1
|
Fanale D, Corsini LR, Pedone E, Randazzo U, Fiorino A, Di Piazza M, Brando C, Magrin L, Contino S, Piraino P, Bazan Russo TD, Cipolla C, Russo A, Bazan V. Potential agnostic role of BRCA alterations in patients with several solid tumors: One for all, all for one? Crit Rev Oncol Hematol 2023; 190:104086. [PMID: 37536445 DOI: 10.1016/j.critrevonc.2023.104086] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/05/2023] Open
Abstract
Germline BRCA1/2 alterations in the Homologous Recombination (HR) pathway are considered as main susceptibility biomarkers to Hereditary Breast and Ovarian Cancers (HBOC). The modern molecular biology technologies allowed to characterize germline and somatic BRCA1/2 alterations in several malignancies, broadening the landscape of BRCA1/2-alterated tumors. In the last years, BRCA genetic testing, beyond the preventive value, also assumed a predictive and prognostic significance for patient management. The approval of molecules with agnostic indication is leading to a new clinical model, defined "mutational". Among these drugs, the Poly (ADP)-Ribose Polymerase inhibitors (PARPi) for BRCA1/2-deficient tumors were widely studied leading to increasing therapeutic implications. In this Review we provided an overview of the main clinical studies describing the association between BRCA-mutated tumors and PARPi response, focusing on the controversial evidence about the potential agnostic indication based on BRCA1/2 alterations in several solid tumors.
Collapse
Affiliation(s)
- Daniele Fanale
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Lidia Rita Corsini
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Erika Pedone
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Ugo Randazzo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Alessia Fiorino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Marianna Di Piazza
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Chiara Brando
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Luigi Magrin
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Silvia Contino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Paola Piraino
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Tancredi Didier Bazan Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Calogero Cipolla
- Division of General and Oncological Surgery, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Oral Sciences, University of Palermo, 90127 Palermo, Italy.
| | - Viviana Bazan
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
2
|
El Gazzar WB, Albakri KA, Hasan H, Badr AM, Farag AA, Saleh OM. Poly(ADP-ribose) polymerase inhibitors in the treatment landscape of triple-negative breast cancer (TNBC). J Oncol Pharm Pract 2023; 29:1467-1479. [PMID: 37559370 DOI: 10.1177/10781552231188903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
OBJECTIVE Chemotherapy is the mainstay for triple-negative breast cancer (TNBC) patients. Over the years, the use of chemotherapy for these patients has demonstrated many adversities, including toxicity and resistance, which suggested the need to develop novel alternative therapeutic options, such as poly(ADP-ribose) polymerase inhibitors (PARPi). Herein, we provide an overview on PARPi, mechanisms of action and the role of biomarkers in PARPi sensitivity trials, clinical advances in PARPi therapy for TNBC patients based on the most recent studies and findings of clinical trials, and challenges that prevent PARP inhibitors from achieving high efficacy such as resistance and overlapping toxicities with other chemotherapies. DATA SOURCES Searching for relevant articles was done using PubMed and Cochrane Library databases by using the keywords including TNBC; chemotherapy; PARPi; BRCA; homologous recombination repair (HRR). Studies had to be published in full-text in English in order to be considered. DATA SUMMARY Although PARPi have been used in the treatment of local/metastatic breast malignancies that are HER2 negative and has a germline BRCA mutation, several questions are still to be answered in order to maximize the clinical benefit of PARP inhibitors in TNBC treatment, such as questions related to the optimal use in the neoadjuvant and metastatic settings as well as the best combinations with various chemotherapies. CONCLUSIONS PARPi are emerging treatment options for patients with gBRCA1/2 mutations. Determining patients that are most likely to benefit from PARPi and identifying the optimal treatment combinations with high efficacy and fewer side effects are currently ongoing.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | | | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman, Jordan
