1
|
Gabernet G, Maciuch J, Gygi JP, Moore JF, Hoch A, Syphurs C, Chu T, Jayavelu ND, Corry DB, Kheradmand F, Baden LR, Sekaly RP, McComsey GA, Haddad EK, Cairns CB, Rouphael N, Fernandez-Sesma A, Simon V, Metcalf JP, Agudelo Higuita NI, Hough CL, Messer WB, Davis MM, Nadeau KC, Pulendran B, Kraft M, Bime C, Reed EF, Schaenman J, Erle DJ, Calfee CS, Atkinson MA, Brackenridge SC, Melamed E, Shaw AC, Hafler DA, Ozonoff A, Bosinger SE, Eckalbar W, Maecker HT, Kim-Schulze S, Steen H, Krammer F, Westendorf K, Network I, Peters B, Fourati S, Altman MC, Levy O, Smolen KK, Montgomery RR, Diray-Arce J, Kleinstein SH, Guan L, Ehrlich LIR. Identification of a multi-omics factor predictive of long COVID in the IMPACC study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637926. [PMID: 39990442 PMCID: PMC11844572 DOI: 10.1101/2025.02.12.637926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Following SARS-CoV-2 infection, ∼10-35% of COVID-19 patients experience long COVID (LC), in which often debilitating symptoms persist for at least three months. Elucidating the biologic underpinnings of LC could identify therapeutic opportunities. We utilized machine learning methods on biologic analytes and patient reported outcome surveys provided over 12 months after hospital discharge from >500 hospitalized COVID-19 patients in the IMPACC cohort to identify a multi-omics "recovery factor". IMPACC participants who experienced LC had lower recovery factor scores compared to participants without LC. Biologic characterization revealed increased levels of plasma proteins associated with inflammation, elevated transcriptional signatures of heme metabolism, and decreased androgenic steroids in LC patients. The recovery factor was also associated with altered circulating immune cell frequencies. Notably, recovery factor scores were predictive of LC occurrence in patients as early as hospital admission, irrespective of acute disease severity. Thus, the recovery factor identifies patients at risk of LC early after SARS-CoV-2 infection and reveals LC biomarkers and potential treatment targets.
Collapse
|
2
|
Xia H, Duan J, Li M, Chen N, Zhong W, Zhou Y, Chen R, Yuan W. CD137 Signaling Mediates Pulmonary Artery Endothelial Cell Proliferation Under Hypoxia By Regulating Mitochondrial Dynamics. J Cardiovasc Transl Res 2024; 17:859-869. [PMID: 38347336 DOI: 10.1007/s12265-024-10493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 09/04/2024]
Abstract
Altered mitochondrial dynamics affect pulmonary artery endothelial cells (PAECs) proliferation, contributing to the development of pulmonary hypertension. CD137 signaling promotes mitochondrial fission. We hypothesize CD137 signaling is involved in the excessive proliferation of PAECs. The levels of CD137 protein were increased in the lung tissue of hypoxic mice and hypoxic-stimulated PAECs. Activation of CD137 signal in hypoxic-PAECs upregulated the levels of hypoxia-inducible factor-2α (HIF-2α), glucose transporters type 4, the lactate transporter monocarboxylate transporter 4, key glycolysis rate-limiting enzymes and promoted mitochondrial division; moreover, increased glucose uptake, lactic acid and ATP production and proliferative cells were observed in these PAECs. Whereas, knockdown HIF-2α reversed CD137 signal-mediated effects in PAECs mentioned above. Compared with wild-type mice, the proliferation of PAECs and the percentage of vascular lateral wall thickness decreased in CD137 knockout mice. Together, CD137 signal participated in pulmonary vascular remodeling through the regulation of mitochondrial dynamics dependent on HIF-2α in PAECs.
