1
|
Mormone E, Cisternino A, Capone L, Caradonna E, Sbarbati A. The Model of Interstitial Cystitis for Evaluating New Molecular Strategies of Interstitial Regeneration in Humans. Int J Mol Sci 2024; 25:2326. [PMID: 38397003 PMCID: PMC10889234 DOI: 10.3390/ijms25042326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Given the recent evidence in the clinical application of regenerative medicine, mostly on integumentary systems, we focused our interests on recent bladder regeneration approaches based on mesenchymal stem cells (MSCs), platelet-rich plasma (PRP), and hyaluronic acid (HA) in the treatment of interstitial cystitis/bladder pain syndrome (IC/BPS) in humans. IC/BPS is a heterogeneous chronic disease with not-well-understood etiology, characterized by suprapubic pain related to bladder filling and urothelium dysfunction, in which the impairment of immunological processes seems to play an important role. The histopathological features of IC include ulceration of the mucosa, edema, denuded urothelium, and increased detection of mast cells and other inflammatory cells. A deeper understanding of the molecular mechanism underlying this disease is essential for the selection of the right therapeutic approach. In fact, although various therapeutic strategies exist, no efficient therapy for IC/BPS has been discovered yet. This review gives an overview of the clinical and pathological features of IC/BPS, with a particular focus on the molecular pathways involved and a special interest in the ongoing few investigational therapies in IC/BPS, which use new regenerative medicine approaches, and their synergetic combination. Good knowledge of the molecular aspects related to stem cell-, PRP-, and biomaterial-based treatments, as well as the understanding of the molecular mechanism of this pathology, will allow for the selection of the right and best use of regenerative approaches of structures involving connective tissue and epithelia, as well as in other diseases.
Collapse
Affiliation(s)
- Elisabetta Mormone
- Intitute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Antonio Cisternino
- Santa Maria di Bari Hospital, Via Antonio de Ferraris 22, 70124 Bari, Italy;
| | - Lorenzo Capone
- Department of Urology, Fondazione IRCCS Casa Sollievo della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, Italy;
| | | | - Andrea Sbarbati
- Department of Neuroscience, Biomedicine and Movement Sciences, Human Anatomy and Histology Section, University of Verona, 37129 Verona, Italy;
| |
Collapse
|
2
|
Liu M, Wang Y, Gao G, Zhao WX, Fu Q. Stem Cell Application for Stress Urinary Incontinence: From Bench to Bedside. Curr Stem Cell Res Ther 2023; 18:17-26. [PMID: 35249506 DOI: 10.2174/1574888x17666220304213057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 11/22/2022]
Abstract
Stress urinary incontinence (SUI) is a common urinary system disease worldwide. Nowadays, medical therapy and surgery can control the symptoms and improve the life quality of patients. However, they might also bring about complications as the standard therapy fails to address the underlying problem of urethral sphincter dysfunction. Recent advances in cell technology have aroused interest in the use of autologous stem cell therapy to restore the ability of urinary control. The present study reviewed several types of stem cells for the treatment of SUI in the experimental and clinical stages.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Ying Wang
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Guo Gao
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei-Xin Zhao
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Qiang Fu
- Department of Urology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.,Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| |
Collapse
|
3
|
Liu M, Chen J, Cao N, Zhao W, Gao G, Wang Y, Fu Q. Therapies Based on Adipose-Derived Stem Cells for Lower Urinary Tract Dysfunction: A Narrative Review. Pharmaceutics 2022; 14:pharmaceutics14102229. [PMID: 36297664 PMCID: PMC9609842 DOI: 10.3390/pharmaceutics14102229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Lower urinary tract dysfunction often requires tissue repair or replacement to restore physiological functions. Current clinical treatments involving autologous tissues or synthetic materials inevitably bring in situ complications and immune rejection. Advances in therapies using stem cells offer new insights into treating lower urinary tract dysfunction. One of the most frequently used stem cell sources is adipose tissue because of its easy access, abundant source, low risk of severe complications, and lack of ethical issues. The regenerative capabilities of adipose-derived stem cells (ASCs) in vivo are primarily orchestrated by their paracrine activities, strong regenerative potential, multi-differentiation potential, and cell–matrix interactions. Moreover, biomaterial scaffolds conjugated with ASCs result in an extremely effective tissue engineering modality for replacing or repairing diseased or damaged tissues. Thus, ASC-based therapy holds promise as having a tremendous impact on reconstructive urology of the lower urinary tract.
Collapse
Affiliation(s)
- Meng Liu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jiasheng Chen
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Nailong Cao
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Weixin Zhao
- Wake Forest Institute for Regenerative Medicine, Winston-Salem, NC 27157, USA
| | - Guo Gao
- Key Laboratory for Thin Film and Micro Fabrication of the Ministry of Education, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Wang
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| | - Qiang Fu
- Department of Urology, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Eastern Institute of Urologic Reconstruction, Shanghai Jiao Tong University, Shanghai 200233, China
- Correspondence: (Y.W.); (Q.F.)
