer Network (NCCN), American Society of Clinical Oncology (ASCO), Society for Immunotherapy of Cancer (SITC), and European Society for Medical Oncology (ESMO). Herein, we provide an update that includes discussion of changes to these clinical guidelines since our last review, the new LAG-3 targeted agents, emerging patterns of irAEs, and new directions for improved monitoring and treatment of irAEs that could incorporate interdisciplinary pharmacist-led teams, artificial intelligence, and pharmacogenomics.
Collapse
Affiliation(s)
- Ninh M La-Beck
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| | - Jesuwapelumi Owoso
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX, USA
| |
Collapse
|
3
|
Najjary S, de Koning W, Kros JM, Mustafa DAM. Unlocking molecular mechanisms and identifying druggable targets in matched-paired brain metastasis of breast and lung cancers. Front Immunol 2023; 14:1305644. [PMID: 38149244 PMCID: PMC10750385 DOI: 10.3389/fimmu.2023.1305644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Introduction The incidence of brain metastases in cancer patients is increasing, with lung and breast cancer being the most common sources. Despite advancements in targeted therapies, the prognosis remains poor, highlighting the importance to investigate the underlying mechanisms in brain metastases. The aim of this study was to investigate the differences in the molecular mechanisms involved in brain metastasis of breast and lung cancers. In addition, we aimed to identify cancer lineage-specific druggable targets in the brain metastasis. Methods To that aim, a cohort of 44 FFPE tissue samples, including 22 breast cancer and 22 lung adenocarcinoma (LUAD) and their matched-paired brain metastases were collected. Targeted gene expression profiles of primary tumors were compared to their matched-paired brain metastases samples using nCounter PanCancer IO 360™ Panel of NanoString technologies. Pathway analysis was performed using gene set analysis (GSA) and gene set enrichment analysis (GSEA). The validation was performed by using Immunohistochemistry (IHC) to confirm the expression of immune checkpoint inhibitors. Results Our results revealed the significant upregulation of cancer-related genes in primary tumors compared to their matched-paired brain metastases (adj. p ≤ 0.05). We found that upregulated differentially expressed genes in breast cancer brain metastasis (BM-BC) and brain metastasis from lung adenocarcinoma (BM-LUAD) were associated with the metabolic stress pathway, particularly related to the glycolysis. Additionally, we found that the upregulated genes in BM-BC and BM-LUAD played roles in immune response regulation, tumor growth, and proliferation. Importantly, we identified high expression of the immune checkpoint VTCN1 in BM-BC, and VISTA, IDO1, NT5E, and HDAC3 in BM-LUAD. Validation using immunohistochemistry further supported these findings. Conclusion In conclusion, the findings highlight the significance of using matched-paired samples to identify cancer lineage-specific therapies that may improve brain metastasis patients outcomes.
Collapse
Affiliation(s)
| | | | | | - Dana A. M. Mustafa
- Department of Pathology and Clinical Bioinformatics, The Tumor Immuno-Pathology Laboratory, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
4
|
Fares J, Davis ZB, Rechberger JS, Toll SA, Schwartz JD, Daniels DJ, Miller JS, Khatua S. Advances in NK cell therapy for brain tumors. NPJ Precis Oncol 2023; 7:17. [PMID: 36792722 PMCID: PMC9932101 DOI: 10.1038/s41698-023-00356-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Despite advances in treatment regimens that comprise surgery, chemotherapy, and radiation, outcome of many brain tumors remains dismal, more so when they recur. The proximity of brain tumors to delicate neural structures often precludes complete surgical resection. Toxicity and long-term side effects of systemic therapy remain a concern. Novel therapies are warranted. The field of NK cell-based cancer therapy has grown exponentially and currently constitutes a major area of immunotherapy innovation. This provides a new avenue for the treatment of cancerous lesions in the brain. In this review, we explore the mechanisms by which the brain tumor microenvironment suppresses NK cell mediated tumor control, and the methods being used to create NK cell products that subvert immune suppression. We discuss the pre-clinical studies evaluating NK cell-based immunotherapies that target several neuro-malignancies and highlight advances in molecular imaging of NK cells that allow monitoring of NK cell-based therapeutics. We review current and ongoing NK cell based clinical trials in neuro-oncology.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Northwestern Medicine Malnati Brain Tumor Institute, Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zachary B Davis
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Stephanie A Toll
- Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Michigan, Detroit, MI, 48201, USA
| | - Jonathan D Schwartz
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, 55905, USA
| | - Jeffrey S Miller
- Department of Medicine, Division of Hematology, Oncology and Transplantation, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55454, USA.
