1
|
Luo H, Lai Y, Tang W, Wang G, Shen J, Liu H. Mitochondrial transplantation: a promising strategy for treating degenerative joint diseases. J Transl Med 2024; 22:941. [PMID: 39407249 PMCID: PMC11475785 DOI: 10.1186/s12967-024-05752-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
The prevalence of age-related degenerative joint diseases, particularly intervertebral disc degeneration and osteoarthritis, is increasing, thereby posing significant challenges for the elderly population. Mitochondrial dysfunction is a critical factor in the etiology and progression of these disorders. Therapeutic interventions that incorporate mitochondrial transplantation exhibit considerable promise by increasing mitochondrial numbers and improving their functionality. Existing evidence suggests that exogenous mitochondrial therapy improves clinical outcomes for patients with degenerative joint diseases. This review elucidates the mitochondrial abnormalities associated with degenerative joint diseases and examines the mechanisms of mitochondrial intercellular transfer and artificial mitochondrial transplantation. Furthermore, therapeutic strategies for mitochondrial transplantation in degenerative joint diseases are synthesized, and the concept of engineered mitochondrial transplantation is proposed.
Collapse
Affiliation(s)
- Hong Luo
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yue Lai
- Department of Orthopedics, Affiliated Hospital of Guangdong medical University, zhanjiang, 524000, China
| | - Weili Tang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Guoyou Wang
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Jianlin Shen
- Central Laboratory, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
- Department of Orthopedics, Affiliated Hospital of Putian University, Putian, 351100, Fujian, China.
| | - Huan Liu
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
2
|
Court AC, Vega-Letter AM, Parra-Crisóstomo E, Velarde F, García C, Ortloff A, Vernal R, Pradenas C, Luz-Crawford P, Khoury M, Figueroa FE. Mitochondrial transfer balances cell redox, energy and metabolic homeostasis in the osteoarthritic chondrocyte preserving cartilage integrity. Theranostics 2024; 14:6471-6486. [PMID: 39479450 PMCID: PMC11519804 DOI: 10.7150/thno.96723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024] Open
Abstract
Osteoarthrosis (OA) is a leading cause of disability and early mortality, with no disease modifying treatment. Mitochondrial (MT) dysfunction and changes in energy metabolism, leading to oxidative stress and apoptosis, are main drivers of disease. In reaction to stress, mesenchymal stromal/stem cells (MSCs) donate their MT to damaged tissues. Methods: To evaluate the capacity of clinically validated MSCs to spontaneously transfer their MT to human OA chondrocytes (OA-Ch), primary cultured Ch isolated from the articular cartilage of OA patients were co-cultured with MT-labeled MSCs. MT transfer (MitoT) was evidenced by flow cytometry and confocal microscopy of MitoTracker-stained and YFP-tagged MT protein. MT persistence and metabolic analysis on target cells were assessed by direct transfer of MSC-derived MT to OA-Chs (Mitoception), through SNP-qPCR analysis, ATP measurements and Seahorse technology. The effects of MitoT on MT dynamics, oxidative stress and cell viability were gauged by western blot of fusion/fission proteins, confocal image analysis, ROS levels, Annexin V/7AAD and TUNEL assays. Intra-articular injection of MSC-derived MT was tested in a collagenase-induced murine model of OA. Results: Dose-dependent cell-to-cell MitoT from MSCs to cultured OA-Chs was detected starting at 4 hours of co-culture, with increasing MT-fluorescence levels at higher MSC:Ch ratios. PCR analysis confirmed the presence of exogenous MSC-MT within MitoT+ OA-Chs up to 9 days post Mitoception. MitoT from MSCs to OA-Ch restores energetic status, with a higher ATP production and metabolic OXPHOS/Glycolisis ratio. Significant changes in the expression of MT network regulators, increased MFN2 and decreased p-DRP1, reveal that MitoT promotes MT fusion restoring the MT dynamics in the OA-Ch. Additionally, MitoT increases SOD2 transcripts, protein, and activity levels, and reduces ROS levels, confering resistance to oxidative stress and enhancing resistance to apoptosis. Intra-articular injection of MSC-derived MT improves histologic scores and bone density of the affected joints in the OA mouse model, demonstrating a protective effect of MT transplantation on cartilage degradation. Conclusion: The Mitochondria transfer of MSC-derived MT induced reversal of the metabolic dysfunction by restoring the energetic status and mitochondrial dynamics in the OA chondrocyte, while conferring resistance to oxidative stress and apoptosis. Intra-articular injection of MT improved the disease in collagenase-induced OA mouse model. The restoration of the cellular homeostasis and the preclinical benefit of the intra-articular MT treatment offer a new approach for the treatment of OA.