Collapse
Affiliation(s)
- Hao Xia
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junying Duan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Nan Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhong
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ye Zhou
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Rui Chen
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Wei Yuan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Ruedas-Torres I, Sánchez-Carvajal JM, Carrasco L, Pallarés FJ, Larenas-Muñoz F, Rodríguez-Gómez IM, Gómez-Laguna J. PRRSV-1 induced lung lesion is associated with an imbalance between costimulatory and coinhibitory immune checkpoints. Front Microbiol 2023; 13:1007523. [PMID: 36713151 PMCID: PMC9878400 DOI: 10.3389/fmicb.2022.1007523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) induces a dysregulation on the innate and adaptive immune responses. T-cell activation requires a proper interaction and precise balance between costimulatory and coinhibitory molecules, commonly known as immune checkpoints. This study aims to evaluate the expression of immune checkpoints in lung and tracheobronchial lymph node from piglets infected with two PRRSV-1 strains of different virulence during the early stage of infection. Seventy 4-week-old piglets were grouped into three experimental groups: (i) control, (ii) 3249-infected group (low virulent strain), and (iii) Lena-infected group (virulent strain) and were euthanized at 1, 3, 6, 8, and 13 days post-infection (dpi). Lung and tracheobronchial lymph node were collected to evaluate histopathological findings, PRRSV viral load and mRNA expression of costimulatory (CD28, CD226, TNFRSF9, SELL, ICOS, and CD40) and coinhibitory (CTLA4, TIGIT, PD1/PDL1, TIM3, LAG3, and IDO1) molecules through RT-qPCR. Our findings highlight a mild increase of costimulatory molecules together with an earlier and stronger up-regulation of coinhibitory molecules in both organs from PRRSV-1-infected animals, especially in the lung from virulent Lena-infected animals. The simultaneous expression of coinhibitory immune checkpoints could work in synergy to control and limit the inflammation-induced tissue damage. Further studies should be addressed to determine the role of these molecules in later stages of PRRSV infection.
Collapse
|
4
|
Rojas M, Heuer LS, Zhang W, Chen YG, Ridgway WM. The long and winding road: From mouse linkage studies to a novel human therapeutic pathway in type 1 diabetes. Front Immunol 2022; 13:918837. [PMID: 35935980 PMCID: PMC9353112 DOI: 10.3389/fimmu.2022.918837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmunity involves a loss of immune tolerance to self-proteins due to a combination of genetic susceptibility and environmental provocation, which generates autoreactive T and B cells. Genetic susceptibility affects lymphocyte autoreactivity at the level of central tolerance (e.g., defective, or incomplete MHC-mediated negative selection of self-reactive T cells) and peripheral tolerance (e.g., failure of mechanisms to control circulating self-reactive T cells). T regulatory cell (Treg) mediated suppression is essential for controlling peripheral autoreactive T cells. Understanding the genetic control of Treg development and function and Treg interaction with T effector and other immune cells is thus a key goal of autoimmunity research. Herein, we will review immunogenetic control of tolerance in one of the classic models of autoimmunity, the non-obese diabetic (NOD) mouse model of autoimmune Type 1 diabetes (T1D). We review the long (and still evolving) elucidation of how one susceptibility gene, Cd137, (identified originally via linkage studies) affects both the immune response and its regulation in a highly complex fashion. The CD137 (present in both membrane and soluble forms) and the CD137 ligand (CD137L) both signal into a variety of immune cells (bi-directional signaling). The overall outcome of these multitudinous effects (either tolerance or autoimmunity) depends upon the balance between the regulatory signals (predominantly mediated by soluble CD137 via the CD137L pathway) and the effector signals (mediated by both membrane-bound CD137 and CD137L). This immune balance/homeostasis can be decisively affected by genetic (susceptibility vs. resistant alleles) and environmental factors (stimulation of soluble CD137 production). The discovery of the homeostatic immune effect of soluble CD137 on the CD137-CD137L system makes it a promising candidate for immunotherapy to restore tolerance in autoimmune diseases.
