1
|
Warnakula WADLR, Park CU, Sirisena DMKP, Tharanga EMT, Dilshan MAH, Rodrigo DCG, Sohn H, Wan Q, Lee J. A comprehensive study on the multifunctional properties of galectin-4 in red-lip mullet (Planiliza haematocheilus): Insights into molecular interactions, antimicrobial defense, and cell proliferation. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109835. [PMID: 39147180 DOI: 10.1016/j.fsi.2024.109835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Galectin-4 belongs to the galactoside-binding protein family and is a type of tandem repeat galectin. Despite previous studies indicating its importance in fish immunology, a comprehensive investigation is necessary to fully understand its role in immunomodulatory functions and cellular dynamics. Therefore, this study aimed to explore the immunomodulatory functions of galectin-4 with a particular focus on its antimicrobial and cellular proliferative properties. The open reading frame of PhGal4 spans 1092 base pairs and encodes a soluble protein of 363 amino acids with a theoretical isoelectric point (IEP) of 6.39 and a molecular weight of 39.411 kDa. Spatial expression analysis under normal physiological conditions revealed ubiquitous expression of PhGal4 across all examined tissues, with the highest level observed in intestinal tissue. Upon stimulation with poly I:C, LPS, and L. garvieae, a significant increase (p < 0.05) in PhGal4 expression was observed in both blood and spleen tissues. Subsequent subcellular localization assay demonstrated that PhGal4 was predominantly localized in the cytoplasm. The recombinant PhGal4 (rPhGal4) exhibited specific binding capabilities to pathogen-associated molecular patterns (PAMPs), including LPS and peptidoglycan, but not poly I:C. The rPhGal4 negatively affected the bacterial growth kinetics. Additionally, rPhGal4 demonstrated complete hemagglutination of fish erythrocytes, which could be inhibited by the presence of D-galactose and α-lactose. The overexpression of PhGal4 in FHM epithelial cells demonstrated a significant suppression of viral replication during VHSV infection. Furthermore, the in vitro scratch assay and WST-1 assay demonstrated a wound healing effect of PhGal4 overexpression in FHM cells, potentially achieved through the promotion of cell proliferation by activating genes involved in cell cycle regulation. In conclusion, the responsive expression to immune stimuli, antimicrobial properties, and cell proliferation promotion of PhGal4 suggest that it plays a crucial role in immunomodulation and cellular dynamics of red-lip mullet. The findings in this study shed light on the multifunctional nature of galectin-4 in teleost fish.
Collapse
Affiliation(s)
- W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Cheong Uk Park
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D M K P Sirisena
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - E M T Tharanga
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea
| | - Hanchang Sohn
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Kidang Marine Science Institute, Jeju National University, Jeju, 63333, Republic of Korea.
| |
Collapse
|
2
|
Quintana JI, Delgado S, Rábano M, Azkargorta M, Florencio-Zabaleta M, Unione L, Vivanco MDM, Elortza F, Jiménez-Barbero J, Ardá A. The impact of glycosylation on the structure, function, and interactions of CD14. Glycobiology 2024; 34:cwae002. [PMID: 38227775 PMCID: PMC10987292 DOI: 10.1093/glycob/cwae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/18/2024] Open
Abstract
CD14 is an innate immune receptor that senses pathogen-associated molecular patterns, such as lipopolysaccharide, to activate the innate immune response. Although CD14 is known to be glycosylated, detailed understanding about the structural and functional significance of this modification is still missing. Herein, an NMR and MS-based study, assisted by MD simulations, has provided a 3D-structural model of glycosylated CD14. Our results reveal the existence of a key N-glycosylation site at Asn282 that exclusively contains unprocessed oligomannnose N-glycans that perfectly fit the concave cavity of the bent-solenoid shaped protein. This site is not accessible to glycosidases and is fundamental for protein folding and secretion. A second N-site at Asn151 displays mostly complex N-glycans, with the typical terminal epitopes of the host cell-line expression system (i.e. βGal, α2,3 and α2,6 sialylated βGal, here), but also particularities, such as the lack of core fucosylation. The glycan at this site points outside the protein surface, resulting in N-glycoforms fully exposed and available for interactions with lectins. In fact, NMR experiments show that galectin-4, proposed as a binder of CD14 on monocytes to induce their differentiation into macrophages-like cells, interacts in vitro with CD14 through the recognition of the terminal glycoepitopes on Asn151. This work provides key information about CD14 glycosylation, which helps to better understand its functional roles and significance. Although protein glycosylation is known to be dynamic and influenced by many factors, some of the features found herein (presence of unprocessed N-glycans and lack of core Fuc) are likely to be protein specific.
