1
|
Hu Y, Pan R, Wang Y, Ma M, Peng Y, Fan W, Zhang R, Nian H, Zhu J. Daphne genkwa: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. Fitoterapia 2024; 177:106089. [PMID: 38906384 DOI: 10.1016/j.fitote.2024.106089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Daphne genkwa, as a traditional medicine, is widely distributed in China, Korea and Vietnam. In China, the dried flower buds of this plant are named "Yuanhua". It has the ability to effectively promote urination, eliminate phlegm and alleviate cough, eliminate parasites and cure of scabies, with a broad spectrum of pharmacological effects and considerable clinical efficacy. This paper provides a summary and classification of the main chemical constituents of D. genkwa based on a review of relevant domestic and foreign literature. It also outlines the current research status of traditional clinical usage, pharmacological effects, and toxicity of D. genkwa. The aim is to provide a theoretical basis for further study of D. genkwa and its potential new clinical applications.
Collapse
Affiliation(s)
- Yue Hu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Rongrong Pan
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yi Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Minghua Ma
- Department of Pharmacy, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ying Peng
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weiqing Fan
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ruoxi Zhang
- Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hua Nian
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| | - Jianyong Zhu
- Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China; School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, China; Department of Pharmacy Research, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China.
| |
Collapse
|
2
|
Uyangaa E, Choi JY, Park SO, Byeon HW, Cho HW, Kim K, Eo SK. TLR3/TRIF pathway confers protection against herpes simplex encephalitis through NK cell activation mediated by a loop of type I IFN and IL-15 from epithelial and dendritic cells. Immunology 2023; 170:83-104. [PMID: 37278103 DOI: 10.1111/imm.13664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/10/2023] [Indexed: 06/07/2023] Open
Abstract
Autosomal recessive (AR) and dominant (AD) deficiencies of TLR3 and TRIF are believed to be crucial genetic causes of herpes simplex encephalitis (HSE), which is a fatal disease causing focal or global cerebral dysfunction following infection with herpes simplex virus type 1 (HSV-1). However, few studies have been conducted on the immunopathological networks of HSE in the context of TLR3 and TRIF defects at the cellular and molecular levels. In this work, we deciphered the crosstalk between type I IFN (IFN-I)-producing epithelial layer and IL-15-producing dendritic cells (DC) to activate NK cells for the protective role of TLR3/TRIF pathway in HSE progression after vaginal HSV-1 infection. TLR3- and TRIF-ablated mice showed enhanced susceptibility to HSE progression, along with high HSV-1 burden in vaginal tract, lymphoid tissues and CNS. The increased HSV-1 burden in TLR3- and TRIF-ablated mice did not correlate with increased infiltration of Ly-6C+ monocytes, but it was closely associated with impaired NK cell activation in vaginal tract. Furthermore, using delicate ex vivo experiments and bone marrow transplantation, TRIF deficiency in tissue-resident cells, such as epithelial cells in vaginal tract, was found to cause impaired NK cell activation by means of low IFN-I production, whereas IFN-I receptor in DC was required for NK cell activation via IL-15 production in response to IFN-I produced from epithelial layer. These results provide new information about IFN-I- and IL-15-mediated crosstalk between epithelial cells and DC at the primary infection site, which suppresses HSE progression in a TLR3- and TRIF-dependent manner.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hee Won Byeon
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Hye Won Cho
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, Republic of Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| |
Collapse
|
3
|
Wound Healing and the Use of Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2684108. [PMID: 31662773 PMCID: PMC6778887 DOI: 10.1155/2019/2684108] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/03/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
Cutaneous wound healing is the process by which skin repairs itself. It is generally accepted that cutaneous wound healing can be divided into 4 phases: haemostasis, inflammation, proliferation, and remodelling. In humans, keratinocytes re-form a functional epidermis (reepithelialization) as rapidly as possible, closing the wound and reestablishing tissue homeostasis. Dermal fibroblasts migrate into the wound bed and proliferate, creating “granulation tissue” rich in extracellular matrix proteins and supporting the growth of new blood vessels. Ultimately, this is remodelled over an extended period, returning the injured tissue to a state similar to that before injury. Dysregulation in any phase of the wound healing cascade delays healing and may result in various skin pathologies, including nonhealing, or chronic ulceration. Indigenous and traditional medicines make extensive use of natural products and derivatives of natural products and provide more than half of all medicines consumed today throughout the world. Recognising the important role traditional medicine continues to play, we have undertaken an extensive survey of literature reporting the use of medical plants and plant-based products for cutaneous wounds. We describe the active ingredients, bioactivities, clinical uses, formulations, methods of preparation, and clinical value of 36 medical plant species. Several species stand out, including Centella asiatica, Curcuma longa, and Paeonia suffruticosa, which are popular wound healing products used by several cultures and ethnic groups. The popularity and evidence of continued use clearly indicates that there are still lessons to be learned from traditional practices. Hidden in the myriad of natural products and derivatives from natural products are undescribed reagents, unexplored combinations, and adjunct compounds that could have a place in the contemporary therapeutic inventory.