Collapse
Affiliation(s)
- Manuel Rojas
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- School of Medicine and Health Sciences, Doctoral Program in Biological and Biomedical Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Weici Zhang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Yi-Guang Chen
- The Max McGee Research Center for Juvenile Diabetes, Children’s Research Institute of Children’s Wisconsin, Milwaukee, WI, United States
- Division of Endocrinology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William M. Ridgway
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
- *Correspondence: William M. Ridgway,
| |
Collapse
|
5
|
The Micro-Immunotherapy Medicine 2LEID Exhibits an Immunostimulant Effect by Boosting Both Innate and Adaptive Immune Responses. Int J Mol Sci 2021; 23:ijms23010110. [PMID: 35008536 PMCID: PMC8744989 DOI: 10.3390/ijms23010110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
This study aimed at evaluating the effects of the micro-immunotherapy medicine (MIM) 2LEID, both in vitro and in vivo, on several components of the innate and adaptive immune system. MIM increased the phagocytic activity of macrophages, and it augmented the expression of the activation markers CD69 and HLA-DR in NK cells and monocytes/macrophages, respectively. The effect of MIM was evaluated in a model of respiratory infection induced by influenza A virus administration to immunocompetent mice in which it was able to improve neutrophil recruitment within the lungs (p = 0.1051) and slightly increased the circulating levels of IgM (p = 0.1655). Furthermore, MIM stimulated the proliferation of CD3-primed T lymphocytes and decreased the secretion of the immunosuppressive cytokine IL-10 in CD14+-derived macrophages. Human umbilical vein endothelial cells were finally used to explore the effect of MIM on endothelial cells, in which it slightly increased the expression of immune-related markers such as HLA-I, CD137L, GITRL, PD-L1 and ICAM-1. In conclusion, the present study suggests that MIM might be a promising nonspecific (without antigen specificity) immunostimulant drug in preventing and early treating respiratory infections, but not only exclusively, as it would gently support several facets of the immune system and host defenses.
Collapse
|
6
|
Jin J, Jung IH, Moon SH, Jeon S, Jeong SJ, Sonn SK, Seo S, Lee MN, Song EJ, Kweon HY, Kim S, Kim TK, Kim J, Cho HR, Choi JH, Kwon B, Oh GT. CD137 Signaling Regulates Acute Colitis via RALDH2-Expressing CD11b -CD103 + DCs. Cell Rep 2021; 30:4124-4136.e5. [PMID: 32209473 DOI: 10.1016/j.celrep.2020.02.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/21/2019] [Accepted: 02/27/2020] [Indexed: 12/23/2022] Open
Abstract
CD137, a potent costimulatory receptor for CD8+ T cells, is expressed in various non-T cells, but little is known about its regulatory functions in these cells. In this study, we show that CD137 signaling, specifically in intestinal CD11b-CD103+ dendritic cells (DCs), restricts acute colitis progression. Mechanistically, CD137 engagement activates TAK1 and subsequently stimulates the AMPK-PGC-1α axis to enhance expression of the Aldh1a2 gene encoding the retinoic acid (RA) metabolizing enzyme RALDH2. RA can act on CD11b+CD103- DCs and induce SOCS3 expression, which, in turn, suppresses p38MAPK activation and interleukin-23 (IL-23) production. Administration of RA in DC-specific CD137-/- mice represses IL-23-producing CD11b+CD103- DCs and TH17 cells, indicating that RA is a major inhibitory effector molecule against intestinal CD11b+CD103- DCs. Additionally, the therapeutic effect of the anti-CD137 antibody is abrogated in DC-specific CD137-/- mice. Taken together, our results define a mechanism of paracrine immunoregulation operating between adjacent DC subsets in the intestine.
Collapse
Affiliation(s)
- Jing Jin
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - In-Hyuk Jung
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shin Hye Moon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Sejin Jeon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Se-Jin Jeong
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seong-Keun Sonn
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Seungwoon Seo
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Mi-Ni Lee
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Eun Ju Song
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Hyae Yon Kweon
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Sinai Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Tae Kyeong Kim
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea
| | - Juyang Kim
- School of Biological Sciences and Biomedical Research Center, University of Ulsan, Ulsan 44610, South Korea
| | - Hong Rae Cho
- Department of Surgery and Biomedical Research Center, Ulsan University Hospital, College of Medicine, University of Ulsan, Ulsan 44610, South Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | - Byungsuk Kwon
- School of Biological Sciences and Biomedical Research Center, University of Ulsan, Ulsan 44610, South Korea.