Collapse
Affiliation(s)
- Jon Imanol Quintana
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Sandra Delgado
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Miriam Rábano
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Mikel Azkargorta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Mirane Florencio-Zabaleta
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Luca Unione
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Spain
| | - Maria dM Vivanco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Félix Elortza
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
| | - Jesús Jiménez-Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Spain
- Department of Organic & Inorganic Chemistry, Faculty of Science and Technology, University of the Basque Country, EHU-UPV, Leioa, Bizkaia 48940, Spain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias, Carlos III Health Institute, C. de Melchor Fernández Almagro, 3, Fuencarral-El Pardo, Madrid 28029, Spain
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park bld 800, Derio, Bizkaia 48160, Spain
- Ikerbasque, Basque Foundation for Science, Euskadi Plaza 5, 48009, Bilbao, Spain
| |
Collapse
|
3
|
Elliott W, Tsung AJ, Guda MR, Velpula KK. Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme. Am J Cancer Res 2024; 14:774-795. [PMID: 38455415 PMCID: PMC10915327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.
Collapse
Affiliation(s)
- Willie Elliott
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Department of Pediatrics, University of Illinois College of MedicinePeoria, IL, USA
| |
Collapse
|
4
|
Santos‐Ferreira D, Diaz SO, Ferreira JP, Girerd N, Pellicori P, Mariottoni B, Cosmi F, Hazebroek M, Verdonschot JA, Cuthbert J, Petutschnigg J, Heymans S, Staessen JA, Pieske B, Edelmann F, Clark AL, Rossignol P, Fontes‐Carvalho R, Cleland JG, Zannad F. Phenotyping patients with ischaemic heart disease at risk of developing heart failure: an analysis of the HOMAGE trial. ESC Heart Fail 2024; 11:209-218. [PMID: 37939716 PMCID: PMC10804163 DOI: 10.1002/ehf2.14465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/15/2023] [Accepted: 06/21/2023] [Indexed: 11/10/2023] Open
Abstract
AIMS We aim to characterize the clinical and proteomic profiles of patients at risk of developing heart failure (HF), with and without coronary artery disease (CAD) or prior myocardial infarction (MI). METHODS AND RESULTS HOMAGE evaluated the effect of spironolactone on plasma and serum markers of fibrosis over 9 months of follow-up in participants with (or at risk of having) CAD, and raised natriuretic peptides. In this post hoc analysis, patients were classified as (i) neither CAD nor MI; (ii) CAD; or (iii) MI. Proteomic between-group differences were evaluated through logistic regression and narrowed using backward stepwise selection and bootstrapping. Among the 527 participants, 28% had neither CAD or MI, 31% had CAD, and 41% had prior MI. Compared with people with neither CAD nor MI, those with CAD had higher baseline plasma concentrations of matrix metalloproteinase-7 (MMP-7), galectin-4 (GAL4), plasminogen activator inhibitor 1 (PAI-1), and lower plasma peptidoglycan recognition protein 1 (PGLYRP1), whilst those with a history of MI had higher plasma MMP-7, neurotrophin-3 (NT3), pulmonary surfactant-associated protein D (PSPD), and lower plasma tumour necrosis factor-related activation-induced cytokine (TRANCE). Proteomic signatures were similar for patients with CAD or prior MI. Treatment with spironolactone was associated with an increase of MMP7, NT3, and PGLYRP1 at 9 months. CONCLUSIONS In patients at risk of developing HF, those with CAD or MI had a different proteomic profile regarding inflammatory, immunological, and collagen catabolic processes.
