1
|
Wong R, Hall MA, Wiggen T, Johnson SG, Huling JD, Turner LE, Wilkins KJ, Yeh HC, Stürmer T, Bramante CT, Buse JB, Reusch J. Effect of SARS-CoV-2 Infection on Incident Diabetes by Viral Variant: Findings From the National COVID Cohort Collaborative (N3C). Diabetes Care 2024; 47:1846-1854. [PMID: 39207804 PMCID: PMC11417274 DOI: 10.2337/dc24-1003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The coronavirus 2019 (COVID-19) pandemic has evolved over time by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, disease severity, treatment, and prevention. There is evidence of an elevated risk of incident diabetes after COVID-19; our objective was to evaluate whether this association is consistent across time and with contemporary viral variants. RESEARCH DESIGN AND METHODS We conducted a retrospective cohort study using National COVID Cohort Collaborative (N3C) data to evaluate incident diabetes risk among COVID-positive adults compared with COVID-negative patients or control patients with acute respiratory illness (ARI). Cohorts were weighted on demographics, data site, and Charlson comorbidity index score. The primary outcome was the cumulative incidence ratio (CIR) of incident diabetes for each viral variant era. RESULTS Risk of incident diabetes 1 year after COVID-19 was increased for patients with any viral variant compared with COVID-negative control patients (ancestral CIR 1.16 [95% CI 1.12-1.21]; Alpha CIR 1.14 [95% CI 1.11-1.17]; Delta CIR 1.17 [95% CI 1.13-1.21]; Omicron CIR 1.13 [95% CI 1.10-1.17]) and control patients with ARI (ancestral CIR 1.17 [95% CI 1.11-1.22]; Alpha CIR 1.14 [95% CI 1.09-1.19]; Delta CIR 1.18 [95% CI 1.11-1.26]; Omicron CIR 1.20 [95% CI 1.13-1.27]). There was latency in the timing of incident diabetes risk with the Omicron variant; in contrast with other variants, the risk presented after 180 days. CONCLUSIONS Incident diabetes risk after COVID-19 was similar across different SARS-CoV-2 variants. However, there was greater latency in diabetes onset in the Omicron variant era.
Collapse
Affiliation(s)
- Rachel Wong
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, NY
- Department of Internal Medicine, Stony Brook University, Stony Brook, NY
| | - Margaret A. Hall
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA
| | - Talia Wiggen
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN
| | - Steven G. Johnson
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN
| | - Jared D. Huling
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Lindsey E. Turner
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Kenneth J. Wilkins
- Office of the Director, Biostatistics Program/Office of Clinical Research Support, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Hsin-Chieh Yeh
- Department of Medicine, Johns Hopkins University, Baltimore, MD
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Til Stürmer
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Carolyn T. Bramante
- Division of General Internal Medicine, University of Minnesota Medical School, Minneapolis, MN
| | - John B. Buse
- Division of Endocrinology and Metabolism, Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC
- North Carolina Translational and Clinical Sciences Institute, University of North Carolina School of Medicine, Chapel Hill, NC
| | - Jane Reusch
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | | |
Collapse
|
2
|
Sharma T, Mondal T, Khan S, Churqui MP, Nyström K, Thombare K, Baig MH, Dong JJ. Identifying novel inhibitors targeting Exportin-1 for the potential treatment of COVID-19. Arch Microbiol 2024; 206:69. [PMID: 38240823 DOI: 10.1007/s00203-023-03761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 01/23/2024]
Abstract
The nuclear export protein 1 (XPO1) mediates the nucleocytoplasmic transport of proteins and ribonucleic acids (RNAs) and plays a prominent role in maintaining cellular homeostasis. XPO1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses. In our earlier study, we proved the inhibition of XPO1 as a therapeutic strategy for managing SARS-COV-2 and its variants. In this study, we have utilized pharmacophore-assisted computational methods to identify prominent XPO1 inhibitors. After several layers of screening, a few molecules were shortlisted for further experimental validation on the in vitro SARS-CoV-2 cell infection model. It was observed that these compounds reduced spike positivity, suggesting inhibition of SARS-COV-2 infection. The outcome of this study could be considered further for developing novel antiviral therapeutic strategies against SARS-CoV-2.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea
| | - Tanmoy Mondal
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sajid Khan
- Department of Biochemistry, Aligarh Muslim University, Aligarh, India
| | - Marianela Patzi Churqui
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Kristina Nyström
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Ketan Thombare
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mohammad Hassan Baig
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea.