Collapse
Affiliation(s)
- Angela C. Court
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Ana María Vega-Letter
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Eliseo Parra-Crisóstomo
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Francesca Velarde
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Cynthia García
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Alexander Ortloff
- Departamento de Ciencias Veterinarias y Salud Pública, Facultad de Recursos Naturales, Universidad Católica de Temuco, Temuco, Chile
| | - Rolando Vernal
- Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Carolina Pradenas
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Patricia Luz-Crawford
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Maroun Khoury
- Cell for Cells, Santiago, Chile
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Fernando E. Figueroa
- Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Laboratory Cell and Molecular Immunology, CIIB, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
- Consorcio Regenero, Chilean Consortium for Regenerative Medicine, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
3
|
Zhou Z, Zhang P, Li J, Yao J, Jiang Y, Wan M, Tang W, Liu L. Autophagy and the pancreas: Healthy and disease states. Front Cell Dev Biol 2024; 12:1460616. [PMID: 39381372 PMCID: PMC11458389 DOI: 10.3389/fcell.2024.1460616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Macroautophagy/autophagy is an intracellular degradation pathway that has an important effect on both healthy and diseased pancreases. It protects the structure and function of the pancreas by maintaining organelle homeostasis and removing damaged organelles. A variety of pancreas-related diseases, such as diabetes, pancreatitis, and pancreatic cancer, are closely associated with autophagy. Genetic studies that address autophagy confirm this view. Loss of autophagy homeostasis (lack or overactivation) can lead to a series of adverse reactions, such as oxidative accumulation, increased inflammation, and cell death. There is growing evidence that stimulating or inhibiting autophagy is a potential therapeutic strategy for various pancreatic diseases. In this review, we discuss the multiple roles of autophagy in physiological and pathological conditions of the pancreas, including its role as a protective or pathogenic factor.
Collapse
Affiliation(s)
- Zixian Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengcheng Zhang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Juan Li
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jiaqi Yao
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuhong Jiang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Meihua Wan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenfu Tang
- West China Center of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
- Regenerative Medicine Research Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Ling Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Ulger O, Eş I, Proctor CM, Algin O. Stroke studies in large animals: Prospects of mitochondrial transplantation and enhancing efficiency using hydrogels and nanoparticle-assisted delivery. Ageing Res Rev 2024; 100:102469. [PMID: 39191353 DOI: 10.1016/j.arr.2024.102469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
One of the most frequent reasons for mortality and disability today is acute ischemic stroke, which occurs by an abrupt disruption of cerebral circulation. The intricate damage mechanism involves several factors, such as inflammatory response, disturbance of ion balance, loss of energy production, excessive reactive oxygen species and glutamate release, and finally, neuronal death. Stroke research is now carried out using several experimental models and potential therapeutics. Furthermore, studies are being conducted to address the shortcomings of clinical care. A great deal of research is being done on novel pharmacological drugs, mitochondria targeting compounds, and different approaches including brain cooling and new technologies. Still, there are many unanswered questions about disease modeling and treatment strategies. Before these new approaches may be used in therapeutic settings, they must first be tested on large animals, as most of them have been done on rodents. However, there are several limitations to large animal stroke models used for research. In this review, the damage mechanisms in acute ischemic stroke and experimental acute ischemic stroke models are addressed. The current treatment approaches and promising experimental methods such as mitochondrial transplantation, hydrogel-based interventions, and strategies like mitochondria encapsulation and chemical modification, are also examined in this work.
Collapse
Affiliation(s)
- Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara 06010, Turkiye; Gulhane Training and Research Hospital, University of Health Sciences, Ankara 06010, Turkiye.