Collapse
Affiliation(s)
- Diogo Santos‐Ferreira
- Department of CardiologyCentro Hospitalar Vila Nova de Gaia/EspinhoVila Nova de GaiaPortugal
- Department of Surgery and Physiology, Cardiovascular R&D Centre ‐ UnIC@RISEFaculty of Medicine of the University of PortoPortoPortugal
| | - Sílvia O. Diaz
- Department of Surgery and Physiology, Cardiovascular R&D Centre ‐ UnIC@RISEFaculty of Medicine of the University of PortoPortoPortugal
| | - João Pedro Ferreira
- Department of Surgery and Physiology, Cardiovascular R&D Centre ‐ UnIC@RISEFaculty of Medicine of the University of PortoPortoPortugal
- Inserm, Centre d'Investigation Clinique Plurithématique 1433, CHRU de Nancy, F‐CRIN INI‐CRCTUniversité de LorraineNancyFrance
| | - Nicolas Girerd
- Inserm, Centre d'Investigation Clinique Plurithématique 1433, CHRU de Nancy, F‐CRIN INI‐CRCTUniversité de LorraineNancyFrance
| | | | | | - Franco Cosmi
- Inserm, Centre d'Investigation Clinique Plurithématique 1433, CHRU de Nancy, F‐CRIN INI‐CRCTUniversité de LorraineNancyFrance
| | - Mark Hazebroek
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Job A.J. Verdonschot
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Joe Cuthbert
- Department of CardiologyUniversity of Hull, Castle Hill HospitalCottinghamUK
| | - Johannes Petutschnigg
- Department of Internal Medicine and CardiologyCharité University Medicine, Berlin Institute of Health (BIH), and German Centre for Cardiovascular Research (DZHK), Partner Site BerlinBerlinGermany
| | - Stephane Heymans
- Department of CardiologyMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Jan A. Staessen
- Non‐Profit Research Association Alliance for the Promotion of Preventive Medicine (APPREMED)MechelenBelgium
| | - Burkert Pieske
- Department of Internal Medicine and CardiologyCharité University Medicine, Berlin Institute of Health (BIH), and German Centre for Cardiovascular Research (DZHK), Partner Site BerlinBerlinGermany
- German Heart Center BerlinBerlinGermany
| | - Frank Edelmann
- Department of Internal Medicine and CardiologyCharité University Medicine, Berlin Institute of Health (BIH), and German Centre for Cardiovascular Research (DZHK), Partner Site BerlinBerlinGermany
| | - Andrew L. Clark
- Department of CardiologyUniversity of Hull, Castle Hill HospitalCottinghamUK
| | - Patrick Rossignol
- Inserm, Centre d'Investigation Clinique Plurithématique 1433, CHRU de Nancy, F‐CRIN INI‐CRCTUniversité de LorraineNancyFrance
| | - Ricardo Fontes‐Carvalho
- Department of CardiologyCentro Hospitalar Vila Nova de Gaia/EspinhoVila Nova de GaiaPortugal
- Department of Surgery and Physiology, Cardiovascular R&D Centre ‐ UnIC@RISEFaculty of Medicine of the University of PortoPortoPortugal
| | - John G.F. Cleland
- School of Cardiovascular and Metabolic HealthUniversity of GlasgowGlasgowUK
| | - Faiez Zannad
- Inserm, Centre d'Investigation Clinique Plurithématique 1433, CHRU de Nancy, F‐CRIN INI‐CRCTUniversité de LorraineNancyFrance
| |
Collapse
|
5
|
Troncoso MF, Elola MT, Blidner AG, Sarrias L, Espelt MV, Rabinovich GA. The universe of galectin-binding partners and their functions in health and disease. J Biol Chem 2023; 299:105400. [PMID: 37898403 PMCID: PMC10696404 DOI: 10.1016/j.jbc.2023.105400] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023] Open
Abstract
Galectins, a family of evolutionarily conserved glycan-binding proteins, play key roles in diverse biological processes including tissue repair, adipogenesis, immune cell homeostasis, angiogenesis, and pathogen recognition. Dysregulation of galectins and their ligands has been observed in a wide range of pathologic conditions including cancer, autoimmune inflammation, infection, fibrosis, and metabolic disorders. Through protein-glycan or protein-protein interactions, these endogenous lectins can shape the initiation, perpetuation, and resolution of these processes, suggesting their potential roles in disease monitoring and treatment. However, despite considerable progress, a full understanding of the biology and therapeutic potential of galectins has not been reached due to their diversity, multiplicity of cell targets, and receptor promiscuity. In this article, we discuss the multiple galectin-binding partners present in different cell types, focusing on their contributions to selected physiologic and pathologic settings. Understanding the molecular bases of galectin-ligand interactions, particularly their glycan-dependency, the biochemical nature of selected receptors, and underlying signaling events, might contribute to designing rational therapeutic strategies to control a broad range of pathologic conditions.
Collapse
Affiliation(s)
- María F Troncoso
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María T Elola
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ada G Blidner
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Luciana Sarrias
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María V Espelt
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Química y Fisicoquímica Biológicas (IQUIFIB) Prof Alejandro C. Paladini, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Jujic A, Vieira JPP, Matuskova H, Nilsson PM, Lindblad U, Olsen MH, Duarte JMN, Meissner A, Magnusson M. Plasma Galectin-4 Levels Are Increased after Stroke in Mice and Humans. Int J Mol Sci 2023; 24:10064. [PMID: 37373212 DOI: 10.3390/ijms241210064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Epidemiological studies have associated plasma galectin-4 (Gal-4) levels with prevalent and incident diabetes, and with an increased risk of coronary artery disease. To date, data regarding possible associations between plasma Gal-4 and stroke are lacking. Using linear and logistic regression analyses, we tested Gal-4 association with prevalent stroke in a population-based cohort. Additionally, in mice fed a high-fat diet (HFD), we investigated whether plasma Gal-4 increases in response to ischemic stroke. Plasma Gal-4 was higher in subjects with prevalent ischemic stroke, and was associated with prevalent ischemic stroke (odds ratio 1.52; 95% confidence interval 1.01-2.30; p = 0.048) adjusted for age, sex, and covariates of cardiometabolic health. Plasma Gal-4 increased after experimental stroke in both controls and HFD-fed mice. HFD exposure was devoid of impact on Gal-4 levels. This study demonstrates higher plasma Gal-4 levels in both experimental stroke and in humans that experienced ischemic stroke.