| | - Soumen Khatua
- Department of Pediatric Hematology/Oncology, Section of Neuro-Oncology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Tumour invasion and dissemination. Biochem Soc Trans 2022; 50:1245-1257. [PMID: 35713387 PMCID: PMC9246329 DOI: 10.1042/bst20220452] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.
Collapse
|
6
|
Worlikar T, Zhang M, Ganguly A, Hall TL, Shi J, Zhao L, Lee FT, Mendiratta-Lala M, Cho CS, Xu Z. Impact of Histotripsy on Development of Intrahepatic Metastases in a Rodent Liver Tumor Model. Cancers (Basel) 2022; 14:1612. [PMID: 35406383 PMCID: PMC8996987 DOI: 10.3390/cancers14071612] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 02/04/2023] Open
Abstract
Histotripsy has been used for tumor ablation, through controlled, non-invasive acoustic cavitation. This is the first study to evaluate the impact of partial histotripsy ablation on immune infiltration, survival outcomes, and metastasis development, in an in vivo orthotopic, immunocompetent rat HCC model (McA-RH7777). At 7−9 days post-tumor inoculation, the tumor grew to 5−10 mm, and ~50−75% tumor volume was treated by ultrasound-guided histotripsy, by delivering 1−2 cycle histotripsy pulses at 100 Hz PRF (focal peak negative pressure P− >30 MPa), using a custom 1 MHz transducer. Complete local tumor regression was observed on MRI in 9/11 histotripsy-treated rats, with no local recurrence or metastasis up to the 12-week study end point, and only a <1 mm residual scar tissue observed on histology. In comparison, 100% of untreated control animals demonstrated local tumor progression, developed intrahepatic metastases, and were euthanized at 1−3 weeks. Survival outcomes in histotripsy-treated animals were significantly improved compared to controls (p-value < 0.0001). There was evidence of potentially epithelial-to-mesenchymal transition (EMT) in control tumor and tissue healing in histotripsy-treated tumors. At 2- and 7-days post-histotripsy, increased immune infiltration of CD11b+, CD8+ and NK cells was observed, as compared to controls, which may have contributed to the eventual regression of the untargeted tumor region in histotripsy-treated tumors.
Collapse
Affiliation(s)
- Tejaswi Worlikar
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| | - Man Zhang
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (M.Z.); (M.M.-L.)
| | - Anutosh Ganguly
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (A.G.); (C.S.C.)
| | - Timothy L. Hall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Fred T. Lee
- Department of Radiology, University of Wisconsin, Madison, WI 53705, USA;
| | - Mishal Mendiratta-Lala
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; (M.Z.); (M.M.-L.)
| | - Clifford S. Cho
- Department of Surgery, University of Michigan, Ann Arbor, MI 48109, USA; (A.G.); (C.S.C.)
- Department of Surgery, Ann Arbor VA Healthcare, Ann Arbor, MI 48105, USA
| | - Zhen Xu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (T.W.); (T.L.H.)