| |
Collapse
|
4
|
Kaya‐Sezginer E, Yilmaz‐Oral D, Kırlangıç OF, Yilmaz S, Özen FZ, Aşan M, Gur S. Sodium butyrate ameliorates erectile dysfunction through fibrosis in a rat model of partial bladder outlet obstruction. Andrology 2022; 10:1441-1453. [DOI: 10.1111/andr.13231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/01/2022] [Accepted: 07/10/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Ecem Kaya‐Sezginer
- Faculty of Pharmacy, Department of Biochemistry Ankara University Ankara Turkey
| | - Didem Yilmaz‐Oral
- Faculty of Pharmacy, Department of Pharmacology Cukurova University Adana Turkey
| | | | - Sercan Yilmaz
- Gulhane Training and Research Hospital, Department of Urology Health Sciences University Ankara Turkey
| | - Fatma Zeynep Özen
- Faculty of Medicine, Department of Pathology Amasya University Amasya Turkey
| | - Melih Aşan
- Institute of Biotechnology Ankara University Ankara Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Pharmacology Ankara University Ankara Turkey
| |
Collapse
|
5
|
Xiao S, Wang P, Zhao J, Ling Z, An Z, Fu Z, Fu W, Zhang X. Bi-layer silk fibroin skeleton and bladder acellular matrix hydrogel encapsulating adipose-derived stem cells for bladder reconstruction. Biomater Sci 2021; 9:6169-6182. [PMID: 34346416 DOI: 10.1039/d1bm00761k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A scaffold, constructed from a bi-layer silk fibroin skeleton (BSFS) and a bladder acellular matrix hydrogel (BAMH) encapsulated with adipose-derived stem cells (ASCs), was developed for bladder augmentation in a rat model. The BSFS, prepared from silk fibroin (SF), had good mechanical properties that allowed it to maintain the scaffold shape and be used for stitching. The prepared BAM was digested by pepsin and the pH was adjusted to harvest the BAMH that provided an extracellular environment for the ASCs. The constructed BSFS-BAMH-ASCs and BSFS-BAMH scaffolds were wrapped in the omentum to promote neovascularization and then used for bladder augmentation; at the same time, a cystotomy was used as the condition for the control group. Histological staining and immunohistochemical analysis confirmed that the omentum incubation could promote scaffold vascularization. Hematoxylin and eosin and Masson's trichrome staining indicated that the BSFS-BAMH-ASCs scaffold regenerated the bladder wall structure. In addition, immunofluorescence analyses confirmed that the ASCs could promote the regeneration of smooth muscle, neurons and blood vessels and the restoration of physiological function. These results demonstrated that the BSFS-BAMH-ASCs may be a promising scaffold for promoting bladder wall regeneration and the restoration of physiological function of the bladder in a rat bladder augmentation model.
Collapse
Affiliation(s)
- Shuwei Xiao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Pengchao Wang
- Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China and Department of Urology, Hainan Hospital of PLA General Hospital, Hai tang Bay, Sanya City, Hainan Province 572013, China
| | - Jian Zhao
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhengyun Ling
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Ziyan An
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Zhouyang Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China. and Medical School of Chinese PLA, 28 Fuxing Road, Beijing, 100853, China
| | - Weijun Fu
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Xu Zhang
- Department of Urology, the Third Medical Centre, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
6
|
New Frontiers or the Treatment of Interstitial Cystitis/Bladder Pain Syndrome - Focused on Stem Cells, Platelet-Rich Plasma, and Low-Energy Shock Wave. Int Neurourol J 2020; 24:211-221. [PMID: 33017892 PMCID: PMC7538293 DOI: 10.5213/inj.2040104.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022] Open
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS), which is characterized by bladder pain and irritative voiding symptoms, is a frustrating disease without effective treatment. The cause is still largely not understood, although urothelium ischemia/hypoxia, apoptosis, denudation, and infiltration of inflammatory cells are common histopathological findings. The current uncertainty regarding the etiology and pathology of IC/BPS has a negative impact on its timely and successful treatment; therefore, the development of new treatment modalities is urgently needed. Herein, we present advances in our knowledge on this topic and review the potential application of regenerative medicine for the treatment of IC/BPS. This article provides information on the basic characteristics and clinical evidence of stem cells, platelet-rich plasma (PRP), and low-energy shock waves (LESWs) based on a literature review with a search strategy for articles related to IC/BPS, stem cells, PRP, and LESW published in MEDLINE and PubMed. Stem cells, PRP, and LESW, which modulate inflammatory processes and promote tissue repair, have been proven to improve bladder regeneration, relieve bladder pain, inhibit bladder inflammation, and increase bladder capacity in some preclinical studies. However, clinical studies are still in their infancy. Based on the mechanisms of action of stem cells, PRP, and LESW documented in many preclinical studies, the potential applications of regenerative medicine for the treatment of IC/BPS is an emerging frontier of interest. However, solid evidence from clinical studies remains to be obtained.
Collapse
|
7
|
Fakhrieh M, Darvish M, Ardeshirylajimi A, Taheri M, Omrani MD. Improved bladder smooth muscle cell differentiation of the mesenchymal stem cells when grown on electrospun polyacrylonitrile/polyethylene oxide nanofibrous scaffold. J Cell Biochem 2019; 120:15814-15822. [PMID: 31069835 DOI: 10.1002/jcb.28852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/27/2019] [Indexed: 11/08/2022]
Abstract
Reconstruction of the bladder wall plays an important role in improving its function in patients with urinary bladder dysfunction. Tissue engineering has been trying to introduce biocompatible nanofibers as scaffolds for bladder wall matrix substitutes. In this study a composite nanofibrous scaffold was fabricated from polyacrylonitrile (PAN) and polyethylene oxide (PEO) blend by electrospinning method and then its morphological and mechanical characteristics was evaluated by scanning electron microscopy (SEM), tensile, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Then smooth muscle cell (SMC) differentiation supportive capacity of PAN-PEO nanofibers was investigated by culturing of human adipose tissue-derived mesenchymal stem cells (AT-MSCs) on this scaffold and then its differentiation potential in different groups was investigated using SMC-related gene and protein markers. SEM and MTT results demonstrated that PAN-PEO supported AT-MSCs attachment, growth and proliferation, especially at early times after cell seeding. The obtained results from real-time reverse transcription polymerase chain reaction revealed that collagen-I-α1, collagen-III-α1, α-smooth muscle actin (α-SMA), calponin1, SM22α, caldesmon1, elastin, and myosin heavy chain (MHC) genes were expressed in AT-MSCs cultured on PAN-PEO significantly higher than those stem cells that cultured on the culture plate as a control. In addition α-SMA and MHC proteins were also expressed in AT-MSCs cultured on PAN-PEO significantly higher than control. According to the results PAN-PEO nanofibrous scaffold showed a positive AT-MSCs-seeded PAN-PEO has a great promising potential to use in bladder tissue engineering applications.