| | - Amira M Badr
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Department of Pharmacology and Toxicology, College of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amina A Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha City, Egypt
| | | |
Collapse
|
3
|
Hunia J, Gawalski K, Szredzka A, Suskiewicz MJ, Nowis D. The potential of PARP inhibitors in targeted cancer therapy and immunotherapy. Front Mol Biosci 2022; 9:1073797. [PMID: 36533080 PMCID: PMC9751342 DOI: 10.3389/fmolb.2022.1073797] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/15/2022] [Indexed: 07/29/2023] Open
Abstract
DNA damage response (DDR) deficiencies result in genome instability, which is one of the hallmarks of cancer. Poly (ADP-ribose) polymerase (PARP) enzymes take part in various DDR pathways, determining cell fate in the wake of DNA damage. PARPs are readily druggable and PARP inhibitors (PARPi) against the main DDR-associated PARPs, PARP1 and PARP2, are currently approved for the treatment of a range of tumor types. Inhibition of efficient PARP1/2-dependent DDR is fatal for tumor cells with homologous recombination deficiencies (HRD), especially defects in breast cancer type 1 susceptibility protein 1 or 2 (BRCA1/2)-dependent pathway, while allowing healthy cells to survive. Moreover, PARPi indirectly influence the tumor microenvironment by increasing genomic instability, immune pathway activation and PD-L1 expression on cancer cells. For this reason, PARPi might enhance sensitivity to immune checkpoint inhibitors (ICIs), such as anti-PD-(L)1 or anti-CTLA4, providing a rationale for PARPi-ICI combination therapies. In this review, we discuss the complex background of the different roles of PARP1/2 in the cell and summarize the basics of how PARPi work from bench to bedside. Furthermore, we detail the early data of ongoing clinical trials indicating the synergistic effect of PARPi and ICIs. We also introduce the diagnostic tools for therapy development and discuss the future perspectives and limitations of this approach.
Collapse
Affiliation(s)
- Jaromir Hunia
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Karol Gawalski
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Dominika Nowis
- Department of Immunology, Medical University of Warsaw, Warsaw, Poland
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Omole EB, Aijaz I, Ellegate J, Isenhart E, Desouki MM, Mastri M, Humphrey K, Dougherty EM, Rosario SR, Nastiuk KL, Ohm JE, Eng KH. Combined BRCA2 and MAGEC3 Expression Predict Outcome in Advanced Ovarian Cancers. Cancers (Basel) 2022; 14:cancers14194724. [PMID: 36230652 PMCID: PMC9562635 DOI: 10.3390/cancers14194724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 12/02/2022] Open
Abstract
Like BRCA2, MAGEC3 is an ovarian cancer predisposition gene that has been shown to have prognostic significance in ovarian cancer patients. Despite the clinical significance of each gene, no studies have been conducted to assess the clinical significance of their combined expression. We therefore sought to determine the relationship between MAGEC3 and BRCA2 expression in ovarian cancer and their association with patient characteristics and outcomes. Immunohistochemical staining was quantitated on tumor microarrays of human tumor samples obtained from 357 patients with epithelial ovarian cancer to ascertain BRCA2 expression levels. In conjunction with our previously published MAGEC3 expression data, we observed a weak inverse correlation of MAGEC3 with BRCA2 expression (r = −0.15; p < 0.05) in cases with full-length BRCA2. Patients with optimal cytoreduction, loss of MAGEC3, and detectable BRCA2 expression had better overall (median OS: 127.9 vs. 65.3 months, p = 0.035) and progression-free (median PFS: 85.3 vs. 18.8 months, p = 0.002) survival compared to patients that were BRCA2 expressors with MAGEC3 normal levels. Our results suggest that combined expression of MAGEC3 and BRCA2 serves as a better predictor of prognosis than each marker alone.