| | - Ismail Eş
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Christopher M Proctor
- Department of Engineering Science, Institute of Biomedical Engineering (IBME), University of Oxford, Oxford OX3 7DQ, UK
| | - Oktay Algin
- Interventional MR Clinical R&D Institute, Ankara University, Ankara 06100, Turkiye; Department of Radiology, Medical Faculty, Ankara University, Ankara 06100, Turkiye; National MR Research Center (UMRAM), Bilkent University, Ankara 06800, Turkiye
| |
Collapse
|
5
|
Weng L, Luo Y, Luo X, Yao K, Zhang Q, Tan J, Yin Y. The common link between sleep apnea syndrome and osteoarthritis: a literature review. Front Med (Lausanne) 2024; 11:1401309. [PMID: 39234045 PMCID: PMC11371730 DOI: 10.3389/fmed.2024.1401309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
Patients with Osteoarthritis (OA) often also suffer from Sleep Apnea Syndrome (SAS), and many scholars have started to notice this link, although the relationship between the two is still unclear. In this review, we aim to summarize the current literature on these two diseases, integrate evidence of the OA and OSA connection, explore and discuss their potential common mechanisms, and thus identify effective treatment methods for patients with both OA and SAS. Some shared characteristics of the two conditions have been identified, notably aging and obesity as mutual risk factors. Both diseases are associated with various biological processes or molecular pathways, including mitochondrial dysfunction, reactive oxygen species production, the NF-kB pathway, HIF, IL-6, and IL-8. SAS serves as a risk factor for OA, and conversely, OA may influence the progression of SAS. The effects of OA on SAS are underreported in the literature and require more investigation. To effectively manage these patients, timely intervention for SAS is necessary while treating OA, with weight reduction being a primary requirement, alongside combined treatments such as Continuous positive airway pressure (CPAP) and medications. Additionally, numerous studies in drug development are now aimed at inhibiting or clearing certain molecular pathways, including ROS, NF-KB, IL-6, and IL-8. Improving mitochondrial function might represent a viable new strategy, with further research into mitochondrial updates or transplants being essential.
Collapse
Affiliation(s)
- Lian Weng
- Luzhou Longmatan District People's Hospital, Luzhou, China
| | - Yuxi Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Xiongjunjie Luo
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Kaitao Yao
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Qian Zhang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Junjie Tan
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Yiran Yin
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Provincial Laboratory of Orthopedic Engineering, Luzhou, China
- Department of Clinical Medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
6
|
Taner OF, Ulger O, Ersahin S, Baser NT, Genc O, Kubat GB. Effects of mitochondrial transplantation on chronic pressure wound healing in a human patient. Cytotherapy 2024; 26:579-585. [PMID: 38506772 DOI: 10.1016/j.jcyt.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AIMS Wound healing is a multistage process that requires a concerted effort of various cell types. The intricate processes involved in the healing of wounds result in high energy requirements. Furthermore, mitochondria play a crucial role in the healing process because of their involvement in neo angiogenesis, growth factor synthesis, and cell differentiation. It is unclear how mitochondria transplantation, a promising new approach, influences wound healing. METHODS In this study, healthy autologous mitochondria obtained from skeletal muscle were injected into chronic pressure wounds as an intervention to promote wound healing. RESULTS Mitochondrial transplantation accelerated wound healing by reducing wound size, increasing granulation tissue, and hastening epithelialization. CONCLUSIONS This study is the first to demonstrate the therapeutic efficacy of mitochondrial transplantation in wound healing.
Collapse
Affiliation(s)
- Omer Faruk Taner
- Department of Plastic Surgery, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Simay Ersahin
- Department of Plastic Surgery, Bitlis Tatvan State Hospital, University of Health Sciences, Ankara, Turkey
| | - Nesrin Tan Baser
- Department of Plastic Surgery, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Onur Genc
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey.
| |
Collapse
|
7
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
8
|
Suh J, Lee YS. Mitochondria as secretory organelles and therapeutic cargos. Exp Mol Med 2024; 56:66-85. [PMID: 38172601 PMCID: PMC10834547 DOI: 10.1038/s12276-023-01141-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 01/05/2024] Open
Abstract
Mitochondria have been primarily considered intracellular organelles that are responsible for generating energy for cell survival. However, accumulating evidence suggests that mitochondria are secreted into the extracellular space under physiological and pathological conditions, and these secreted mitochondria play diverse roles by regulating metabolism, the immune response, or the differentiation/maturation in target cells. Furthermore, increasing amount of research shows the therapeutic effects of local or systemic administration of mitochondria in various disease models. These findings have led to growing interest in exploring mitochondria as potential therapeutic agents. Here, we discuss the emerging roles of mitochondria as extracellularly secreted organelles to shed light on their functions beyond energy production. Additionally, we provide information on therapeutic outcomes of mitochondrial transplantation in animal models of diseases and an update on ongoing clinical trials, underscoring the potential of using mitochondria as a novel therapeutic intervention.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Kim HR, Cho HB, Lee S, Park JI, Kim HJ, Park KH. Fusogenic liposomes encapsulating mitochondria as a promising delivery system for osteoarthritis therapy. Biomaterials 2023; 302:122350. [PMID: 37864947 DOI: 10.1016/j.biomaterials.2023.122350] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/23/2023]
Abstract
Many attempts have been made to use mitochondria (MT) to treat human diseases; however, MT are large, making them difficult to deliver effectively. Therefore, a transfer strategy based on membrane fusion was established. Fusogenic mitochondrial capsules (FMCs) comprising a neutral lipid (PE), a cationic lipid (DOTAP), an aromatic lipid (Liss Rhod PE), and three types of liposome (FMC0, FMC1, and FMC2), were designed and synthesized. The amount of DOTAP, which affects membrane fusion efficiency, differed between FMC preparations. The characteristics of these FMCs were analyzed by DLS, TEM, and AFM, and the encapsulation and fusion efficiency between FMC-MT and FMC-chondrocytes were confirmed by FRET, mtDNA copy number, and CLSM, respectively. Compared with naked MT, delivery of FMCs to chondrocytes was faster and more efficient. Moreover, fusion was a more stable delivery method than endocytosis, as evidenced by reduced induction of mitophagy. In vitro and in vivo experiments revealed that FMCs reduced expression of inflammatory cytokines and MMP13, increased expression of extracellular matrix components, and promoted cartilage regeneration. These findings suggest that FMCs are a highly effective and promising strategy for delivery of MT to promote cartilage regeneration, and highlight their potential as a novel platform for MT transfer therapy.