Collapse
Affiliation(s)
- Maryam Fakhrieh
- Department of Biotechnology, University of Tehran, Tehran, Iran
| | - Maryam Darvish
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Urology and nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Wittig L, Carlson KV, Andrews JM, Crump RT, Baverstock RJ. Diabetic Bladder Dysfunction:A Review. Urology 2019; 123:1-6. [DOI: 10.1016/j.urology.2018.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/27/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022]
|
9
|
Sadahide K, Teishima J, Inoue S, Tamura T, Kamei N, Adachi N, Matsubara A. Endoscopic repair of the urinary bladder with magnetically labeled mesenchymal stem cells: Preliminary report. Regen Ther 2018; 10:46-53. [PMID: 30581896 PMCID: PMC6299148 DOI: 10.1016/j.reth.2018.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/07/2018] [Accepted: 10/30/2018] [Indexed: 01/01/2023] Open
Abstract
Introduction Transurethral resection of a bladder tumor (TURBT) using a resectoscope has been standard treatment for bladder cancer. However, no treatment method promotes the repair of resected bladder tissue. The aim of this study was to examine the healing process of damaged bladder tissue after a transurethral injection of bone marrow mesenchymal stem cells (MSCs) into the bladder. An injection of magnetic MSCs meant that they accumulated in the damaged area of the bladder. Another aim of this study was to compare the acceleration effect of MSC magnetic delivery on the repair of bladder tissue with that of non-magnetic MSC injection. Methods Using the transurethral approach to avoid opening the abdomen, electrofulguration was carried out on the anterior wall of the urinary bladder of white Japanese rabbits to mimic tumor resection. An external magnetic field directed at the injured site was then applied using a 1-tesla (T) permanent magnet. Twelve rabbits were divided into three groups. The 1 × 106 of magnetically labeled MSCs were injected into the urinary bladder with or without the magnetic field (MSC M+ and MSC M-groups, respectively), and phosphate-buffered saline was injected as the control. The effects of the injections in the three groups at 14 days were examined using 4.7-T magnetic resonance imaging (MRI) then macroscopically and histologically. The mRNA expressions of several cytokines in the repair tissues were assessed using real-time polymerase chain reaction. Results The macroscopic findings showed the area of repair tissue in the MSC M+ group to be larger than that in either the MSC M-group or control group. MRI clearly depicted the macroscopic findings. The histological study showed that repair of the cauterized area with myofibrous tissue was significantly better in the MSC M+ group than that in either the MSC M-group or control group, although there was no significant difference in several mRNA cytokines among the three groups at 14 days after surgery. Conclusions The magnetic delivery of MSCs shows promise as an effective, minimally invasive method of enhancing tissue regeneration after TURBT.
Collapse
Key Words
- BC, urinary bladder cancer
- Bone marrow
- Cancer
- FA, flip angle
- FBS, fetal bovine serum
- H&E, hematoxylin and eosin
- MRI, Magnetic resonance imaging
- MSC, mesenchymal stem cell
- Mesenchymal stem cell
- NEX, number of excitations
- NMIBC, non-muscle invasive urinary bladder cancer
- PBS, phosphate-buffered saline
- PCR, polymerase chain reaction
- Regeneration
- SPION, superparamagnetic iron oxide nanoparticle
- TE, echo time
- TR, repetition time
- TURBT, transurethral resection of bladder tumor
- Transurethral resection
- Urinary bladder
- αSMA, α-smooth muscle actin
Collapse
Affiliation(s)
- Kosuke Sadahide
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Corresponding author.
| | - Jun Teishima
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shogo Inoue
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takayuki Tamura
- Department of Radiology, Hiroshima University Hospital, Hiroshima, Japan
| | - Naosuke Kamei
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
- Medical Center for Translational & Clinical Research, Hiroshima University Hospital, Hiroshima, Japan
| | - Nobuo Adachi
- Department of Orthopaedic Surgery, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akio Matsubara
- Department of Urology, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
10
|
Sivaraman S, Amoroso N, Gu X, Purves JT, Hughes FM, Wagner WR, Nagatomi J. Evaluation of Poly (Carbonate-Urethane) Urea (PCUU) Scaffolds for Urinary Bladder Tissue Engineering. Ann Biomed Eng 2018; 47:891-901. [PMID: 30542784 DOI: 10.1007/s10439-018-02182-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 12/04/2018] [Indexed: 01/27/2023]
Abstract
Although the previous success of bladder tissue engineering demonstrated the feasibility of this technology, most polyester based scaffolds used in previous studies possess inadequate mechanical properties for organs that exhibit large deformation. The present study explored the use of various biodegradable elastomers as scaffolds for bladder tissue engineering and poly (carbonate-urethane) urea (PCUU) scaffolds mimicked urinary bladder mechanics more closely than polyglycerol sebacate-polycaprolactone (PGS-PCL) and poly (ether-urethane) urea (PEUU). The PCUU scaffolds also showed cyto-compatibility as well as increased porosity with increasing stretch indicating its ability to aid in infiltration of smooth muscle cells. Moreover, a bladder outlet obstruction (BOO) rat model was used to test the safety and efficacy of the PCUU scaffolds in treating a voiding dysfunction. Bladder augmentation with PCUU scaffolds led to enhanced survival of the rats and an increase in the bladder capacity and voiding volume over a 3 week period, indicating that the high-pressure bladder symptom common to BOO was alleviated. The histological analysis of the explanted scaffold demonstrated smooth muscle cell and connective tissue infiltration. The knowledge gained in the present study should contribute towards future improvement of bladder tissue engineering technology to ultimately aide in the treatment of bladder disorders.
Collapse
Affiliation(s)
- Srikanth Sivaraman
- Department of Bioengineering, Clemson University, Clemson, SC, USA. .,ENRC 4614, University of Arkansas, 700 Research Center Blvd, Fayetteville, AR, 72701, USA.
| | - Nicholas Amoroso
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Xinzhu Gu
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - J Todd Purves
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Francis M Hughes
- Department of Bioengineering, Clemson University, Clemson, SC, USA.,Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - William R Wagner
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiro Nagatomi
- Department of Bioengineering, Clemson University, Clemson, SC, USA
| |
Collapse
|
11
|
Zhou Z, Yan H, Liu Y, Xiao D, Li W, Wang Q, Zhao Y, Sun K, Zhang M, Lu M. Adipose-derived stem-cell-implanted poly(ϵ-caprolactone)/chitosan scaffold improves bladder regeneration in a rat model. Regen Med 2018; 13:331-342. [PMID: 29717628 DOI: 10.2217/rme-2017-0120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM The study investigated the feasibility of seeding adipose-derived stem cells (ASCs) onto a poly(ϵ-caprolactone)/chitosan (PCL/CS) scaffold for bladder reconstruction using a rat model of bladder augmentation. MATERIALS & METHODS In the experimental group, the autologous ASCs were seeded onto the PCL/CS scaffold for bladder augmentation. An unseeded scaffold was used for bladder augmentation as control group. The sham group was also set. RESULT 8 weeks after implantation, more densely smooth muscles were detected in the experimental group with a larger bladder capacity and more intensive blood vessels. Immunofluorescence staining demonstrated that some of the smooth muscle cells were transdifferentiated from the ASCs. CONCLUSION Our findings indicated that ASC-seeded PCL/CS may be a potential scaffold for bladder tissue engineering.