Collapse
Affiliation(s)
- Emmanuel B. Omole
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Iqbal Aijaz
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - James Ellegate
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emily Isenhart
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Mohamed M. Desouki
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Michalis Mastri
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristen Humphrey
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Emily M. Dougherty
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Spencer R. Rosario
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kent L. Nastiuk
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Joyce E. Ohm
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Correspondence:
| | - Kevin H. Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
5
|
Bakr A, Hey J, Sigismondo G, Liu CS, Sadik A, Goyal A, Cross A, Iyer RL, Müller P, Trauernicht M, Breuer K, Lutsik P, Opitz C, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ID3 promotes homologous recombination via non-transcriptional and transcriptional mechanisms and its loss confers sensitivity to PARP inhibition. Nucleic Acids Res 2021; 49:11666-11689. [PMID: 34718742 PMCID: PMC8599806 DOI: 10.1093/nar/gkab964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/23/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
The inhibitor of DNA-binding 3 (ID3) is a transcriptional regulator that limits interaction of basic helix-loop-helix transcription factors with their target DNA sequences. We previously reported that ID3 loss is associated with mutational signatures linked to DNA repair defects. Here we demonstrate that ID3 exhibits a dual role to promote DNA double-strand break (DSB) repair, particularly homologous recombination (HR). ID3 interacts with the MRN complex and RECQL helicase to activate DSB repair and it facilitates RAD51 loading and downstream steps of HR. In addition, ID3 promotes the expression of HR genes in response to ionizing radiation by regulating both chromatin accessibility and activity of the transcription factor E2F1. Consistently, analyses of TCGA cancer patient data demonstrate that low ID3 expression is associated with impaired HR. The loss of ID3 leads to sensitivity of tumor cells to PARP inhibition, offering new therapeutic opportunities in ID3-deficient tumors.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Chun-Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Ahmed Sadik
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ashish Goyal
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- Imperial College London, London, SW7 2AZ, UK
| | - Ramya Lakshmana Iyer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Patrick Müller
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Max Trauernicht
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christiane A Opitz
- DKTK Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Neurology Clinic and National Center for Tumor Diseases, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, INF672, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
6
|
Wu S, Li X, Gao F, de Groot JF, Koul D, Yung WKA. PARP-mediated PARylation of MGMT is critical to promote repair of temozolomide-induced O6-methylguanine DNA damage in glioblastoma. Neuro Oncol 2021; 23:920-931. [PMID: 33433610 PMCID: PMC8168825 DOI: 10.1093/neuonc/noab003] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Temozolomide (TMZ) resistance in glioblastoma multiforme (GBM) is mediated by the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT). MGMT promoter methylation (occurs in about 40% of patients) is associated with loss of MGMT expression (MGMT−) that compromises DNA repair, leading to a favorable response to TMZ therapy. The 60% of patients with unmethylated MGMT (MGMT+) GBM experience resistance to TMZ; in these patients, understanding the mechanism of MGMT-mediated repair and modulating MGMT activity may lead to enhanced TMZ activity. Here, we report a novel mode of regulation of MGMT protein activity by poly(ADP-ribose) polymerase (PARP). Methods MGMT-PARP interaction was detected by co-immunoprecipitation. PARylation of MGMT and PARP was detected by co-immunoprecipitation with anti-PAR antibody. O6-methylguanine (O6-MetG) adducts were quantified by immunofluorescence assay. In vivo studies were conducted in mice to determine the effectiveness of PARP inhibition in sensitizing GBM to TMZ. Results We demonstrated that PARP physically binds with MGMT and PARylates MGMT in response to TMZ treatment. In addition, PARylation of MGMT by PARP is required for MGMT binding to chromatin to enhance the removal of O6-MetG adducts from DNA after TMZ treatment. PARP inhibitors reduced PARP-MGMT binding and MGMT PARylation, silencing MGMT activity to repair O6-MetG. PARP inhibition restored TMZ sensitivity in vivo in MGMT-expressing GBM. Conclusion This study demonstrated that PARylation of MGMT by PARP is critical for repairing TMZ-induced O6-MetG, and inhibition of PARylation by PARP inhibitor reduces MGMT function rendering sensitization to TMZ, providing a rationale for combining PARP inhibitors to sensitize TMZ in MGMT-unmethylated GBM.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - John F de Groot