Collapse
Affiliation(s)
- Amra Jujic
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, 21428 Malmö, Sweden
| | - João P P Vieira
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
| | - Hana Matuskova
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden
| | - Ulf Lindblad
- General Practice-Family Medicine, School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Michael H Olsen
- Department of Internal Medicine 1, Holbaek Hospital, 4300 Holbaek, Denmark
- Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - João M N Duarte
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
| | - Anja Meissner
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Experimental Medical Science, Lund University, 22100 Lund, Sweden
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
- Department of Physiology, Institute for Theoretical Medicine, University of Augsburg, 86159 Augsburg, Germany
| | - Martin Magnusson
- Wallenberg Centre for Molecular Medicine, Lund University, 22100 Lund, Sweden
- Department of Clinical Sciences, Lund University, 20502 Malmö, Sweden
- Department of Cardiology, Skåne University Hospital, 21428 Malmö, Sweden
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom 2520, South Africa
| |
Collapse
|
7
|
Zheng L, Xia J, Ge P, Meng Y, Li W, Li M, Wang M, Song C, Fan Y, Zhou Y. The interrelation of galectins and autophagy. Int Immunopharmacol 2023; 120:110336. [PMID: 37262957 DOI: 10.1016/j.intimp.2023.110336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Autophagy is a vital physiological process that maintains intracellular homeostasis by removing damaged organelles and senescent or misfolded molecules. However, excessive autophagy results in cell death and apoptosis, which will lead to a variety of diseases. Galectins are a type of animal lectin that binds to β-galactosides and can bind to the cell surface or extracellular matrix glycans, affecting a variety of immune processes in vivo and being linked to the development of many diseases. In many cases, galectins and autophagy both play important regulatory roles in the cellular life course, yet our understanding of the relationship between them is still incomplete. Galectins and autophagy may share common etiological cofactors for some diseases. Hence, we summarize the relationship between galectins and autophagy, aiming to draw attention to the existence of multiple associations between galectins and autophagy in a variety of physiological and pathological processes, which provide new ideas for etiological diagnosis, drug development, and therapeutic targets for related diseases.
Collapse
Affiliation(s)
- Lujuan Zheng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Jing Xia
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Pengyu Ge
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuhan Meng
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Weili Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Mingming Li
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Min Wang
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Chengcheng Song
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yuying Fan
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates of Ministry of Education, Jilin Provincial Key Laboratory of Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
8
|
de Oliveira PSS, Cardoso PRG, de Paula Silva SK, Duarte ALBP, da Rosa MM, de Melo Rêgo MJB, Pereira MC, da Rocha Pitta I, da Rocha Pitta MG. High serum levels of galectins 1 and 4 in osteoarthritis patients. Clin Biochem 2023; 116:11-15. [PMID: 36858300 DOI: 10.1016/j.clinbiochem.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023]
Abstract
BACKGROUND Although immunostaining of galectins is associated with cartilage damage, the serum levels of these lectins in osteoarthritis (OA) are not fully understood. OBJECTIVE Therefore, we evaluate the concentrations of galectins-1, 3, 4, and 7 in patients with osteoarthritis and correlate them with clinical parameters. METHODS This cross-sectional study involved 60 osteoarthritis patients and 43 healthy volunteers, who had serum samples collected for galectins titration by Enzyme-Linked Immunosorbent Assay (ELISA). RESULTS Our finds showed that the median values of gal-1 and 4 serum levels in patients were statistically higher (13,990 and 969.1 pg/mL, respectively) than in healthy controls (1,798 and 519.5 pg/mL) with p < 0.001. Further, gal-1 expressed higher levels in patients who had joint edema at the time of collection with a median value of 14,970 pg/mL. CONCLUSION Surprisingly, galectin-4 appears to be involved in the osteoarthritis inflammation process as the well-known galectin-1.
Collapse
Affiliation(s)
- Priscilla Stela Santana de Oliveira
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Pablo Ramon Gualberto Cardoso
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Simão Kalebe de Paula Silva
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | | | - Michelle Melgarejo da Rosa
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil.