Collapse
Affiliation(s)
- Zhe Zhou
- Department of Urology & Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Hao Yan
- Department of Urology & Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yidong Liu
- Department of Urology & Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Dongdong Xiao
- Department of Urology & Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Wei Li
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiong Wang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yang Zhao
- Department of Urology & Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Kang Sun
- State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming Zhang
- Department of Urology & Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Mujun Lu
- Department of Urology & Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
12
|
Aragón IM, Imbroda BH, Lara MF. Cell Therapy Clinical Trials for Stress Urinary Incontinence: Current Status and Perspectives. Int J Med Sci 2018; 15:195-204. [PMID: 29483809 PMCID: PMC5820847 DOI: 10.7150/ijms.22130] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022] Open
Abstract
Stress urinary incontinence (SUI) affects 200 million people worldwide. Standard therapies often provide symptomatic relief, but without targeting the underlying etiology, and show tremendous patient-to-patient variability, limited success and complications associated with the procedures. We review in this article the latest clinical trials performed to treat SUI using cell-based therapies. These therapies, despite typically including only a small number of patients and short term evaluation of results, have proven to be feasible and safe. However, there is not yet a consensus for the best cell source to be used to treat SUI and not all patients may be suitable for these therapies. Therefore, more clinical trials should be promoted recruiting large number of patients and evaluating long term results.
Collapse
Affiliation(s)
- Isabel María Aragón
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| | - Bernardo Herrera Imbroda
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| | - María Fernanda Lara
- Department of Urology, Virgen de la Victoria University Hospital, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
13
|
Sezginer EK, Yilmaz-Oral D, Lokman U, Nebioglu S, Aktan F, Gur S. Effects of varying degrees of partial bladder outlet obstruction on urinary bladder function of rats: A novel link to inflammation, oxidative stress and hypoxia. Low Urin Tract Symptoms 2017; 11:O193-O201. [PMID: 29282885 DOI: 10.1111/luts.12211] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/13/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The aim of the present study was to investigate the effects of different degrees of obstruction, and the roles of inflammation, oxidative stress, and hypoxia parameters on bladder function. METHODS Thirty male Sprague-Dawley rats were divided into 3 groups (n = 10 in each group): (i) sham-operated control; (ii) severe partial bladder outlet obstruction (PBOO); and (iii) moderate PBOO. Severe and moderate PBOO were induced by urethral ligation using 3-Fr and 4-Fr catheters, respectively, for 6 weeks. After 6 weeks, the in vitro contractile responses to carbachol, electrical field stimulation, ATP and KCl were measured in bladder strips. In addition, mRNA and protein expression of nuclear factor kappa B (NF-κB) hypoxia-inducible factor (HIF) and nuclear factor, erythroid 2-like 2 (Nrf2) in bladder were determined by real-time polymerase chain reaction and western blotting. Malondialdehyde (MDA) levels in bladder tissues were also determined. RESULTS Rats in the severe PBOO group had the highest bladder weight. Detrusor strips from rats in the severe PBOO group exhibited 61%-82% smaller contractile responses to all four stimuli than those from the sham-operated group. Activity of NF-κB as an inflammatory marker was increased in the severe PBOO group, whereas HIF-1α and HIF-2β protein levels were increased significantly in the moderate PBOO group. A master regulator of oxidative stress, Nrf2 expression was increased in all obstructed rats. MDA levels were higher in the severe PBOO group than in sham-operated group. CONCLUSION The results of the present study reveal the importance of oxidative stress-induced NF-κB signaling in bladder dysfunction with severe obstruction. Altered HIF signaling may contribute to the functional impairment after PBOO. Novel and evolving therapies targeting oxidative and/or inflammatory pathways may be a reasonable strategy for the management of lower urinary tract symptoms or benign prostatic hyperplasia.
Collapse
Affiliation(s)
- Ecem Kaya Sezginer
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Didem Yilmaz-Oral
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Utku Lokman
- Department of Urology, Ankara Occupational Diseases Hospital, Ankara, Turkey
| | - Serpil Nebioglu
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Fugen Aktan
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Serap Gur
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| |
Collapse
|
14
|
Xiao D, Yan H, Wang Q, Lv X, Zhang M, Zhao Y, Zhou Z, Xu J, Sun Q, Sun K, Li W, Lu M. Trilayer Three-Dimensional Hydrogel Composite Scaffold Containing Encapsulated Adipose-Derived Stem Cells Promotes Bladder Reconstruction via SDF-1α/CXCR4 Pathway. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38230-38241. [PMID: 29022693 DOI: 10.1021/acsami.7b10630] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bladder acellular matrix graft-alginate dialdehyde-gelatin hydrogel-silk mesh (BAMG-HS) encapsulated with adipose-derived stem cells (ASCs) was evaluated in a rat model of augmentation cystoplasty, including BAMG-HS-ASCs (n = 18, subgroup n = 6 for 2, 4, and 12 weeks), acellular BAMG-HS (n = 6 for 12 weeks) and cystotomy control (n = 6 for 12 weeks) groups. Equipped with good cytocompatibility and superior mechanical properties (elastic modulus: 5.33 ± 0.96 MPa, maximum load: 28.90 ± 0.69 N), BAMG-HS acted a trilayer "sandwich" scaffold with minimal interference in systemic homeostasis. ASCs in BAMG-HS promoted morphological and histological bladder restoration by accelerating scaffold degradation (p < 0.05), ameliorating fibrosis (p < 0.05) and inflammation (p < 0.01). Additionally, ASCs facilitated the recovery of bladder function by enhancing smooth muscle regeneration (p < 0.05), innervation (p < 0.01) and angiogenesis (p < 0.001). Except for a small number of endothelium-differentiated ASCs, the pro-angiogenic effects of ASCs were mainly related to ERK1/2 phosphorylation in the downstream of SDF-1α/CXCR4 pathway.