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - W K Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
7
|
Agarwal A, Baghmar S, Dodagoudar C, Qureshi S, Khurana A, Vaibhav V, Kumar G. PARP Inhibitor in Platinum-Resistant Ovarian Cancer: Single-Center Real-World Experience. JCO Glob Oncol 2021; 7:506-511. [PMID: 33852339 PMCID: PMC8162970 DOI: 10.1200/go.20.00269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/07/2021] [Accepted: 03/03/2021] [Indexed: 12/27/2022] Open
Abstract
PURPOSE Poly (ADP-ribose) polymerase inhibitors (PARPi) have proven efficacy in treatment of BReast CAncer (BRCA) gene mutation-positive platinum-sensitive ovarian cancers. There is paucity of data for their role in platinum-resistant ovarian cancer (PROC). We report here retrospective analysis of outcome of PARPi treatment in a group of patients including those of PROC. PATIENTS AND METHODS We analyzed all consecutive patients who received PARPi. The efficacy of PARPi monotherapy was assessed in patients with relapsed high-grade serous ovarian carcinoma with gBRCAm. The drug was procured through compassionate program. Drugs (olaparib and talazoparib) were provided in capsule form. RESULTS Between July 1, 2015, and June 30, 2019, 28 patients with ovarian cancer received PARPi. At the time of data censoring (September 30, 2019), four (14.3%) patients are still on treatment. Median age was 54.5 years (range, 39-75 years). Median number of previous lines of chemotherapy received was three (range, 1-6). Eleven platinum-sensitive patients received the drug as maintenance (five in complete response and six in partial response after chemotherapy), whereas 17 (60.7%) had platinum-resistant progressive disease while starting the drug. In PROC, objective response rate (complete response plus partial response) was 47%, median progression-free survival was 8.2 months (5.3-11.3), and overall survival was 14.9 months (11.2-18.5). No new side effects were observed. CONCLUSION This is the first study from India evaluating PARPi in platinum-resistant ovarian cancer. This study suggests that PARPi is a viable treatment option in patients with PROC with gBRCAm. This should be further evaluated in randomized clinical trial.
Collapse
Affiliation(s)
- Amit Agarwal
- Department of Medical Oncology, Dr BL Kapur Memorial Hospital, New Delhi, India
| | - Saphalta Baghmar
- Department of Medical Oncology, Dr BL Kapur Memorial Hospital, New Delhi, India
| | | | - Suhail Qureshi
- Department of Medical Oncology, Dr BL Kapur Memorial Hospital, New Delhi, India
| | - Aseem Khurana
- Department of Medical Oncology, Dr BL Kapur Memorial Hospital, New Delhi, India
| | | | - Guresh Kumar
- Department of Statistics, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
8
|
Long G, Ouyang W, Zhang Y, Sun G, Gan J, Hu Z, Li H. Identification of a DNA Repair Gene Signature and Establishment of a Prognostic Nomogram Predicting Biochemical-Recurrence-Free Survival of Prostate Cancer. Front Mol Biosci 2021; 8:608369. [PMID: 33778002 PMCID: PMC7991107 DOI: 10.3389/fmolb.2021.608369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The incidence of prostate cancer (PCa) is high and increasing worldwide. The prognosis of PCa is relatively good, but it is important to identify the patients with a high risk of biochemical recurrence (BCR) so that additional treatment could be applied. Method: Level 3 mRNA expression and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) to serve as training data. The GSE84042 dataset was used as a validation set. Univariate Cox, lasso Cox, and stepwise multivariate Cox regression were applied to identify a DNA repair gene (DRG) signature. The performance of the DRG signature was assessed based on Kaplan–Meier curve, receiver operating characteristic (ROC), and Harrell’s concordance index (C-index). Furtherly, a prognostic nomogram was established and evaluated likewise. Results: A novel four DRG signature was established to predict BCR of PCa, which included POLM, NUDT15, AEN, and HELQ. The ROC and C index presented good performance in both training dataset and validation dataset. The patients were stratified by the signature into high- and low-risk groups with distinct BCR survival. Multivariate Cox analysis revealed that the DRG signature is an independent prognostic factor for PCa. Also, the DRG signature high-risk was related to a higher homologous recombination deficiency (HRD) score. The nomogram, incorporating the DRG signature and clinicopathological parameters, was able to predict the BCR with high efficiency and showed superior performance compared to models that consisted of only clinicopathological parameters. Conclusion: Our study identified a DRG signature and established a prognostic nomogram, which were reliable in predicting the BCR of PCa. This model could help with individualized treatment and medical decision making.