| |
Collapse
|
7
|
Tajima N, Simorowski N, Yovanno RA, Regan MC, Michalski K, Gómez R, Lau AY, Furukawa H. Development and characterization of functional antibodies targeting NMDA receptors. Nat Commun 2022; 13:923. [PMID: 35177668 PMCID: PMC8854693 DOI: 10.1038/s41467-022-28559-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/27/2022] [Indexed: 12/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct activities has been considered an effective therapeutic strategy for neurological disorders and diseases. However, complete elimination of off-target effects of small chemical compounds has been challenging and thus, there is a need to explore alternative strategies for targeting NMDAR subtypes. Here we report identification of a functional antibody that specifically targets the GluN1-GluN2B NMDAR subtype and allosterically down-regulates ion channel activity as assessed by electrophysiology. Through biochemical analysis, x-ray crystallography, single-particle electron cryomicroscopy, and molecular dynamics simulations, we show that this inhibitory antibody recognizes the amino terminal domain of the GluN2B subunit and increases the population of the non-active conformational state. The current study demonstrates that antibodies may serve as specific reagents to regulate NMDAR functions for basic research and therapeutic objectives. Selective targeting individual subtypes of N-methyl-D-aspartate receptors (NMDARs) is a desirable therapeutic strategy for neurological disorders. Here, the authors report identification of a functional antibody that specifically targets and allosterically down-regulates ion channel activity of the GluN1—GluN2B NMDAR subtype.
Collapse
Affiliation(s)
- Nami Tajima
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Noriko Simorowski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Remy A Yovanno
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, WBSB 706, Baltimore, MD, 21205, USA
| | - Michael C Regan
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Kevin Michalski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Ricardo Gómez
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA
| | - Albert Y Lau
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, WBSB 706, Baltimore, MD, 21205, USA.
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, NY, 11724, USA.
| |
Collapse
|
8
|
Shin C, Kim SS, Jo YH. Extending traditional antibody therapies: Novel discoveries in immunotherapy and clinical applications. Mol Ther Oncolytics 2021; 22:166-179. [PMID: 34514097 PMCID: PMC8416972 DOI: 10.1016/j.omto.2021.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Immunotherapy has been well regarded as one of the safer and antigen-specific anti-cancer treatments compared to first-generation chemotherapy. Since Coley's discovery, researchers focused on engineering novel antibody-based therapies. Including artificial and modified antibodies, such as antibody fragments, antibody-drug conjugates, and synthetic mimetics, the variety of immunotherapy has been rapidly expanding in the last few decades. Genetic and chemical modifications to monoclonal antibody have been brought into academia, in vivo trials, and clinical applications. Here, we have looked around antibodies overall. First, we elucidate the antibody structure and its cytotoxicity mechanisms. Second, types of therapeutic antibodies are presented. Additionally, there is a summarized list of US Food and Drug Administration (FDA)-approved therapeutic antibodies and recent clinical trials. This review provides a comprehensive overview of both the general function of therapeutic antibodies and a few main variations in development, including recent advent with the proposed mechanism of actions, and we introduce types of therapeutic antibodies, clinical trials, and approved commercial immunotherapeutic drugs.
Collapse
Affiliation(s)
- Charles Shin
- Chadwick International, Incheon 22002, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yong Hwa Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
9
|
Briones J, Espulgar W, Koyama S, Takamatsu H, Tamiya E, Saito M. The future of microfluidics in immune checkpoint blockade. Cancer Gene Ther 2021; 28:895-910. [PMID: 33110208 DOI: 10.1038/s41417-020-00248-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 01/30/2023]
Abstract
Recent advances in microfluidic techniques have enabled researchers to study sensitivities to immune checkpoint therapy, to determine patients' response to particular antibody treatment. Utilization of this technology is helpful in antibody discovery and in the design of personalized medicine. A variety of microfluidic approaches can provide several functions in processes such as immunologic, genomic, and/or transcriptomic analysis with the aim of improving the efficacy and coverage of immunotherapy, particularly immune checkpoint blockade (ICB). To achieve this requires researchers to overcome the challenges in the current state of the technology. This review looks into the advancements in microfluidic technologies applied to researches on immune checkpoint blockade treatment and its potential shift from proof-of-principle stage to clinical application.