Collapse
Affiliation(s)
- Dongdong Xiao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Hao Yan
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Qiong Wang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University , Guangzhou 510120, China
| | - Xiangguo Lv
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Ming Zhang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Yang Zhao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Zhe Zhou
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| | - Jiping Xu
- Department of Urology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200011, China
| | - Qian Sun
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Kang Sun
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Wei Li
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University , Shanghai 200240, China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200001, China
| |
Collapse
|
15
|
Pokrywczyńska M, Kloskowski T, Balcerczyk D, Buhl M, Jundziłł A, Nowacki M, Męcińska‐Jundziłł K, Drewa T. Stem cells and differentiated cells differ in their sensitivity to urine in vitro. J Cell Biochem 2017; 119:2307-2319. [DOI: 10.1002/jcb.26393] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/30/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Marta Pokrywczyńska
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Tomasz Kloskowski
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Daria Balcerczyk
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Monika Buhl
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Arkadiusz Jundziłł
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
- Department of Plastic, Reconstructive and Aesthetic Surgery, Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland
| | - Maciej Nowacki
- Chair and Department of Surgical Oncology, Ludwik Rydygier's Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in TorunFranciszek Łukaszczyk Memorial HospitalBydgoszczPoland
| | - Kaja Męcińska‐Jundziłł
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| | - Tomasz Drewa
- Chair of Urology, Department of Regenerative Medicine, Cell and Tissue Bank, Ludwik Rydygier's Collegium Medicum in BydgoszczNicolaus Copernicus University in TorunBydgoszczPoland
| |
Collapse
|
16
|
Yu HS, Park J, Lee HS, Park SA, Lee DW, Park K. Feasibility of Polycaprolactone Scaffolds Fabricated by Three-Dimensional Printing for Tissue Engineering of Tunica Albuginea. World J Mens Health 2017; 36:66-72. [PMID: 29076301 PMCID: PMC5756809 DOI: 10.5534/wjmh.17025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 01/17/2023] Open
Abstract
PURPOSE To investigate the feasibility of a polycaprolactone (PCL) scaffold fabricated by three-dimensional (3D) printing for tissue engineering applications for tunica albuginea. MATERIALS AND METHODS PCL scaffolds were fabricated by use of a 3D printing system. Two scaffolds were fabricated that differed in the architecture of the lay-down pattern: a 90°PCL scaffold and a 45°PCL scaffold. Mechanical properties were measured to compare tensile strength between the two scaffold types. The scaffolds were characterized by scanning electron microscope (SEM) images. The scaffolds were seeded with fibroblast cells, and the ability of these scaffolds to support the cells was evaluated by immunofluorescence staining. RESULTS The PCL scaffolds had well-structured shapes, regular arrays, and good interconnection in SEM images. The horizontal and vertical Young's modulus coefficients were 13 and 12 MPa for the 90°PCL scaffold and 19 and 21 MPa for the 45°PCL scaffold, respectively. Microscopy images revealed that human fibroblast cells covered the entire scaffold surface. Immunofluorescence staining of ER-TR7 confirmed that the fibroblast cells remained viable and proliferated throughout the time course of the culture. CONCLUSIONS This preliminary study provides experimental evidence for the feasibility of 3D printing of PCL scaffolds for tissue engineering applications of tunica albuginea.
Collapse
Affiliation(s)
- Ho Song Yu
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Jinju Park
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Hyun Suk Lee
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea
| | - Su A Park
- Nano Convergence and Manufacturing Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, Korea
| | - Dong Weon Lee
- MEMS and Nanotechnology Laboratory, School of Mechanical Systems Engineering, Chonnam National University, Gwangju, Korea
| | - Kwangsung Park
- Department of Urology, Chonnam National University Medical School, Chonnam National University Sexual Medicine Research Center, Gwangju, Korea.
| |
Collapse
|
17
|
Xiao D, Wang Q, Yan H, Lv X, Zhao Y, Zhou Z, Zhang M, Sun Q, Sun K, Li W, Lu M. Adipose-derived stem cells-seeded bladder acellular matrix graft-silk fibroin enhances bladder reconstruction in a rat model. Oncotarget 2017; 8:86471-86487. [PMID: 29156809 PMCID: PMC5689699 DOI: 10.18632/oncotarget.21211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 08/28/2017] [Indexed: 12/20/2022] Open
Abstract
The unfavourable clinical outcomes of host cell-seeded scaffolds for bladder augmentation warrant improved bioactive biomaterials. This study aimed to examine the feasibility of adipose-derived stem cells (ASCs)-seeded bilayer bladder acellular matrix graft (BAMG)-silk fibroin (SF) scaffold in enhancing bladder reconstruction. Sprague Dawley rats were randomly divided into three groups: the BAMG-SF-ASCs group, the acellular BAMG-SF group and the cystotomy group. The BAMG-SF-ASCs group was sampled at 2, 4 and 12 weeks, and compared with the other groups at 12 weeks. In the BAMG-SF-ASCs group, the normal bladder contour was reformed similar to that in the cystotomy group, with abundant urothelium and smooth muscle regeneration, as well as a suitable scaffold degradation speed, and trivial fibrosis and inflammation. The ASCs seeded in BAMG-SF were maintained in the regenerated region during the 12-week experimental period and significantly enhanced the vessel density, nerve regeneration and bladder function compared with acellular BAMG-SF. In addition, the BAMG-SF-ASCs group presented elevated levels of SDF-1α, VEGF and their receptors, with an obvious increase in ERK 1/2 phosphorylation. BAMG-SF is a promising biomaterial for ASCs seeding to facilitate bladder augmentation and demonstrated an enhanced angiogenic potential possibly related to the SDF-1α/CXCR4 pathway via ERK 1/2 activation.