Collapse
Affiliation(s)
- Gongwei Long
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Ouyang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Sun
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahua Gan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiquan Hu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jang A, Sartor O, Barata PC, Paller CJ. Therapeutic Potential of PARP Inhibitors in the Treatment of Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2020; 12:E3467. [PMID: 33233320 PMCID: PMC7700539 DOI: 10.3390/cancers12113467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 02/08/2023] Open
Abstract
Metastatic castration-resistant prostate cancer (mCRPC) is an incurable malignancy with a poor prognosis. Up to 30% of patients with mCRPC have mutations in homologous recombination repair (HRR) genes. Poly (ADP-ribose) polymerase (PARP) inhibitors take advantage of HRR deficiency to kill tumor cells based on the concept of synthetic lethality. Several PARP inhibitors (PARPis) have been successful in various malignancies with HRR gene mutations including BRCA1/2, especially in breast cancer and ovarian cancer. More recently, olaparib and rucaparib were approved for mCRPC refractory to novel hormonal therapies, and other PARPis will likely follow. This article highlights the mechanism of action of PARPis at the cellular level, the preclinical data regarding a proposed mechanism of action and the effectiveness of PARPis in cancer cell lines and animal models. The article expands on the clinical development of PARPis in mCRPC, discusses potential biomarkers that may predict successful tumor control, and summarizes present and future clinical research on PARPis in the metastatic disease landscape.
Collapse
Affiliation(s)
- Albert Jang
- Deming Department of Medicine, Hematology-Oncology Section, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.J.); (O.S.); (P.C.B.)
| | - Oliver Sartor
- Deming Department of Medicine, Hematology-Oncology Section, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.J.); (O.S.); (P.C.B.)
- Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Pedro C. Barata
- Deming Department of Medicine, Hematology-Oncology Section, Tulane University School of Medicine, New Orleans, LA 70112, USA; (A.J.); (O.S.); (P.C.B.)
- Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Channing J. Paller
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
10
|
Rose M, Burgess JT, O’Byrne K, Richard DJ, Bolderson E. PARP Inhibitors: Clinical Relevance, Mechanisms of Action and Tumor Resistance. Front Cell Dev Biol 2020; 8:564601. [PMID: 33015058 PMCID: PMC7509090 DOI: 10.3389/fcell.2020.564601] [Citation(s) in RCA: 367] [Impact Index Per Article: 73.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 12/11/2022] Open
Abstract
The Poly (ADP-ribose) polymerase (PARP) family has many essential functions in cellular processes, including the regulation of transcription, apoptosis and the DNA damage response. PARP1 possesses Poly (ADP-ribose) activity and when activated by DNA damage, adds branched PAR chains to facilitate the recruitment of other repair proteins to promote the repair of DNA single-strand breaks. PARP inhibitors (PARPi) were the first approved cancer drugs that specifically targeted the DNA damage response in BRCA1/2 mutated breast and ovarian cancers. Since then, there has been significant advances in our understanding of the mechanisms behind sensitization of tumors to PARP inhibitors and expansion of the use of PARPi to treat several other cancer types. Here, we review the recent advances in the proposed mechanisms of action of PARPi, biomarkers of the tumor response to PARPi, clinical advances in PARPi therapy, including the potential of combination therapies and mechanisms of tumor resistance.