Collapse
|
4
|
Molecular Mechanisms Involved in Oxidative Stress-Associated Liver Injury Induced by Chinese Herbal Medicine: An Experimental Evidence-Based Literature Review and Network Pharmacology Study. Int J Mol Sci 2018; 19:ijms19092745. [PMID: 30217028 PMCID: PMC6165031 DOI: 10.3390/ijms19092745] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress, defined as a disequilibrium between pro-oxidants and antioxidants, can result in histopathological lesions with a broad spectrum, ranging from asymptomatic hepatitis to hepatocellular carcinoma in an orchestrated manner. Although cells are equipped with sophisticated strategies to maintain the redox biology under normal conditions, the abundance of redox-sensitive xenobiotics, such as medicinal ingredients originated from herbs or animals, can dramatically invoke oxidative stress. Growing evidence has documented that the hepatotoxicity can be triggered by traditional Chinese medicine (TCM) during treating various diseases. Meanwhile, TCM-dependent hepatic disorder represents a strong correlation with oxidative stress, especially the persistent accumulation of intracellular reactive oxygen species. Of note, since TCM-derived compounds with their modulated targets are greatly diversified among themselves, it is complicated to elaborate the potential pathological mechanism. In this regard, data mining approaches, including network pharmacology and bioinformatics enrichment analysis have been utilized to scientifically disclose the underlying pathogenesis. Herein, top 10 principal TCM-modulated targets for oxidative hepatotoxicity including superoxide dismutases (SOD), malondialdehyde (MDA), glutathione (GSH), reactive oxygen species (ROS), glutathione peroxidase (GPx), Bax, caspase-3, Bcl-2, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), and nitric oxide (NO) have been identified. Furthermore, hepatic metabolic dysregulation may be the predominant pathological mechanism involved in TCM-induced hepatotoxic impairment.
Collapse
|
5
|
Uyangaa E, Choi JY, Patil AM, Hossain FMA, Park SO, Kim B, Kim K, Eo SK. Dual TLR2/9 Recognition of Herpes Simplex Virus Infection Is Required for Recruitment and Activation of Monocytes and NK Cells and Restriction of Viral Dissemination to the Central Nervous System. Front Immunol 2018; 9:905. [PMID: 29760708 PMCID: PMC5936768 DOI: 10.3389/fimmu.2018.00905] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 12/24/2022] Open
Abstract
The importance of TLR2 and TLR9 in the recognition of infection with herpes simplex virus (HSV) and HSV-caused diseases has been described, but some discrepancies remain concerning the benefits of these responses. Moreover, the impact of TLR2/9 on innate and adaptive immune responses within relevant mucosal tissues has not been elucidated using natural mucosal infection model of HSV. Here, we demonstrate that dual TLR2/9 recognition is essential to provide resistance against mucosal infection with HSV via an intravaginal route. Dual TLR2/9 ablation resulted in the highly enhanced mortality with exacerbated symptoms of encephalitis compared with TLR2 or TLR9 deficiency alone, coinciding with highly increased viral load in central nervous system tissues. TLR2 appeared to play a minor role in providing resistance against mucosal infection with HSV, since TLR2-ablated mice showed higher survival rate compared with TLR9-ablated mice. Also, the high mortality in dual TLR2/9-ablated mice was closely associated with the reduction in early monocyte and NK cell infiltration in the vaginal tract (VT), which was likely to correlate with low expression of cytokines and CCR2 ligands (CCL2 and CCL7). More interestingly, our data revealed that dual TLR2/9 recognition of HSV infection plays an important role in the functional maturation of TNF-α and iNOS-producing dendritic cells (Tip-DCs) from monocytes as well as NK cell activation in VT. TLR2/9-dependent maturation of Tip-DCs from monocytes appeared to specifically present cognate Ag, which effectively provided functional effector CD4+ and CD8+ T cells specific for HSV Ag in VT and its draining lymph nodes. TLR2/9 expressed in monocytes was likely to directly facilitate Tip-DC-like features after HSV infection. Also, dual TLR2/9 recognition of HSV infection directly activated NK cells without the aid of dendritic cells through activation of p38 MAPK pathway. Taken together, these results indicate that dual TLR2/9 recognition plays a critical role in providing resistance against mucosal infection with HSV, which may involve a direct regulation of Tip-DCs and NK cells in VT. Therefore, our data provide a more detailed understanding of TLR2/9 role in conferring antiviral immunity within relevant mucosal tissues after mucosal infection with HSV.
Collapse
Affiliation(s)
- Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Ajit Mahadev Patil
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sung Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Bumseok Kim
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| | - Koanhoi Kim
- Department of Pharmacology, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, South Korea
| |
Collapse
|