Collapse
Affiliation(s)
- Jonathan Briones
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Wilfred Espulgar
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shohei Koyama
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hyota Takamatsu
- Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Eiichi Tamiya
- AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.,The Institute of Scientific and Industrial Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Masato Saito
- Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan. .,AIST PhotoBIO-OIL, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
10
|
Fares J, Ulasov I, Timashev P, Lesniak MS. Emerging principles of brain immunology and immune checkpoint blockade in brain metastases. Brain 2021; 144:1046-1066. [PMID: 33893488 PMCID: PMC8105040 DOI: 10.1093/brain/awab012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Brain metastases are the most common type of brain tumours, harbouring an immune microenvironment that can in principle be targeted via immunotherapy. Elucidating some of the immunological intricacies of brain metastases has opened a therapeutic window to explore the potential of immune checkpoint inhibitors in this globally lethal disease. Multiple lines of evidence suggest that tumour cells hijack the immune regulatory mechanisms in the brain for the benefit of their own survival and progression. Nonetheless, the role of the immune checkpoint in the complex interplays between cancers cells and T cells and in conferring resistance to therapy remains under investigation. Meanwhile, early phase trials with immune checkpoint inhibitors have reported clinical benefit in patients with brain metastases from melanoma and non-small cell lung cancer. In this review, we explore the workings of the immune system in the brain, the immunology of brain metastases, and the current status of immune checkpoint inhibitors in the treatment of brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostics, Institute for Regenerative Medicine, World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Fares J, Kanojia D, Rashidi A, Ulasov I, Lesniak MS. Landscape of combination therapy trials in breast cancer brain metastasis. Int J Cancer 2020; 147:1939-1952. [PMID: 32086955 PMCID: PMC7423704 DOI: 10.1002/ijc.32937] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/30/2022]
Abstract
Combination therapy has become a cornerstone in cancer treatment to potentiate therapeutic effectiveness and overcome drug resistance and metastasis. In this work, we explore combination trials in breast cancer brain metastasis (BCBM), highlighting deficiencies in trial design and underlining promising combination strategies. On October 31, 2019, we examined ClinicalTrials.gov for interventional and therapeutic clinical trials involving combination therapy for BCBM, without limiting for date or location. Information on trial characteristics was collected. Combination therapies used in trials were analyzed and explored in line with evidence from the medical literature. Sixty-five combination therapy trials were selected (n = 65), constituting less than 0.7% of all breast cancer trials. Most trials (62%) combined ≥2 chemotherapeutic agents. Chemotherapy with radiation was main-stay in 23% of trials. Trastuzumab was mostly used in combination (31%), followed by lapatinib (20%) and capecitabine (15%). Common strategies involved combining tyrosine kinase inhibitors with thymidylate synthase inhibitors (6 trials), dual HER-dimerization inhibitors (3 trials), microtubule inhibitors and tyrosine kinase inhibitors (3 trials), and HER-dimerization inhibitors and tyrosine kinase inhibitors (3 trials). The combination of tucatinib and capecitabine yielded the highest objective response rate (83%) in early phase trials. The triple combination of trastuzumab, tucatinib and capecitabine lowered the risk of disease progression or death by 52% in patients with HER2-positive BCBM. Combining therapeutic agents based on biological mechanisms is necessary to increase the effectiveness of available anti-cancer regimens. Significant survival benefit has yet to be achieved in future combination therapy trials. Enhancing drug delivery through blood-brain barrier permeable agents may potentiate the overall therapeutic outcomes.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- High Impact Cancer Research program, Harvard Medical School, Boston, MA, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Maciej S. Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
12
|