Collapse
Affiliation(s)
- Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Joshua T. Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kenneth O’Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
- Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Translational Research Institute, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
11
|
Burgess JT, Rose M, Boucher D, Plowman J, Molloy C, Fisher M, O'Leary C, Richard DJ, O'Byrne KJ, Bolderson E. The Therapeutic Potential of DNA Damage Repair Pathways and Genomic Stability in Lung Cancer. Front Oncol 2020; 10:1256. [PMID: 32850380 PMCID: PMC7399071 DOI: 10.3389/fonc.2020.01256] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite advances in our understanding of the molecular biology of the disease and improved therapeutics, lung cancer remains the most common cause of cancer-related deaths worldwide. Therefore, an unmet need remains for improved treatments, especially in advanced stage disease. Genomic instability is a universal hallmark of all cancers. Many of the most commonly prescribed chemotherapeutics, including platinum-based compounds such as cisplatin, target the characteristic genomic instability of tumors by directly damaging the DNA. Chemotherapies are designed to selectively target rapidly dividing cells, where they cause critical DNA damage and subsequent cell death (1, 2). Despite the initial efficacy of these drugs, the development of chemotherapy resistant tumors remains the primary concern for treatment of all lung cancer patients. The correct functioning of the DNA damage repair machinery is essential to ensure the maintenance of normal cycling cells. Dysregulation of these pathways promotes the accumulation of mutations which increase the potential of malignancy. Following the development of the initial malignancy, the continued disruption of the DNA repair machinery may result in the further progression of metastatic disease. Lung cancer is recognized as one of the most genomically unstable cancers (3). In this review, we present an overview of the DNA damage repair pathways and their contributions to lung cancer disease occurrence and progression. We conclude with an overview of current targeted lung cancer treatments and their evolution toward combination therapies, including chemotherapy with immunotherapies and antibody-drug conjugates and the mechanisms by which they target DNA damage repair pathways.
Collapse
Affiliation(s)
- Joshua T Burgess
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Maddison Rose
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Didier Boucher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Jennifer Plowman
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Christopher Molloy
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Mark Fisher
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O'Leary
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Derek J Richard
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Kenneth J O'Byrne
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Emma Bolderson
- Cancer & Ageing Research Program, School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD, Australia.,Princess Alexandra Hospital, Brisbane, QLD, Australia
| |
Collapse
|
12
|
Prasad R, Horton JK, Wilson SH. Requirements for PARP-1 covalent crosslinking to DNA (PARP-1 DPC). DNA Repair (Amst) 2020; 90:102850. [PMID: 32438305 DOI: 10.1016/j.dnarep.2020.102850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/13/2020] [Accepted: 02/16/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
13
|
Liu Q, Lopez K, Murnane J, Humphrey T, Barcellos-Hoff MH. Misrepair in Context: TGFβ Regulation of DNA Repair. Front Oncol 2019; 9:799. [PMID: 31552165 PMCID: PMC6736563 DOI: 10.3389/fonc.2019.00799] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Repair of DNA damage protects genomic integrity, which is key to tissue functional integrity. In cancer, the type and fidelity of DNA damage response is the fundamental basis for clinical response to cytotoxic therapy. Here we consider the contribution of transforming growth factor-beta (TGFβ), a ubiquitous, pleotropic cytokine that is abundant in the tumor microenvironment, to therapeutic response. The action of TGFβ is best illustrated in head and neck squamous cell carcinoma (HNSCC). Survival of HNSCC patients with human papilloma virus (HPV) positive cancer is more than double compared to those with HPV-negative HNSCC. Notably, HPV infection profoundly impairs TGFβ signaling. HPV blockade of TGFβ signaling, or pharmaceutical TGFβ inhibition that phenocopies HPV infection, shifts cancer cells from error-free homologous-recombination DNA double-strand-break (DSB) repair to error-prone alternative end-joining (altEJ). Cells using altEJ are more sensitive to standard of care radiotherapy and cisplatin, and are sensitized to PARP inhibitors. Hence, HPV-positive HNSCC is an experiment of nature that provides a strong rationale for the use of TGFβ inhibitors for optimal therapeutic combinations that improve patient outcome.