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Ivan da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutic Approaches (LINAT), Suely-Galdino Therapeutic Innovation Research Center (NUPIT-SG), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| |
Collapse
|
9
|
The Blessed Union of Glycobiology and Immunology: A Marriage That Worked. MEDICINES (BASEL, SWITZERLAND) 2023; 10:medicines10020015. [PMID: 36827215 PMCID: PMC9967969 DOI: 10.3390/medicines10020015] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
In this article, we discuss the main aspects regarding the recognition of cell surface glycoconjugates and the immunomodulation of responses against the progression of certain pathologies, such as cancer and infectious diseases. In the first part, we talk about different aspects of glycoconjugates and delve deeper into the importance of N-glycans in cancer immunotherapy. Then, we describe two important lectin families that have been very well studied in the last 20 years. Examples include the sialic acid-binding immunoglobulin (Ig)-like lectins (siglecs), and galectins. Finally, we discuss a topic that needs to be better addressed in the field of glycoimmunology: the impact of oncofetal antigens on the cells of the immune system. New findings in this area are of great importance for advancement, especially in the field of oncology, since it is already known that cellular interactions mediated by carbohydrate-carbohydrate and/or carbohydrate proteins are able to modulate the progression of different types of cancer in events that compromise the functionality of the immune responses.
Collapse
|
10
|
Lee IG, Joo YH, Jeon H, Jeong R, Kim EH, Chung H, Eyun SI, Kim J, Seo YJ, Hong SH. Galectin-4 increases the ability of M2 macrophages to enhance antiviral CD4+ T-cell responses. J Leukoc Biol 2023; 113:71-83. [PMID: 36822160 DOI: 10.1093/jleuko/qiac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/12/2023] Open
Abstract
Galectin-4 (Gal-4) is a β-galactoside-binding protein belonging to the galectin family. Although Gal-4 is known to be involved in several physiologic processes of the gastrointestinal tract, its immunomodulatory roles remain unclear. In this study, we investigated whether Gal-4 influences the function of M1 and M2 macrophages. Gal-4 treatment drove more robust changes in the gene expression of M2 macrophages compared to M1 macrophages. Antiviral immune response-related genes were significantly upregulated in Gal-4-treated M2 macrophages. Gal-4 significantly enhanced the immunostimulatory activity of M2 macrophages upon Toll-like receptor 7 stimulation or infection with lymphocytic choriomeningitis virus (LCMV). Moreover, the antibody production against LCMV infection and the antiviral CD4+ T-cell responses, but not the antiviral CD8+ T-cell responses, were greatly increased by Gal-4-treated M2 macrophages in vivo. The present results indicate that Gal-4 enhances the ability of M2 macrophages to promote antiviral CD4+ T-cell responses. Thus, Gal-4 could be used to boost antiviral immune responses.
Collapse
Affiliation(s)
- In-Gu Lee
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Yong-Hyun Joo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Hoyeon Jeon
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Raehyuk Jeong
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, 16 Daewangpangyo-ro 712 beon-gil, Bundang-gu, Seongnam 13488, Republic of Korea
| | - Hyunwoo Chung
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jeongkyu Kim
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Young-Jin Seo
- Department of Life Science, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul 07804, Republic of Korea
| |
Collapse
|
11
|
Čoma M, Manning JC, Kaltner H, Gál P. The sweet side of wound healing: galectins as promising therapeutic targets in hemostasis, inflammation, proliferation, and maturation/remodeling. Expert Opin Ther Targets 2023; 27:41-53. [PMID: 36716023 DOI: 10.1080/14728222.2023.2175318] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Understanding the molecular and cellular processes involved in skin wound healing may pave the way for the development of innovative approaches to transforming the identified natural effectors into therapeutic tools. Based on the extensive involvement of the ga(lactoside-binding)lectin family in (patho)physiological processes, it has been well established that galectins are involved in a wide range of cell-cell and cell-matrix interactions. AREAS COVERED In the present paper, we provide an overview of the biological role of galectins in repair and regeneration, focusing on four main phases (hemostasis, inflammation, proliferation, and maturation/remodeling) of skin repair using basic wound models (open excision vs. sutured incision). EXPERT OPINION The reported data make a strong case for directing further efforts to treat excisional and incisional wounds differently. Functions of galectins essentially result from their modular presentation. In fact, Gal-1 seems to play a role in the early phases of healing (anti-inflammatory) and wound contraction, Gal-3 accelerates re-epithelization and increases tensile strength (scar inductor). Galectins have also become subject of redesigning by engineering to optimize the activity. Clinically relevant, these new tools derived from the carbohydrate recognition domain platform may also prove helpful for other purposes, such as potent antibacterial agglutinins and opsonins.