| | - Goo Taeg Oh
- Immune and Vascular Cell Network Research Center, National Creative Initiatives, Department of Life Sciences, Ewha Womans University, Seoul 120-750, South Korea.
| |
Collapse
|
7
|
Geng T, Yan Y, Xu L, Cao M, Xu Y, Pu J, Yan JC. CD137 signaling induces macrophage M2 polarization in atherosclerosis through STAT6/PPARδ pathway. Cell Signal 2020; 72:109628. [PMID: 32247042 DOI: 10.1016/j.cellsig.2020.109628] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/25/2020] [Accepted: 03/31/2020] [Indexed: 11/28/2022]
Abstract
CD137 signaling plays an important role in the formation and development of atherosclerotic plaques. The purpose of the present study was to investigate the effects of CD137 signaling on macrophage polarization during atherosclerosis and to explore the underlying mechanisms. The effect of CD137 signaling on macrophage phenotype in atherosclerotic plaques was determined by intraperitoneal injection of agonist-CD137 recombinant protein in apolipoprotein E-deficient (ApoE-/-) mice, an established in vivo model of atherosclerosis. Murine peritoneal macrophages and RAW 264.7 cells were treated with AS1517499 and siPPARδ (peroxisome proliferator-activated receptor δ) to study the role of STAT6 (signal transducers and activators of transcription 6)/PPARδ signaling in CD137-induced M2 macrophage polarization in vitro. Results from both in vivo and in vitro experiments showed that CD137 signaling can transform macrophages into the M2 phenotype during the process of atherosclerotic plaque formation and regulate the angiogenic features of M2 macrophages. Furthermore, activation of the CD137 signaling pathway induces phosphorylation of STAT6 and enhances the expression of PPARδ. We further found that macrophage M2 polarization is reduced when the STAT6/PPARδ pathway is inhibited. Together, these data show a role for the STAT6/PPARδ signaling pathway in the CD137 signaling-induced M2 macrophage polarization pathway.
Collapse
Affiliation(s)
- Tianxin Geng
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Yang Yan
- Department of Cardiology, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Mengfei Cao
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Yu Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200135, China
| | - Jin Chuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu Province 212000, China.
| |
Collapse
|
8
|
Abrahamse H, Houreld NN. Genetic Aberrations Associated with Photodynamic Therapy in Colorectal Cancer Cells. Int J Mol Sci 2019; 20:ijms20133254. [PMID: 31269724 PMCID: PMC6651415 DOI: 10.3390/ijms20133254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/22/2022] Open
Abstract
Photodynamic therapy (PDT) is a cancer treatment modality that utilizes three components: light (λ 650-750 nm), a photosensitizer (PS) and molecular oxygen, which upon activation renders the modality effective. Colorectal cancer has one of the highest incident rates as well as a high mortality rate worldwide. In this study, a zinc (Zn) metal-based phthalocyanine (ZnPcSmix) PS was used to determine its efficacy for the treatment of colon adenocarcinoma cells (DLD-1 and Caco-2). Photoactivation of the PS was achieved by laser irradiation at a wavelength of 680 nm. Dose responses were performed to establish optimal PS concentration and irradiation fluence. A working combination of 20 µM ZnPcSmix and 5 J/cm2 was used. Biochemical responses were determined after 1 or 24 h incubation post-treatment. Since ZnPcSmix is localized in lysosomes and mitochondria, mitochondrial destabilization analysis was performed monitoring mitochondrial membrane potential (MMP). Cytosolic acidification was determined measuring hydrogen peroxide (H2O2) levels in the cytoplasm. Having established apoptotic cell death induction, an apoptosis PCR array was performed to establish the apoptotic mechanism. In DLD-1 cells, expression of genes included 3 up-regulated and 20 down-regulated genes while in Caco-2 cells, there were 16 up-regulated and 22 down-regulated genes. In both cell lines, in up-regulated genes, there was a combination of pro- and anti-apoptotic genes that were significantly expressed. Gene expression results showed that more tumorigenic cells (DLD-1) went through apoptosis; however, they exhibit increased risk of resistance and recurrence, while less tumorigenic Caco-2 cells responded better to PDT, thus being suggestive of a better prognosis post-PDT treatment. In addition, the possible apoptotic mechanisms of cell death were deduced based on the genetic expression profiling of regulatory apoptotic inducing factors.