Fares J, Kanojia D, Rashidi A, Ulasov I, Lesniak MS. Genes that Mediate Metastasis across the Blood-Brain Barrier. Trends Cancer 2020; 6:660-676. [PMID: 32417182 DOI: 10.1016/j.trecan.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Brain metastasis is an important cause of mortality in patients with cancer and represents the majority of all intracranial tumors. A key step during the metastatic journey of the cancer cell to the brain is the invasion through the blood-brain barrier (BBB). Nevertheless, the molecular mechanisms that govern this process remain unknown. The BBB has been blamed for limiting the access of therapeutic drugs to the brain, which provides a safe haven for cancer cells in the brain and confers poor prognosis for the patient. Here, we explore the genes that control the transmigration of metastatic cancer cells across the BBB, offering new targets for the development of gene and cell therapies against brain metastases.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Ilya Ulasov
- Group of Experimental Biotherapy and Diagnostic, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
13
|
Fares J, Fares MY, Khachfe HH, Salhab HA, Fares Y. Molecular principles of metastasis: a hallmark of cancer revisited. Signal Transduct Target Ther 2020; 5:28. [PMID: 32296047 PMCID: PMC7067809 DOI: 10.1038/s41392-020-0134-x] [Citation(s) in RCA: 1086] [Impact Index Per Article: 271.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/11/2020] [Indexed: 02/07/2023] Open
Abstract
Metastasis is the hallmark of cancer that is responsible for the greatest number of cancer-related deaths. Yet, it remains poorly understood. The continuous evolution of cancer biology research and the emergence of new paradigms in the study of metastasis have revealed some of the molecular underpinnings of this dissemination process. The invading tumor cell, on its way to the target site, interacts with other proteins and cells. Recognition of these interactions improved the understanding of some of the biological principles of the metastatic cell that govern its mobility and plasticity. Communication with the tumor microenvironment allows invading cancer cells to overcome stromal challenges, settle, and colonize. These characteristics of cancer cells are driven by genetic and epigenetic modifications within the tumor cell itself and its microenvironment. Establishing the biological mechanisms of the metastatic process is crucial in finding open therapeutic windows for successful interventions. In this review, the authors explore the recent advancements in the field of metastasis and highlight the latest insights that contribute to shaping this hallmark of cancer.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA.
- High-Impact Cancer Research Program, Harvard Medical School, Boston, MA, 02115, USA.
| | - Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| |
Collapse
|
14
|
Fares MY, Salhab HA, Khachfe HH, Khachfe HM. Breast Cancer Epidemiology among Lebanese Women: An 11-Year Analysis. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E463. [PMID: 31405167 PMCID: PMC6723716 DOI: 10.3390/medicina55080463] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/20/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023]
Abstract
Background and Objectives: Breast cancer is the most prevalent cancer in women worldwide. Lebanon is a developing country in the Middle East with a prominent breast cancer incidence. The aim of our study was to explore the incidence rates of breast cancer in Lebanon from 2005 to 2015, and compare them to the rates of other countries. Materials and Methods: Breast cancer data for the years 2005-2015 was collected from the National Cancer Registry of Lebanon and stratified by gender and age group. Age-specific and age-standardized incidence rates were calculated and analyzed using joinpoint regression. Age-standardized incidence rates in the world population (ASR(w)) were obtained for other countries, from two online databases. Results: Breast cancer was found to be the most prevalent cancer in Lebanon, accounting for 20% of all cancer cases. The average ASR(w) was 96.5 per 100,000. Over the studied period, breast cancer ASR(w) in Lebanon showed a significantly increasing trend with an annual percent change (APC) of +4.6. Moreover, the APC of breast cancer age-specific rates significantly increased for the age groups 45-49 (p = 0.013), 50-54 (p < 0.001), 55-59 (p = 0.001), 60-64 (p = 0.002), 65-69 (p = 0.003), 70-74 (p < 0.001), and 75+ years (p < 0.001). Lebanon had the highest breast cancer ASR(w), when compared to other regional countries, and trailed only behind Denmark, when compared to selected countries from different parts of the world. Conclusions: Breast cancer incidence in Lebanon is among the highest in the world. Future studies should focus on exploring the genetic profile of the Lebanese population in an aim to extrapolate proper prevention guidelines.
Collapse
Affiliation(s)
- Mohamad Y Fares
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon.
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut 1102, Lebanon.