Collapse
Affiliation(s)
- Dongdong Xiao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Qiong Wang
- Department of Urology, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Hao Yan
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Xiangguo Lv
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Yang Zhao
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Zhe Zhou
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Ming Zhang
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Qian Sun
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kang Sun
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Li
- The State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mujun Lu
- Department of Urology and Andrology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| |
Collapse
|
18
|
Yang DY, Ko K, Lee SH, Moon DG, Kim JW, Lee WK. Efficacy and safety of a newly developed polylactic acid microsphere as an injectable bulking agent for penile augmentation: 18-months follow-up. Int J Impot Res 2017; 29:136-141. [DOI: 10.1038/ijir.2017.10] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 02/18/2017] [Accepted: 03/20/2017] [Indexed: 11/09/2022]
|
19
|
Xiao Y, Song YJ, Song B, Huang CB, Ling Q, Yu X. TGF-β/MAPK signaling mediates the effects of bone marrow mesenchymal stem cells on urinary control and interstitial cystitis after urinary bladder transplantation. Am J Transl Res 2017; 9:1193-1202. [PMID: 28386345 PMCID: PMC5376010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/30/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVE This study aimed to explore the role of the transforming growth factor-β/mitogen activated protein kinase (TGF-β/MAPK) signaling pathway in the effects of bone marrow mesenchymal stem cells (BMSCs) on urinary control and interstitial cystitis in a rat model of urinary bladder transplantation. METHODS A urinary bladder transplantation model was established using Sprague-Dawley rats. Rats were assigned to normal (blank control), negative control (phosphate-buffered saline injection), BMSCs (BMSC injection), sp600125 (MAPK inhibitor injection), or protamine sulfate (protamine sulfate injection) groups. Immunohistochemistry, urodynamic testing, hematoxylin-eosin staining, Western blotting, enzyme-linked immunosorbent assay, and MTT assay were used to assess BMSC growth, the kinetics of bladder urinary excretion, pathological changes in bladder tissue, bladder tissue ultrastructure, the expression of TGF-β/MAPK signaling pathway-related proteins, levels of inflammatory cytokines, and the effects of antiproliferative factor on cell proliferation. RESULTS Compared with normal, negative control, BMSCs, and sp600125 groups, rats in the PS group exhibited decreased discharge volume, maximal micturition volume, contraction interval, and bladder capacity but increased residual urine volume, bladder pressure, bladder peak pressure, expression of TGF-β/MAPK signaling pathway-related proteins, levels of inflammatory cytokines, and growth inhibition rate. Levels of inflammatory cytokines and the growth inhibition rate were positively correlated with the expression of TGF-β/MAPK signaling pathway-related proteins. CONCLUSIONS Our findings demonstrate that the TGF-β/MAPK signaling pathway mediates the beneficial effects of BMSCs on urinary control and interstitial cystitis.
Collapse
Affiliation(s)
- Ya Xiao
- Urological Research Institute of PLA, The First Affiliated Hospital, Third Military Medical UniversityChongqing 400037, P. R. China
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical UniversityChongqing 400037, P. R. China
| | - Ya-Jun Song
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical UniversityChongqing 400037, P. R. China
| | - Bo Song
- Urological Research Institute of PLA, The First Affiliated Hospital, Third Military Medical UniversityChongqing 400037, P. R. China
| | - Chi-Bing Huang
- Department of Urology, The Second Affiliated Hospital, The Third Military Medical UniversityChongqing 400037, P. R. China
| | - Qing Ling
- Department of Urology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & TechnologyWuhan 430030, P. R. China
| | - Xiao Yu
- Department of Urology, Tongji Hospital, Tongji Medical College of Huazhong University of Science & TechnologyWuhan 430030, P. R. China
| |
Collapse
|
20
|
Chan YY, Sandlin SK, Kurzrock EA, Osborn SL. The Current Use of Stem Cells in Bladder Tissue Regeneration and Bioengineering. Biomedicines 2017; 5:biomedicines5010004. [PMID: 28536347 PMCID: PMC5423492 DOI: 10.3390/biomedicines5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 12/26/2016] [Indexed: 12/17/2022] Open
Abstract
Many pathological processes including neurogenic bladder and malignancy necessitate bladder reconstruction, which is currently performed using intestinal tissue. The use of intestinal tissue, however, subjects patients to metabolic abnormalities, bladder stones, and other long-term sequelae, raising the need for a source of safe and reliable bladder tissue. Advancements in stem cell biology have catapulted stem cells to the center of many current tissue regeneration and bioengineering strategies. This review presents the recent advancements in the use of stem cells in bladder tissue bioengineering.
Collapse
Affiliation(s)
- Yvonne Y Chan
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
| | - Samantha K Sandlin
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
- Stem Cell Program, Institute for Regenerative Cures, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| | - Eric A Kurzrock
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
- Stem Cell Program, Institute for Regenerative Cures, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| | - Stephanie L Osborn
- Department of Urology, Davis School of Medicine, University of California, Sacramento, CA 95817, USA.
- Stem Cell Program, Institute for Regenerative Cures, University of California, Davis Medical Center, Sacramento, CA 95817, USA.