Collapse
Affiliation(s)
- Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa.
| | - Nicolette Nadene Houreld
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
9
|
Ryan JM, Wasser JS, Adler AJ, Vella AT. Enhancing the safety of antibody-based immunomodulatory cancer therapy without compromising therapeutic benefit: Can we have our cake and eat it too? Expert Opin Biol Ther 2016; 16:655-74. [PMID: 26855028 DOI: 10.1517/14712598.2016.1152256] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Monoclonal antibodies (mAbs) targeting checkpoint inhibitors have demonstrated clinical benefit in treating patients with cancer and have paved the way for additional immune-modulating mAbs such as those targeting costimulatory receptors. The full clinical utility of these agents, however, is hampered by immune-related adverse events (irAEs) that can occur during therapy. AREAS COVERED We first provide a general overview of tumor immunity, followed by a review of the two major classes of immunomodulatory mAbs being developed as cancer therapeutics: checkpoint inhibitors and costimulatory receptor agonists. We then discuss therapy-associated adverse events. Finally, we describe in detail the mechanisms driving their therapeutic activity, with an emphasis on interactions between antibody fragment crystallizable (Fc) domains and Fc receptors (FcR). EXPERT OPINION Given that Fc-FcR interactions appear critical in facilitating the ability of immunomodulatory mAbs to elicit both therapeutically useful as well as adverse effects, the engineering of mAbs that can effectively engage their targets while limiting interaction with FcRs might represent a promising future avenue for developing the next generation of immune-enhancing tumoricidal agents with increased safety and retention of efficacy.
Collapse
Affiliation(s)
- Joseph M Ryan
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | | | - Adam J Adler
- a Department of Immunology , UConn Health , Farmington , CT , USA
| | - Anthony T Vella
- a Department of Immunology , UConn Health , Farmington , CT , USA
| |
Collapse
|
10
|
Mittal P, St Rose MC, Wang X, Ryan JM, Wasser JS, Vella AT, Adler AJ. Tumor-Unrelated CD4 T Cell Help Augments CD134 plus CD137 Dual Costimulation Tumor Therapy. THE JOURNAL OF IMMUNOLOGY 2015; 195:5816-26. [PMID: 26561553 DOI: 10.4049/jimmunol.1502032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 10/15/2015] [Indexed: 11/19/2022]
Abstract
The ability of immune-based cancer therapies to elicit beneficial CD8(+) CTLs is limited by tolerance pathways that inactivate tumor-specific CD4 Th cells. A strategy to bypass this problem is to engage tumor-unrelated CD4 Th cells. Thus, CD4 T cells, regardless of their specificity per se, can boost CD8(+) CTL priming as long as the cognate epitopes are linked via presentation on the same dendritic cell. In this study, we assessed the therapeutic impact of engaging tumor-unrelated CD4 T cells during dual costimulation with CD134 plus CD137 that provide help via the above-mentioned classical linked pathway, as well as provide nonlinked help that facilitates CTL function in T cells not directly responding to cognate Ag. We found that engagement of tumor-unrelated CD4 Th cells dramatically boosted the ability of dual costimulation to control the growth of established B16 melanomas. Surprisingly, this effect depended upon a CD134-dependent component that was extrinsic to the tumor-unrelated CD4 T cells, suggesting that the dual costimulated helper cells are themselves helped by a CD134(+) cell(s). Nevertheless, the delivery of therapeutic help tracked with an increased frequency of tumor-infiltrating granzyme B(+) effector CD8 T cells and a reciprocal decrease in Foxp3(+)CD4(+) cell frequency. Notably, the tumor-unrelated CD4 Th cells also infiltrated the tumors, and their deletion several days following initial T cell priming negated their therapeutic impact. Taken together, dual costimulation programs tumor-unrelated CD4 T cells to deliver therapeutic help during both the priming and effector stages of the antitumor response.
