1
|
D'Aveni M, Notarantonio AB, Bertrand A, Boulangé L, Pochon C, Rubio MT. Myeloid-Derived Suppressor Cells in the Context of Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2020; 11:989. [PMID: 32528476 PMCID: PMC7256196 DOI: 10.3389/fimmu.2020.00989] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are innate immune cells that acquire the capacity to suppress adaptive immune responses. In the context of allogeneic hematopoietic stem cell transplantation (allo-HSCT), MDSCs (in the donor graft and in the recipient, after allo-HSCT) might mediate immune suppression through multiple mechanisms. However, it remains unclear how MDSCs can be distinguished from their normal myeloid counterparts in the hematopoietic stem cell donor graft and during immune reconstitution after allo-HSCT in the recipient. Our ability to understand their exact role in allo-HSCT is limited by the absence of a specific gene signature or surface markers for identifying MDSCs among myeloid cells and by their plasticity in different microenvironments. According to various studies, MDSCs might induce transplant tolerance and control graft vs. host disease (GVHD), but their impact on the graft vs. tumor effect (GVT) is not fully understood. In fact, we know that MDSCs commonly expand in patients with cancer, and they are thought to promote hematological malignancy progression. However, little is known about whether depleting them might be an effective strategy for enhancing GVT effects. Here, we review data published over the past 40 years on allo-HSCT to delineate the different MDSC subsets, and their abilities to induce transplant tolerance and preserve the GVT effect. This review will provide a basis for determining whether one MDSC subset might be proposed as the most appropriate candidate for cellular therapies, due to its ability to modulate GVHD.
Collapse
Affiliation(s)
- Maud D'Aveni
- Hematology Department, CHRU Nancy, Université de Lorraine, Nancy, France.,Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Anne B Notarantonio
- Hematology Department, CHRU Nancy, Université de Lorraine, Nancy, France.,Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Allan Bertrand
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Laura Boulangé
- Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Cécile Pochon
- Hematology Department, CHRU Nancy, Université de Lorraine, Nancy, France.,Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| | - Marie T Rubio
- Hematology Department, CHRU Nancy, Université de Lorraine, Nancy, France.,Université de Lorraine, UMR 7365 CNRS, IMoPA, Nancy, France
| |
Collapse
|
2
|
Lee YK, Kang M, Choi EY. TLR/MyD88-mediated Innate Immunity in Intestinal Graft-versus-Host Disease. Immune Netw 2017; 17:144-151. [PMID: 28680375 PMCID: PMC5484644 DOI: 10.4110/in.2017.17.3.144] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 12/13/2022] Open
Abstract
Graft-versus-host disease (GHVD) is a severe complication after allogeneic hematopoietic stem cell transplantation. The degree of inflammation in the gastrointestinal tract, a major GVHD target organ, correlates with the disease severity. Intestinal inflammation is initiated by epithelial damage caused by pre-conditioning irradiation. In combination with damages caused by donor-derived T cells, such damage disrupts the epithelial barrier and exposes innate immune cells to pathogenic and commensal intestinal bacteria, which release ligands for Toll-like receptors (TLRs). Dysbiosis of intestinal microbiota and signaling through the TLR/myeloid differentiation primary response gene 88 (MyD88) pathways contribute to the development of intestinal GVHD. Understanding the changes in the microbial flora and the roles of TLR signaling in intestinal GVHD will facilitate the development of preventative and therapeutic strategies.
Collapse
Affiliation(s)
- Young-Kwan Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Myungsoo Kang
- BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Seoul 03080, Korea
| | - Eun Young Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea.,BioMembrane Plasticity Research Center (MPRC), Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
3
|
Targeting Cytokines in GVHD Therapy. JOURNAL OF IMMUNOLOGY RESEARCH AND THERAPY 2017; 2:90-99. [PMID: 28819653 PMCID: PMC5557058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transplantation of donor-derived allogeneic hematopoietic cells causes increased survival in patients suffering from various blood cancers and other hematologic and immunologic diseases. However, this health benefit is limited to certain patients. One major complication is graft-versus-host disease (GVHD) that occurs when donor-derived immune cells recognize host cells/tissues as foreign and perpetrate subsequent destruction. Cytokines are a major class of effector molecules that are involved in GVHD pathogenesis. Proinflammatory cytokines released by activated immune cells including T cells lead to the onset of GVHD. T cell depletion (TCD) is an effective approach for GVHD prevention. Several immune suppressive drugs are also used to treat GVHD. However, these prophylactic and treatment strategies often lead to an immune compromised state that increases the risk for infection and cancer relapse. Considering the adverse effects of TCD and overall immune suppression, more selective managements such as approaches targeting proinflammatory cytokines have emerged as a promising strategy to control GVHD. Therefore, this work is dedicated to review recent development in the studies of cytokines and their future implication in GVHD therapy.
Collapse
|
4
|
Toubai T, Mathewson ND, Magenau J, Reddy P. Danger Signals and Graft-versus-host Disease: Current Understanding and Future Perspectives. Front Immunol 2016; 7:539. [PMID: 27965667 PMCID: PMC5126092 DOI: 10.3389/fimmu.2016.00539] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Graft-versus-host response after allogeneic hematopoietic stem cell transplantation (allo-HCT) represents one of the most intense inflammatory responses observed in humans. Host conditioning facilitates engraftment of donor cells, but the tissue injury caused from it primes the critical first steps in the development of acute graft-versus-host disease (GVHD). Tissue injuries release pro-inflammatory cytokines (such as TNF-α, IL-1β, and IL-6) through widespread stimulation of pattern recognition receptors (PRRs) by the release of danger stimuli, such as damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). DAMPs and PAMPs function as potent stimulators for host and donor-derived antigen presenting cells (APCs) that in turn activate and amplify the responses of alloreactive donor T cells. Emerging data also point towards a role for suppression of DAMP induced inflammation by the APCs and donor T cells in mitigating GVHD severity. In this review, we summarize the current understanding on the role of danger stimuli, such as the DAMPs and PAMPs, in GVHD.
Collapse
Affiliation(s)
- Tomomi Toubai
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Nathan D Mathewson
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute , Boston, MA , USA
| | - John Magenau
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| | - Pavan Reddy
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Comprehensive Cancer Center , Ann Arbor, MI , USA
| |
Collapse
|