Collapse
Affiliation(s)
- Hye-Ryoung Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hui Bang Cho
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Sujeong Lee
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Ji-In Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea
| | - Hye Jin Kim
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| | - Keun-Hong Park
- Laboratory of Nano-regenerative Medicine, Department of Biomedical Science, College of Life Science, CHA University, CHA Biocomplex, 335 Pangyo-ro, Sampyeong-Dong, Bundang-gu, Seongnam-si, 13488, Republic of Korea.
| |
Collapse
|
10
|
KUBAT GB. Mitochondrial transplantation and transfer: The promising method for diseases. Turk J Biol 2023; 47:301-312. [PMID: 38155937 PMCID: PMC10752372 DOI: 10.55730/1300-0152.2665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/31/2023] [Accepted: 10/18/2023] [Indexed: 12/30/2023] Open
Abstract
Mitochondria are organelles that serve as the powerhouses for cellular bioenergetics in eukaryotic cells. It is responsible for mitochondrial adenosine triphosphate (ATP) generation, cell signaling and activity, calcium balance, cell survival, proliferation, apoptosis, and autophagy. Mitochondrial transplantation is a promising disease therapy that involves the recovery of mitochondrial dysfunction using isolated functioning mitochondria. The objective of the present article is to provide current knowledge on natural mitochondrial transfer processes, in vitro and in vivo applications of mitochondrial transplantation, clinical trials, and challenges associated with mitochondrial transplantation.
Collapse
Affiliation(s)
- Gökhan Burçin KUBAT
- Department of Mitochondria and Cellular Research, Gülhane Health Sciences Institute, University of Health Sciences, Ankara,
Turkiye
| |
Collapse
|
11
|
Muthu S, Korpershoek JV, Novais EJ, Tawy GF, Hollander AP, Martin I. Failure of cartilage regeneration: emerging hypotheses and related therapeutic strategies. Nat Rev Rheumatol 2023:10.1038/s41584-023-00979-5. [PMID: 37296196 DOI: 10.1038/s41584-023-00979-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 06/12/2023]
Abstract
Osteoarthritis (OA) is a disabling condition that affects billions of people worldwide and places a considerable burden on patients and on society owing to its prevalence and economic cost. As cartilage injuries are generally associated with the progressive onset of OA, robustly effective approaches for cartilage regeneration are necessary. Despite extensive research, technical development and clinical experimentation, no current surgery-based, material-based, cell-based or drug-based treatment can reliably restore the structure and function of hyaline cartilage. This paucity of effective treatment is partly caused by a lack of fundamental understanding of why articular cartilage fails to spontaneously regenerate. Thus, research studies that investigate the mechanisms behind the cartilage regeneration processes and the failure of these processes are critical to instruct decisions about patient treatment or to support the development of next-generation therapies for cartilage repair and OA prevention. This Review provides a synoptic and structured analysis of the current hypotheses about failure in cartilage regeneration, and the accompanying therapeutic strategies to overcome these hurdles, including some current or potential approaches to OA therapy.