| | - Hamza A Salhab
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut 1102, Lebanon
| | - Hussein H Khachfe
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut 1102, Lebanon
| | - Hassan M Khachfe
- School of Arts and Sciences, and the Lebanese Institute for Biomedical Research and Application (LIBRA), Lebanese International University (LIU), Beirut 1105, Lebanon
| |
Collapse
|
15
|
Fares J, Kanojia D, Rashidi A, Ahmed AU, Balyasnikova IV, Lesniak MS. Diagnostic Clinical Trials in Breast Cancer Brain Metastases: Barriers and Innovations. Clin Breast Cancer 2019; 19:383-391. [PMID: 31262686 DOI: 10.1016/j.clbc.2019.05.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 05/08/2019] [Accepted: 05/27/2019] [Indexed: 01/05/2023]
Abstract
Optimal treatment of breast cancer brain metastases (BCBM) is often hampered by limitations in diagnostic abilities. Developing innovative tools for BCBM diagnosis is vital for early detection and effective treatment. In this study we explored the advances in trial for the diagnosis of BCBM, with review of the literature. On May 8, 2019, we searched ClinicalTrials.gov for interventional and diagnostic clinical trials involving BCBM, without limiting for date or location. Information on trial characteristics, experimental interventions, results, and publications were collected and analyzed. In addition, a systematic review of the literature was conducted to explore published studies related to BCBM diagnosis. Only 9 diagnostic trials explored BCBM. Of these, 1 trial was withdrawn because of low accrual numbers. Three trials were completed; however, none had published results. Modalities in trial for BCBM diagnosis entailed magnetic resonance imaging (MRI), computed tomography (CT), positron emission tomography (PET), PET-CT, nanobodies, and circulating tumor cells (CTCs), along with a collection of novel tracers and imaging biomarkers. MRI continues to be the diagnostic modality of choice, whereas CT is best suited for acute settings. Advances in PET and PET-CT allow the collection of metabolic and functional information related to BCBM. CTC characterization can help reflect on the molecular foundations of BCBM, whereas cell-free DNA offers new genetic material for further exploration in trials. The integration of machine learning in BCBM diagnosis seems inevitable as we continue to aim for rapid and accurate detection and better patient outcomes.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL.
| |
Collapse
|
16
|
Fares J, Fares MY, Fares Y. Natural killer cells in the brain tumor microenvironment: Defining a new era in neuro-oncology. Surg Neurol Int 2019; 10:43. [PMID: 31528381 PMCID: PMC6743677 DOI: 10.25259/sni-97-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL - 60611, United States
| | - Mohamad Y. Fares
- Faculty of Medicine, American University of Beirut, Riad El-Solh
| | - Youssef Fares
- Department of Neurosurgery, Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Beyrouth - 1102 2801, Lebanon
| |
Collapse
|
17
|
Fares J, Kanojia D, Cordero A, Rashidi A, Miska J, Schwartz CW, Savchuk S, Ahmed AU, Balyasnikova IV, Cristofanilli M, Gradishar WJ, Lesniak MS. Current state of clinical trials in breast cancer brain metastases. Neurooncol Pract 2019; 6:392-401. [PMID: 31555454 DOI: 10.1093/nop/npz003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 12/05/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer brain metastases (BCBM) are the final frontier in neuro-oncology for which more efficacious therapies are required. In this work, we explore clinical trials in BCBM, and determine the shortcomings in the development of new BCBM therapies to shed light on potential areas for enhancement. Methods On July 9, 2018, we searched ClinicalTrials.gov for all interventional and therapeutic clinical trials involving BCBM, without limiting for date or location. Information on trial characteristics, including phase, status, start and end dates, study design, primary endpoints, selection criteria, sample size, experimental interventions, results, and publications were collected and analyzed. Results Fifty-three trials fulfilled the selection criteria. Median trial duration across phases ranged between 3 and 6 years. More than half of the trials were conducted in the United States. Although 94% of the trials were in early phases (I-II), 20% of patients were in phase III trials. Two phase III trials were anteceded by phase II trials that were non-randomized; one reported positive results. Approximately one-third of the trials were completed, whereas 23% of trials were terminated early; mostly due to inadequate enrollment. Only 13% of all trials and 22% of completed trials had published results directly linked to their primary outcomes. Conclusions The low number of trials and accrual numbers, the lack of diversity, and the scarcity of published results represent the main troubles in clinical BCBM research. Optimization of BCBM trials is necessary to achieve effective therapies.
Collapse
Affiliation(s)
- Jawad Fares
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Alex Cordero
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aida Rashidi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Charles W Schwartz
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Solomiia Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Irina V Balyasnikova
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Massimo Cristofanilli
- Lynn Sage Breast Cancer Program, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - William J Gradishar
- Lynn Sage Breast Cancer Program, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|