Collapse
Affiliation(s)
- Matúš Čoma
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic
| | - Joachim C Manning
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Herbert Kaltner
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Peter Gál
- Department of Biomedical Research, East-Slovak Institute of Cardiovascular Diseases Inc, Košice, Slovak Republic.,Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, Košice, Slovak Republic.,Prague Burn Center, Third Faculty of Medicine, Charles University and University Hospital Královske Vinohrady, Prague, Czech Republic.,Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
12
|
Oravecz O, Romero R, Tóth E, Kapitány J, Posta M, Gallo DM, Rossi SW, Tarca AL, Erez O, Papp Z, Matkó J, Than NG, Balogh A. Placental galectins regulate innate and adaptive immune responses in pregnancy. Front Immunol 2022; 13:1088024. [PMID: 36643922 PMCID: PMC9832025 DOI: 10.3389/fimmu.2022.1088024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 12/29/2022] Open
Abstract
Introduction Galectins are master regulators of maternal immune responses and placentation in pregnancy. Galectin-13 (gal-13) and galectin-14 (gal-14) are expressed solely by the placenta and contribute to maternal-fetal immune tolerance by inducing the apoptosis of activated T lymphocytes and the polarization of neutrophils toward an immune-regulatory phenotype.Furthermore, their decreased placental expression is associated with pregnancy complications, such as preeclampsia and miscarriage. Yet, our knowledge of the immunoregulatory role of placental galectins is incomplete. Methods This study aimed to investigate the effects of recombinant gal-13 and gal-14 on cell viability, apoptosis, and cytokine production of peripheral blood mononuclear cells (PBMCs) and the signaling pathways involved. Results Herein, we show that gal-13 and gal-14 bind to the surface of non-activated PBMCs (monocytes, natural killer cells, B cells, and T cells) and increase their viability while decreasing the rate of their apoptosis without promoting cell proliferation. We also demonstrate that gal-13 and gal-14 induce the production of interleukin (IL)-8, IL-10, and interferon-gamma cytokines in a concentration-dependent manner in PBMCs. The parallel activation of Erk1/2, p38, and NF-ĸB signaling evidenced by kinase phosphorylation in PBMCs suggests the involvement of these pathways in the regulation of the galectin-affected immune cell functions. Discussion These findings provide further evidence on how placenta-specific galectins assist in the establishment and maintenance of a proper immune environment during a healthy pregnancy.
Collapse
Affiliation(s)
- Orsolya Oravecz
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Detroit Medical Center, Detroit, MI, United States
| | - Eszter Tóth
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Judit Kapitány
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Dahiana M. Gallo
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | | | - Adi L. Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Soroka University Medical Center, Beer Sheva, Israel
| | - Zoltán Papp
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - János Matkó
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Nándor Gábor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary,Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, United States Department of Health and Human Services, Detroit, MI, United States,Genesis Theranostix Group, Budapest, Hungary,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary,*Correspondence: Nándor Gábor Than,
| | - Andrea Balogh
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
13
|
Jiang Z, Zhang W, Sha G, Wang D, Tang D. Galectins Are Central Mediators of Immune Escape in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14225475. [PMID: 36428567 PMCID: PMC9688059 DOI: 10.3390/cancers14225475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers and is highly immune tolerant. Although there is immune cell infiltration in PDAC tissues, most of the immune cells do not function properly and, therefore, the prognosis of PDAC is very poor. Galectins are carbohydrate-binding proteins that are intimately involved in the proliferation and metastasis of tumor cells and, in particular, play a crucial role in the immune evasion of tumor cells. Galectins induce abnormal functions and reduce numbers of tumor-associated macrophages (TAM), natural killer cells (NK), T cells and B cells. It further promotes fibrosis of tissues surrounding PDAC, enhances local cellular metabolism, and ultimately constructs tumor immune privileged areas to induce immune evasion behavior of tumor cells. Here, we summarize the respective mechanisms of action played by different Galectins in the process of immune escape from PDAC, focusing on the mechanism of action of Galectin-1. Galectins cause imbalance between tumor immunity and anti-tumor immunity by coordinating the function and number of immune cells, which leads to the development and progression of PDAC.