Collapse
Affiliation(s)
- Payal Mittal
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030; and
| | - Marie-Clare St Rose
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030; and
| | - Xi Wang
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030; and
| | - Joseph M Ryan
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030; and
| | - Jeffrey S Wasser
- The Carole and Ray Neag Comprehensive Cancer Center, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030; and
| | - Adam J Adler
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030; and
| |
Collapse
|
11
|
Kwon B. Is CD137 Ligand (CD137L) Signaling a Fine Tuner of Immune Responses? Immune Netw 2015; 15:121-4. [PMID: 26140043 PMCID: PMC4486774 DOI: 10.4110/in.2015.15.3.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 05/15/2015] [Accepted: 06/04/2015] [Indexed: 12/01/2022] Open
Abstract
Now, it has been being accepted that reverse signaling through CD137 ligand (CD137L) plays an important role in vivo during hematopoiesis and in immune regulation. However, due to technical difficulty in dissecting both directional signaling events simultaneously in vivo, most biological activities caused by CD137-CD137L interactions are considered as results from signaling events of the CD137 receptor. To make the story more complex, CD137(-/-) and CD137L(-/-) mice have increased or decreased immune responses in a context-dependent manner. In this Mini review, I will try to provide a plausible explanation for how CD137L signaling is controlled during immune responses.
Collapse
Affiliation(s)
- Byungsuk Kwon
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| |
Collapse
|
12
|
Park SJ, Lee JS, Kwon B, Cho HR. Integration of the Innate and Adaptive Immunity by CD137-CD137L Bidirectional Signals: Implications in Allograft Rejection. KOREAN JOURNAL OF TRANSPLANTATION 2014. [DOI: 10.4285/jkstn.2014.28.3.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Sang June Park
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Jong Soo Lee
- Department of Internal Medicine, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Byungsuk Kwon
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| | - Hong Rae Cho
- Department of Surgery, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
- Biomedical Research Center, Ulsan University Hospital, University of Ulsan College of Medicine, School of Biological Sciences4, University of Ulsan, Ulsan, Korea
| |
Collapse
|
13
|
Jung I, Choi J, Jin J, Jeong S, Jeon S, Lim C, Lee M, Yoo J, Sonn S, Kim YH, Choi BK, Kwon BS, Seoh J, Lee CW, Kim D, Oh GT. CD137‐inducing factors from T cells and macrophages accelerate the destabilization of atherosclerotic plaques in hyperlipidemic mice. FASEB J 2014; 28:4779-91. [DOI: 10.1096/fj.14-253732] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- In‐Hyuk Jung
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
- Department of Veterinary PathologyCollege of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Jae‐Hoon Choi
- Department of Life ScienceCollege of Natural SciencesHanyang UniversitySeoulKorea
| | - Jing Jin
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Se‐Jin Jeong
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Sejin Jeon
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Chaeji Lim
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Mi‐Ran Lee
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Ji‐Young Yoo
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Seong‐Keun Sonn
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Young Ho Kim
- Immune Cell Production UnitProgram for Immunotherapeutic ResearchNational Cancer CenterGoyangKorea
| | - Beom Kyu Choi
- Cancer Immunology BranchDivision of Cancer BiologyNational Cancer CenterGoyangKorea
| | - Byoung S. Kwon
- Cancer Immunology BranchDivision of Cancer BiologyNational Cancer CenterGoyangKorea
| | - Ju‐Young Seoh
- Department of MicrobiologyGraduate School of MedicineEwha Womans UniversitySeoulKorea
| | - Cheol Whan Lee
- Department of MedicineAsan Medical CenterUniversity of UlsanSeoulKorea
| | - Dae‐Yong Kim
- Department of Veterinary PathologyCollege of Veterinary MedicineSeoul National UniversitySeoulKorea
| | - Goo Taeg Oh
- Department of Life SciencesGraduate School of MedicineEwha Womans UniversitySeoulKorea
- GT5 ProgramGraduate School of MedicineEwha Womans UniversitySeoulKorea
| |
Collapse
|
14
|