Collapse
Affiliation(s)
- Sathish Muthu
- Orthopaedic Research Group, Coimbatore, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Sharda University, New Delhi, India
- Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, India
| | - Jasmijn V Korpershoek
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, Netherlands
| | - Emanuel J Novais
- Unidade Local de Saúde do Litoral Alentejano, Orthopedic Department, Santiago do Cacém, Portugal
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Gwenllian F Tawy
- Division of Cell Matrix Biology & Regenerative Medicine, University of Manchester, Manchester, UK
| | - Anthony P Hollander
- Institute of Lifecourse and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Turkel I, Ozerklig B, Yılmaz M, Ulger O, Kubat GB, Tuncer M. Mitochondrial transplantation as a possible therapeutic option for sarcopenia. J Mol Med (Berl) 2023:10.1007/s00109-023-02326-3. [PMID: 37209146 DOI: 10.1007/s00109-023-02326-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/09/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
With advancing age, the skeletal muscle phenotype is characterized by a progressive loss of mass, strength, and quality. This phenomenon, known as sarcopenia, has a negative impact on quality of life and increases the risk of morbidity and mortality in older adults. Accumulating evidence suggests that damaged and dysfunctional mitochondria play a critical role in the pathogenesis of sarcopenia. Lifestyle modifications, such as physical activity, exercise, and nutrition, as well as medical interventions with therapeutic agents, are effective in the management of sarcopenia and offer solutions to maintain and improve skeletal muscle health. Although a great deal of effort has been devoted to the identification of the best treatment option, these strategies are not sufficient to overcome sarcopenia. Recently, it has been reported that mitochondrial transplantation may be a possible therapeutic approach for the treatment of mitochondria-related pathological conditions such as ischemia, liver toxicity, kidney injury, cancer, and non-alcoholic fatty liver disease. Given the role of mitochondria in the function and metabolism of skeletal muscle, mitochondrial transplantation may be a possible option for the treatment of sarcopenia. In this review, we summarize the definition and characteristics of sarcopenia and molecular mechanisms associated with mitochondria that are known to contribute to sarcopenia. We also discuss mitochondrial transplantation as a possible option. Despite the progress made in the field of mitochondrial transplantation, further studies are needed to elucidate the role of mitochondrial transplantation in sarcopenia. KEY MESSAGES: Sarcopenia is the progressive loss of skeletal muscle mass, strength, and quality. Although the specific mechanisms that lead to sarcopenia are not fully understood, mitochondria have been identified as a key factor in the development of sarcopenia. Damaged and dysfunctional mitochondria initiate various cellular mediators and signaling pathways, which largely contribute to the age-related loss of skeletal muscle mass and strength. Mitochondrial transplantation has been reported to be a possible option for the treatment/prevention of several diseases. Mitochondrial transplantation may be a possible therapeutic option for improving skeletal muscle health and treating sarcopenia. Mitochondrial transplantation as a possible treatment option for sarcopenia.
Collapse
Affiliation(s)
- Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey
| | - Merve Yılmaz
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Health Sciences Institute, Health Sciences University, Ankara, Turkey
| | - Gokhan Burcin Kubat
- Division of Sport Sciences and Technology, Institute of Health Sciences, Hacettepe University, Ankara, Turkey.
- Department of Mitochondria and Cellular Research, Health Sciences Institute, Health Sciences University, Ankara, Turkey.
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
13
|
Zhang W, Xia CL, Ma JN, Li JX, Chen Q, Ou SJ, Yang Y, Qi Y, Xu CP. Effects of mitochondrial dysfunction on bone metabolism and related diseases: a scientometric study from 2003 to 2022. BMC Musculoskelet Disord 2022; 23:1016. [DOI: 10.1186/s12891-022-05911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/25/2022] [Indexed: 11/28/2022] Open
Abstract
Abstract
Background
In recent years, mitochondrial dysfunction has been extensively studied and published, but research on the effects of mitochondrial dysfunction on bone metabolism and related diseases is only just beginning. Furthermore, no studies have been carried out to systematically illustrate this area from a scientometric point of view. The goal of this research is to review existing knowledge and identify new trends and possible hotspots in this area.
Methods
All publications related to the relationship between mitochondrial dysfunction and bone metabolism and related diseases from 2003 to 2022 were searched at the Web of Science Core Collection (WoSCC) on May 7, 2022. Four different analytical tools: VOSviewer 1.6.18, CiteSpace V 6.1, HistorCite (12.03.07), and Excel 2021 were used for the scientometric research.
Results
The final analysis included 555 valid records in total. Journal of Biological Chemistry (Co-citations = 916) is the most famous journal in this field. China (Percentage = 37%), the United States (Percentage = 24%), and Korea (Percentage = 12%) are the most productive countries. Blanco FJ and Choi EM are the main researchers with significant academic influence. Current research hotspots are basic research on mitochondrial dysfunction and the prevention or treatment of bone metabolism-related diseases.
Conclusion
The study of the consequences of mitochondrial dysfunction on bone metabolism and associated diseases is advancing rapidly. Several prominent researchers have published extensive literature and are widely cited. Future research in this area will focus on oxidative stress, aging, gene expression, and the pathogenesis of bone metabolism-related diseases.
Collapse
|