Collapse
Affiliation(s)
- Zhengting Jiang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Wenjie Zhang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Gengyu Sha
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
| | - Daorong Wang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
| | - Dong Tang
- Clinical Medical College, Yangzhou University, Yangzhou 225000, China
- Department of General Surgery, Institute of General Surgery, Clinical Medical College, Yangzhou University, Northern Jiangsu People’s Hospital, Yangzhou 225000, China
- Correspondence: ; Tel.: +86-18952783556
| |
Collapse
|
14
|
Proceedings of workshop: "Neuroglycoproteins in health and disease", INNOGLY cost action. Glycoconj J 2022; 39:579-586. [PMID: 36001187 PMCID: PMC9399589 DOI: 10.1007/s10719-022-10078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022]
Abstract
The Cost Action "Innovation with glycans: new frontiers from synthesis to new biological targets" (INNOGLY) hosted the Workshop "Neuroglycoproteins in health and disease", in Alicante, Spain, on March 2022. This event brought together an european group of scientists that presented novel insights into changes in glycosylation in diseases of the central nervous system and cancer, as well as new techniques to study protein glycosylation. Herein we provide the abstracts of all the presentations.
Collapse
|
15
|
Yu D, Bu M, Yu P, Li Y, Chong Y. Regulation of wound healing and fibrosis by galectins. J Mol Med (Berl) 2022; 100:861-874. [PMID: 35589840 DOI: 10.1007/s00109-022-02207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Galectins are a family of proteins with at least one carbohydrate-recognition domain. Galectins are present in various tissues and organs and participate in different physiological and pathological molecular reactions in vivo. Wound healing is the basic process of traumatic disease recovery. Wound healing involves three overlapping stages: inflammation, proliferation, and remodelling. Furthermore, a comparison of wound healing with the tumour microenvironment revealed that galectin plays a key role in the wound healing process. The current review describes the role of galectin in inflammation, angiogenesis, re-epithelialisation, and fibrous scar formation and evaluates its potential as a therapeutic drug for wounds.
Collapse
Affiliation(s)
- Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ming Bu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Ping Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yaping Li
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China.,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, Jiangsu, China. .,Department of Medical College, Yangzhou University, Yangzhou, 225000, Jiangsu, China.
| |
Collapse
|
16
|
Overexpression of Galectin-4 in placentas of women with gestational diabetes. J Reprod Immunol 2022; 151:103629. [DOI: 10.1016/j.jri.2022.103629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/05/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023]
|
17
|
Jin Y, Deng J, Luo B, Zhong Y, Yu S. Construction and validation of an immune-related genes prognostic index (IRGPI) model in colon cancer. Front Endocrinol (Lausanne) 2022; 13:963382. [PMID: 36440228 PMCID: PMC9682206 DOI: 10.3389/fendo.2022.963382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Though immunotherapy has become one of the standard therapies for colon cancer, the overall effective rate of immunotherapy is very low. Constructing an immune-related genes prognostic index (IRGPI) model may help to predict the response to immunotherapy and clinical outcomes. METHODS Differentially expressed immune-related genes (DEIRGs) between normal tissues and colon cancer tissues were identified and used to construct the co-expression network. Genes in the module with the most significant differences were further analyzed. Independent prognostic immune-related genes (IRGs) were identified by univariate and multivariate cox regression analysis. Independent prognostic IRGs were used to construct the IRGPI model using the multivariate cox proportional hazards regression model, and the IRGPI model was validated by independent dataset. ROC curves were plotted and AUCs were calculated to estimate the predictive power of the IRGPI model to prognosis. Gene set enrichment analysis (GSEA) was performed to screen the enriched KEGG pathways in the high-risk and low-risk phenotype. Correlations between IRGPI and clinical characteristic, immune checkpoint expression, TMB, immune cell infiltration, immune function, immune dysfunction, immune exclusion, immune subtype were analyzed. RESULTS Totally 680 DEIRGs were identified. Three independent IRGs,NR5A2, PPARGC1A and LGALS4, were independently related to survival. NR5A2, PPARGC1A and LGALS4 were used to establish the IRGPI model. Survival analysis showed that patients with high-risk showed worse survival than patients in the low-risk group. The AUC of the IRGPI model for 1-year, 3-year and 5-year were 0.584, 0.608 and 0.697, respectively. Univariate analysis and multivariate cox regression analysis indicated that IRGPI were independent prognostic factors for survival. Stratified survival analysis showed that patients with IRGPI low-risk and low TMB had the best survival, which suggested that combination of TMB and IRGPI can better predict clinical outcome. Immune cell infiltration, immune function, immune checkpoint expression and immune exclusion were different between IRGPI high-risk and low-risk patients. CONCLUSION An immune-related genes prognostic index (IRGPI) was constructed and validated in the current study and the IRGPI maybe a potential biomarker for evaluating response to immunotherapy and clinical outcome for colon cancer patients.