Juhász K, Buzás K, Duda E. Importance of reverse signaling of the TNF superfamily in immune regulation. Expert Rev Clin Immunol 2014; 9:335-48. [DOI: 10.1586/eci.13.14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Substrate-dependent gene regulation of self-assembled human MSC spheroids on chitosan membranes. BMC Genomics 2014; 15:10. [PMID: 24387160 PMCID: PMC4046657 DOI: 10.1186/1471-2164-15-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 12/21/2013] [Indexed: 01/09/2023] Open
Abstract
Background Three-dimensional (3D) multicellular spheroids of mesenchymal stem cells (MSCs) are generally regarded to have beneficial properties over MSCs in monolayer. Recent literatures have documented that MSCs can self-assemble into 3D spheroids with a greater capacity for differentiation into various cell types when grown on chitosan (CS), a biopolymer. The genomic modulation occurring in these MSC spheroids is thus of essential importance for understanding their uniqueness and therapeutic potentials. In this study, 3D spheroids self-assembled from human umbilical cord MSCs grown on CS membranes were analyzed by mRNA as well as microRNA microarrays, which helped identify the critical signaling events that may alter the cellular functions during the spheroid forming process. Results Genes screened from mRNA and microRNA cross-correlation analyses were further confirmed with the quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis. Results revealed the regulation of a significant number of calcium-associated genes, which suggested the crucial role of calcium signaling in CS-derived MSC spheroids. In addition, many genes associated with the multilineage differentiation capacities and those associated with the antiinflammatory and antitumor properties of MSCs were upregulated. The genetic modulation was significantly more remarkable and endured longer for MSC spheroids derived on CS substrates compared to those derived on a non-adherent (polyvinyl alcohol) substrate. Conclusions Based on the study, the culture substrates used to prepare 3D MSC spheroids may predefine their properties through cell-substrate interaction. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-10) contains supplementary material, which is available to authorized users.
Collapse
|
16
|
Martínez Gómez JM, Koh VHQ, Yan B, Lin W, Ang MLT, Rahim SZZ, Pethe K, Schwarz H, Alonso S. Role of the CD137 ligand (CD137L) signaling pathway during Mycobacterium tuberculosis infection. Immunobiology 2013; 219:78-86. [PMID: 24091276 DOI: 10.1016/j.imbio.2013.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/06/2013] [Accepted: 08/12/2013] [Indexed: 02/01/2023]
Abstract
The role of the CD137-CD137 ligand (CD137L) signaling pathway in T cell co-stimulation has been well established. Dysregulated CD137 or CD137L stimulation can lead to pathological conditions such as inflammatory diseases or cancer. However, the contribution of CD137-CD137L interaction to the control of infectious diseases has not been extensively studied, with the few available reports focusing mainly on viral infections. Here we investigated the role of the CD137-CD137L interactions during Mycobacterium tuberculosis infection. Using CD137L-deficient mice, we found that absence of the CD137L-mediated signaling pathway during M. tuberculosis infection resulted in delayed activation of CD4(+) T cells in the draining lymph nodes. This finding was supported by an in vitro mixed lymphocyte reaction assay that revealed impaired priming of T cells by CD137L-deficient dendritic cells upon mycobacterial infection. In addition, greater numbers of CD4(+) T cells and antigen presenting cells were measured in the lungs of CD137L-deficient mice. Strikingly, the lung cytokine production profile was profoundly altered in M. tuberculosis-infected CD137L-deficient mice with lower levels of TNF-α, IL-12 and IL-6 and elevated concentrations of IL-17 compared to their wild type counterparts. However and surprisingly, these tangible immunological disorders translated only into a mild and transient increase in the bacterial loads and a higher number of granulomatous lesions with impaired architecture in the lungs of the CD137L-deficient infected mice. Together, while our data support the engagement of the CD137L signaling pathway during M. tuberculosis infection, they underscore the functional redundancy and robustness of the host defense arsenal deployed against mycobacterial infection.
Collapse
Affiliation(s)
- Julia María Martínez Gómez
- Department of Microbiology, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore; Immunology Programme, Yong Loo Lin School of Medicine, Life Sciences Institute, National University of Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|