| |
Collapse
|
21
|
Bastaskın T, Kaya E, Ozakca I, Yilmaz D, Bayatlı N, Akdemir AO, Gur S. Effects of silodosin, a selective alpha-1A adrenoceptor antagonist, on erectile function in a rat model of partial bladder outlet obstruction. Neurourol Urodyn 2016; 36:597-603. [PMID: 27061103 DOI: 10.1002/nau.23015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/24/2016] [Indexed: 01/12/2023]
Abstract
AIM We investigated the effects of silodosin (selective α1A -adrenoceptor antagonist) on erectile dysfunction (ED) in a rat model of bladder outlet obstruction. METHODS Adult male Sprague-Dawley rats (n = 32) were divided into four groups: (i) sham-operated control; (ii) silodosin-treated (sham) control (0.1 mg/kg/day); (iii) partial bladder outlet obstruction (PBOO); and (iv) silodosin-treated with PBOO. PBOO was induced by ligation of the urethra for 6 weeks. In vivo, erectile responses were monitored by evaluating ratios of intracavernosal pressure (ICP)/mean arterial pressure (MAP). Organ-bath studies were performed on corpus cavernosum (CC) strips. Penises were assessed at baseline for protein expression of neuronal nitric oxide synthase (nNOS) and Rho-associated protein kinase (ROCK2) by Western blot. Immunohistochemistry and Masson trichrome staining were performed for analysis of nNOS protein levels and tissue alterations. RESULTS The ratio of ICP/MAP was significantly decreased in obstructed rats (0.26 ± 0.043, P < 0.01) compared to sham-control rats (0.64 ± 0.10), which was restored by the treatment (0.59 ± 0.14, P < 0.01) compared with obstructed rats. Relaxation responses were significantly reduced in strips from the obstructed group. Silodosin restored nitrergic relaxant responses. nNOS expression in the obstructed group decreased, which was improved by treatment. The decreased smooth muscle/collagen ratio in the bladder obstructed group was reversed by the treatment. CONCLUSIONS Silodosin improves erectile function in obstructed rats. Further clinical trials are needed to explore fully the potential benefits of silodosin in patients with benign prostatic hyperplasia (BPH)/lower urinary tract symptoms (LUTS) in association with ED. Neurourol. Urodynam. 36:597-603, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tugce Bastaskın
- Departments of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Ecem Kaya
- Departments of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Isıl Ozakca
- Departments of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Didem Yilmaz
- Departments of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Nur Bayatlı
- Departments of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| | - Alp Ozgur Akdemir
- Department of Urology, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Serap Gur
- Departments of Pharmacology and Biochemistry, Faculty of Pharmacy, Ankara University, Tandogan, Ankara, Turkey
| |
Collapse
|
22
|
Affiliation(s)
- Jae Heon Kim
- Department of Urology, Soonchunyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| | - Yun Seob Song
- Department of Urology, Soonchunyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Translational approaches to the treatment of benign urologic conditions in elderly women. Curr Opin Urol 2016; 26:184-92. [PMID: 26814884 DOI: 10.1097/mou.0000000000000261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Stress urinary incontinence, overactive bladder, interstitial cystitis/painful bladder syndrome, and underactive bladder are highly prevalent among elderly women, and have significant impact on quality of life; however, existing treatments are limited and are not always successful for all patients. Researchers are investigating a multitude of new therapies to treat these conditions. This review will summarize the recent literature on investigative therapies for these conditions. RECENT FINDINGS Multiple new treatments are being developed for lower urinary tract dysfunction. Some of these treatments, including balloon therapy and muscle-derived stem cells for stress urinary incontinence, could provide alternatives to existing therapies. Others require further research before being used in patients, such as pudendal nerve stimulation for overactive bladder and intravesical liposomes for drug delivery in interstitial cystitis/painful bladder syndrome. SUMMARY Multiple new therapies are being investigated that could provide clinicians with additional tools to treat lower urinary tract disorders in millions of elderly women.
Collapse
|
24
|
Tracking Transplanted Stem Cells Using Magnetic Resonance Imaging and the Nanoparticle Labeling Method in Urology. BIOMED RESEARCH INTERNATIONAL 2015; 2015:231805. [PMID: 26413510 PMCID: PMC4564577 DOI: 10.1155/2015/231805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/23/2022]
Abstract
A reliable in vivo imaging method to localize transplanted cells and monitor their viability would enable a systematic investigation of cell therapy. Most stem cell transplantation studies have used immunohistological staining, which does not provide information about the migration of transplanted cells in vivo in the same host. Molecular imaging visualizes targeted cells in a living host, which enables determining the biological processes occurring in transplanted stem cells. Molecular imaging with labeled nanoparticles provides the opportunity to monitor transplanted cells noninvasively without sacrifice and to repeatedly evaluate them. Among several molecular imaging techniques, magnetic resonance imaging (MRI) provides high resolution and sensitivity of transplanted cells. MRI is a powerful noninvasive imaging modality with excellent image resolution for studying cellular dynamics.
Several types of nanoparticles including superparamagnetic iron oxide nanoparticles and magnetic nanoparticles have been used to magnetically label stem cells and monitor viability by MRI in the urologic field. This review focuses on the current role and limitations of MRI with labeled nanoparticles for tracking transplanted stem cells in urology.
Collapse
|
25
|
Labedz-Maslowska A, Lipert B, Berdecka D, Kedracka-Krok S, Jankowska U, Kamycka E, Sekula M, Madeja Z, Dawn B, Jura J, Zuba-Surma EK. Monocyte Chemoattractant Protein-Induced Protein 1 (MCPIP1) Enhances Angiogenic and Cardiomyogenic Potential of Murine Bone Marrow-Derived Mesenchymal Stem Cells. PLoS One 2015. [PMID: 26214508 PMCID: PMC4516329 DOI: 10.1371/journal.pone.0133746] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The current evidence suggests that beneficial effects of mesenchymal stem cells (MSCs) toward myocardial repair are largely due to paracrine actions of several factors. Although Monocyte chemoattractant protein-induced protein 1 (MCPIP1) is involved in the regulation of inflammatory response, apoptosis and angiogenesis, whether MCPIP1 plays any role in stem cell-induced cardiac repair has never been examined. By employing retroviral (RV)-transduced overexpression of MCPIP1, we investigated the impact of MCPIP1 on viability, apoptosis, proliferation, metabolic activity, proteome, secretome and differentiation capacity of murine bone marrow (BM) - derived MSCs. MCPIP1 overexpression enhanced angiogenic and cardiac differentiation of MSCs compared with controls as indicated by elevated expression of genes accompanying angiogenesis and cardiomyogenesis in vitro. The proangiogenic activity of MCPIP1-overexpressing MSCs (MCPIP1-MSCs) was also confirmed by increased capillary-like structure formation under several culture conditions. This increase in differentiation capacity was associated with decreased proliferation of MCPIP1-MSCs when compared with controls. MCPIP1-MSCs also expressed increased levels of proteins involved in angiogenesis, autophagy, and induction of differentiation, but not adverse inflammatory agents. We conclude that MCPIP1 enhances endothelial and cardiac differentiation of MSCs. Thus, modulating MCPIP1 expression may be a novel approach useful for enhancing the immune-regulatory, anti-apoptotic, anti-inflammatory and regenerative capacity of BM-derived MSCs for myocardial repair and regeneration of ischemic tissues.