Collapse
Affiliation(s)
- Yabin Jin
- Institute of Clinical Research, The First People’s Hospital of Foshan, Foshan, China
| | - Jianzhong Deng
- Department of Anorectal Surgery, The First People’s Hospital of Foshan, Foshan, China
| | - Bing Luo
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
| | - Yubo Zhong
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
| | - Si Yu
- Department of Gastrointestinal Surgery, The Second People’s Hospital of Foshan, Foshan, China
- Division of Gastrointestinal Surgery, Department of Surgery, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- *Correspondence: Si Yu,
| |
Collapse
|
18
|
Xu WD, Huang Q, Huang AF. Emerging role of galectin family in inflammatory autoimmune diseases. Autoimmun Rev 2021; 20:102847. [PMID: 33971347 DOI: 10.1016/j.autrev.2021.102847] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 03/12/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Galectin family is a group of glycan-binding proteins. Members in this family are expressed in different tissues, immune or non-immune cells. These molecules are important regulators in innate and adaptive immune response, performing significantly in a broad range of cellular and pathophysiological functions, such as cell proliferation, adhesion, migration, and invasion. Findings have shown that expression of galectins is abnormal in many inflammatory autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, osteoarthritis, sjögren's syndrome, systemic sclerosis. Galectins also function as intracellular and extracellular disease regulators mainly through the binding of their carbohydrate recognition domain to glycoconjugates. Here, we review the state-of-the-art of the role that different galectin family members play in immune cells, contributing to the complex inflammatory diseases. Hopefully collection of the information will provide a preliminary theoretical basis for the exploration of new targets for treatment of the disorders.
Collapse
Affiliation(s)
- Wang-Dong Xu
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Qi Huang
- Department of Evidence-Based Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - An-Fang Huang
- Department of Rheumatology and Immunology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
19
|
Niu J, Liu X, Zhang Z, Huang Y, Tang J, Wang B, Lu Y, Cai J, Jian J. A tandem-repeat galectin-4 from Nile tilapia (Oreochromis niloticus) is involved in immune response to bacterial infection via mediating pathogen recognition and opsonization. Mol Immunol 2020; 127:67-77. [PMID: 32927166 DOI: 10.1016/j.molimm.2020.08.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/23/2022]
Abstract
Galectins are the family of carbohydrate-binding proteins that participate in host-pathogen interaction. In this study, a galectin-4 homolog (OnGal-4) from Nile tilapia (Oreochromis niloticus) was characterized. The open reading frame of OnGal-4 was 1194 bp, encoding a peptide of 397 amino including two CRD regions and two carbohydrate recognition sites. OnGal-4 mRNA was expressed in all examined tissues with the highest level in spleen. After Streptococcus agalactiae (S.agalactiae) challenge, the OnGal-4 expression was up-regulated in the spleen, head kidney, brain, and monocytes/macrophages (Mo/MΦ). The in vitro experiments showed that recombinant OnGal-4 (rOnGal-4) protein could bind and agglutinate S.agalactiae and A.hydrophila. Also, rOnGal-4 could induce cytokines expressions and increased bactericidal activity of Mo/MΦ. Further in vivo analysis indicated that OnGal-4 overexpression could protect O.niloticus from S.agalactiae infection through modulating inflammation response. Our study suggested that OnGal-4 could improve immune response against bacterial infection by mediating pathogen recognition and opsonization.
Collapse
Affiliation(s)
- Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Xinchao Liu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Zhiqiang Zhang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China; Guangxi Key Lab for Marine Natural Products and Combinational Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Centre, Guangxi Academy of Sciences, Nanning, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animal, Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institutes, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, GD, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Guangdong ProvincialEngineeringResearchCenter for AquaticAnimalHealthAssessment, Shenzhen, 518120, China.
| |
Collapse
|
20
|
Tazhitdinova R, Timoshenko AV. The Emerging Role of Galectins and O-GlcNAc Homeostasis in Processes of Cellular Differentiation. Cells 2020; 9:cells9081792. [PMID: 32731422 PMCID: PMC7465113 DOI: 10.3390/cells9081792] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Galectins are a family of soluble β-galactoside-binding proteins with diverse glycan-dependent and glycan-independent functions outside and inside the cell. Human cells express twelve out of sixteen recognized mammalian galectin genes and their expression profiles are very different between cell types and tissues. In this review, we summarize the current knowledge on the changes in the expression of individual galectins at mRNA and protein levels in different types of differentiating cells and the effects of recombinant galectins on cellular differentiation. A new model of galectin regulation is proposed considering the change in O-GlcNAc homeostasis between progenitor/stem cells and mature differentiated cells. The recognition of galectins as regulatory factors controlling cell differentiation and self-renewal is essential for developmental and cancer biology to develop innovative strategies for prevention and targeted treatment of proliferative diseases, tissue regeneration, and stem-cell therapy.
Collapse
|