| | - Jae-June Dong
- Department of Family Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Gangnam-gu, Seoul, 06273, Republic of Korea.
| |
Collapse
|
3
|
Loi LK, Yang CC, Lin YC, Su YF, Juan YC, Chen YH, Chang HC. Decoy peptides effectively inhibit the binding of SARS-CoV-2 to ACE2 on oral epithelial cells. Heliyon 2023; 9:e22614. [PMID: 38107325 PMCID: PMC10724569 DOI: 10.1016/j.heliyon.2023.e22614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/19/2023] Open
Abstract
The entry of SARS-CoV-2 into host cells involves the interaction between the viral spike protein and the human angiotensin-converting enzyme 2 (ACE2) receptor. Given that the spike protein evolves rapidly to evade host immunity, therapeutics that block ACE2 accessibility, such as spike decoys, could serve as an alternative strategy for attenuating viral infection. Here, we constructed a drug screening platform based on oral epithelial cells to rapidly identify peptides or compounds capable of blocking the spike-ACE2 interaction. We engineered short decoy peptides, 8 to 14 amino acids in length, using the spike protein's receptor-binding motif (RBM) and demonstrated that these peptides can effectively inhibit virus attachment to host cells. Additionally, we discovered that diminazene aceturate (DIZE), an ACE2 activator, similarly inhibited virus binding. Our research thus validates the potential of decoy peptides as a new therapeutic strategy against SARS-CoV-2 infections, opening avenues for further development and study.
Collapse
Affiliation(s)
- Lai-Keng Loi
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chieh Yang
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Stomatology, Oral & Maxillofacial Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yu-Cheng Lin
- Department of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yee-Fun Su
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Chen Juan
- iStat Biomedical Co., Ltd, New Taipei City, Taiwan
| | - Yi-Hsin Chen
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsiu-Chuan Chang
- Institute of Oral Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
4
|
Dasgupta A, Gangai S, Narayan R, Kapoor S. Mapping the Lipid Signatures in COVID-19 Infection: Diagnostic and Therapeutic Solutions. J Med Chem 2023; 66:14411-14433. [PMID: 37899546 DOI: 10.1021/acs.jmedchem.3c01238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The COVID-19 pandemic ignited research centered around the identification of robust biomarkers and therapeutic targets. SARS-CoV-2, the virus responsible, hijacks the metabolic machinery of the host cells. It relies on lipids and lipoproteins of host cells for entry, trafficking, immune evasion, viral replication, and exocytosis. The infection causes host cell lipid metabolic remodelling. Targeting lipid-based processes is thus a promising strategy for countering COVID-19. Here, we review the role of lipids in the different steps of the SARS-CoV-2 pathogenesis and identify lipid-centric targetable avenues. We discuss lipidome changes in infected patients and their relevance as potential clinical diagnostic or prognostic biomarkers. We summarize the emerging direct and indirect therapeutic approaches for targeting COVID-19 using lipid-inspired approaches. Given that viral protein-targeted therapies may become less effective due to mutations in emerging SARS-CoV-2 variants, lipid-inspired interventions may provide additional and perhaps better means of combating this and future pandemics.
Collapse
Affiliation(s)
- Aishi Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Shon Gangai
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
- School of Interdisciplinary Life Sciences (SILS), Institute of Technology Goa, Farmagudi, Ponda, Goa 403401, India
| | - Shobhna Kapoor
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
- IIT-Bombay Monash Academy, Indian Institute of Technology Bombay, Mumbai 400076, India
- Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima 739-8528, Japan
| |
Collapse
|