Collapse
Affiliation(s)
- Anna Labedz-Maslowska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Barbara Lipert
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Dominika Berdecka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Urszula Jankowska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elzbieta Kamycka
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Malgorzata Sekula
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Buddhadeb Dawn
- Division of Cardiovascular Diseases, Cardiovascular Research Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Jolanta Jura
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewa K. Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
- * E-mail:
| |
Collapse
|
26
|
Abstract
As bladder reconstruction strategies evolve, a feasible and safe source of transplantable urothelium becomes a major consideration for patients with advanced bladder disease, particularly cancer. Pluripotent stem cells, such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are attractive candidates from which to derive urothelium as they renew and proliferate indefinitely in vitro and fulfill the non-autologous and/or non-urologic criteria, respectively, that is required for many patients. This review presents the latest advancements in differentiating urothelium from pluripotent stem cells in vitro in the context of current bladder tissue engineering strategies.
Collapse
|
27
|
Mousa NA, Abou-Taleb HA, Orabi H. Stem cell applications for pathologies of the urinary bladder. World J Stem Cells 2015; 7:815-822. [PMID: 26131312 PMCID: PMC4478628 DOI: 10.4252/wjsc.v7.i5.815] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 02/05/2015] [Accepted: 04/07/2015] [Indexed: 02/06/2023] Open
Abstract
New stem cell based therapies are undergoing intense research and are widely investigated in clinical fields including the urinary system. The urinary bladder performs critical complex functions that rely on its highly coordinated anatomical composition and multiplex of regulatory mechanisms. Bladder pathologies resulting in severe dysfunction are common clinical encounter and often cause significant impairment of patient’s quality of life. Current surgical and medical interventions to correct urinary dysfunction or to replace an absent or defective bladder are sub-optimal and are associated with notable complications. As a result, stem cell based therapies for the urinary bladder are hoped to offer new venues that could make up for limitations of existing therapies. In this article, we review research efforts that describe the use of different types of stem cells in bladder reconstruction, urinary incontinence and retention disorders. In particular, stress urinary incontinence has been a popular target for stem cell based therapies in reported clinical trials. Furthermore, we discuss the relevance of the cancer stem cell hypothesis to the development of bladder cancer. A key subject that should not be overlooked is the safety and quality of stem cell based therapies introduced to human subjects either in a research or a clinical context.
Collapse
|
28
|
Song M, Lim J, Yu HY, Park J, Chun JY, Jeong J, Heo J, Kang H, Kim Y, Cho YM, Kim SW, Oh W, Choi SJ, Jang SW, Park S, Shin DM, Choo MS. Mesenchymal Stem Cell Therapy Alleviates Interstitial Cystitis by Activating Wnt Signaling Pathway. Stem Cells Dev 2015; 24:1648-57. [PMID: 25745847 DOI: 10.1089/scd.2014.0459] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interstitial cystitis (IC) is a syndrome characterized by urinary urgency, frequency, pelvic pain, and nocturia in the absence of bacterial infection or identifiable pathology. IC is a devastating disease that certainly decreases quality of life. However, the causes of IC remain unknown and no effective treatments or cures have been developed. This study evaluated the therapeutic potency of using human umbilical cord-blood-derived mesenchymal stem cells (UCB-MSCs) to treat IC in a rat model and to investigate its responsible molecular mechanism. IC was induced in 10-week-old female Sprague-Dawley rats via the instillation of 0.1 M HCl or phosphate-buffered saline (PBS; sham). After 1 week, human UCB-MSC (IC+MSC) or PBS (IC) was directly injected into the submucosal layer of the bladder. A single injection of human UCB-MSCs significantly attenuated the irregular and decreased voiding interval in the IC group. Accordingly, denudation of the epithelium and increased inflammatory responses, mast cell infiltration, neurofilament production, and angiogenesis observed in the IC bladders were prevented in the IC+MSC group. The injected UCB-MSCs successfully engrafted to the stromal and epithelial tissues and activated Wnt signaling cascade. Interference with Wnt and epidermal growth factor receptor activity by small molecules abrogated the benefits of MSC therapy. This is the first report that provides an experimental evidence of the therapeutic effects and molecular mechanisms of MSC therapy to IC using an orthodox rat animal model. Our findings not only provide the basis for clinical trials of MSC therapy to IC but also advance our understanding of IC pathophysiology.
Collapse
Affiliation(s)
- Miho Song
- 1 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jisun Lim
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,3 Department of Biomedical Sciences, Seoul National University College of Medicine , Seoul, Korea
| | - Hwan Yeul Yu
- 1 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Junsoo Park
- 1 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Ji-Youn Chun
- 1 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jaeho Jeong
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Jinbeom Heo
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Hyunsook Kang
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - YongHwan Kim
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Yong Mee Cho
- 5 Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Seong Who Kim
- 6 Department of Biochemistry and Molecular Biology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Wonil Oh
- 7 Biomedical Research Institute, MEDIPOST Co., Ltd. , Seoul, Korea
| | - Soo Jin Choi
- 7 Biomedical Research Institute, MEDIPOST Co., Ltd. , Seoul, Korea
| | - Sung-Wuk Jang
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Sanghyeok Park
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Dong-Myung Shin
- 2 Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea.,4 Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | - Myung-Soo Choo
- 1 Department of Urology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| |
Collapse
|
29
|
Andersson KE. Potential of stem cell treatment in detrusor dysfunction. Adv Drug Deliv Rev 2015; 82-83:117-22. [PMID: 25453263 DOI: 10.1016/j.addr.2014.10.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/03/2014] [Accepted: 10/15/2014] [Indexed: 12/24/2022]
Abstract
The current treatments of bladder dysfunctions, such as bladder overactivity and impaired ability to empty, have limitations, and new treatment alternatives are needed. Stem cell transplantation and tissue engineering have shown promising results in preclinical studies. Stem cells were originally thought to act by differentiating into various cell types, thereby replacing damaged cells and restoring functional deficits. Even if such a mechanism cannot be excluded, the current belief is that a main action is exerted by the stem cells secreting bioactive factors that direct other stem cells to the target organ. In addition, stem cells may exert a number of other effects that can improve bladder dysfunction, since they may have antiapoptotic, antifibrotic, and immunomodulatory properties, and can induce neovascularization. Tissue engineering for bladder replacement, which has had varying success in different animal species, has reached the proof-of-concept state in humans, but recent research suggests that the present approaches may not be optimal. Further studies on new approaches, using animal models with translational predictability, seem necessary for further progress.
Collapse
|