Collapse
Affiliation(s)
- Qi Liu
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States.,Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, China.,Shenzhen Bay Laboratory (SZBL), Shenzhen, China
| | - Kirsten Lopez
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - John Murnane
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Timothy Humphrey
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, United Kingdom
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
14
|
PARP Inhibitors in Ovarian Cancer: The Route to "Ithaca". Diagnostics (Basel) 2019; 9:diagnostics9020055. [PMID: 31109041 PMCID: PMC6627688 DOI: 10.3390/diagnostics9020055] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/12/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a novel class of therapeutic agents that target tumors with deficiencies in the homologous recombination DNA repair pathway. Genomic instability characterizes high-grade serous ovarian cancer (HGSOC), with one half of all tumors displaying defects in the important DNA repair pathway of homologous recombination. Early studies have shown significant efficacy for PARP inhibitors in patients with germline breast related cancer antigens 1 and 2 (BRCA1/2) mutations. It has also become evident that BRCA wild-type patients with other defects in the homologous recombination repair pathway benefit from this treatment. Companion homologous recombination deficiency (HRD) scores are being developed to guide the selection of patients that are most likely to benefit from PARP inhibition. The choice of which PARP inhibitor is mainly based upon the number of prior therapies and the presence of a BRCA mutation or HRD. The identification of patients most likely to benefit from PARP inhibitor therapy in view of HRD and other biomarker assessments is still challenging. The aim of this review is to describe the current evidence for PARP inhibitors in ovarian cancer, their mechanism of action, and the outstanding issues, including the rate of long-term toxicities and the evolution of resistance.
Collapse
|
15
|
Zhang S, Chao HH, Wang X, Zhang Z, Lee EYC, Lee MYWT. Loss of the p12 subunit of DNA polymerase delta leads to a defect in HR and sensitization to PARP inhibitors. DNA Repair (Amst) 2019; 73:64-70. [PMID: 30470508 PMCID: PMC6312503 DOI: 10.1016/j.dnarep.2018.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/08/2018] [Accepted: 11/08/2018] [Indexed: 01/07/2023]
Abstract
Human DNA polymerase δ is normally present in unstressed, non-dividing cells as a heterotetramer (Pol δ4). Its smallest subunit, p12, is transiently degraded in response to UV damage, as well as during the entry into S-phase, resulting in the conversion of Pol δ4 to a trimer (Pol δ3). In order to further understand the specific cellular roles of these two forms of Pol δ, the gene (POLD4) encoding p12 was disrupted by CRISPR/Cas9 to produce p12 knockout (p12KO) cells. Thus, Pol δ4 is absent in p12KO cells, leaving Pol δ3 as the sole source of Pol δ activity. GFP reporter assays revealed that the p12KO cells exhibited a defect in homologous recombination (HR) repair, indicating that Pol δ4, but not Pol δ3, is required for HR. Expression of Flag-tagged p12 in p12KO cells to restore Pol δ4 alleviated the HR defect. These results establish a specific requirement for Pol δ4 in HR repair. This leads to the prediction that p12KO cells should be more sensitive to chemotherapeutic agents, and should exhibit synthetic lethal killing by PARP inhibitors. These predictions were confirmed by clonogenic cell survival assays of p12KO cells treated with cisplatin and mitomycin C, and with the PARP inhibitors Olaparib, Talazoparib, Rucaparib, and Niraparib. The sensitivity to PARP inhibitors in H1299-p12KO cells was alleviated by expression of Flag-p12. These findings have clinical significance, as the expression levels of p12 could be a predictive biomarker of tumor response to PARP inhibitors. In addition, small cell lung cancers (SCLC) are known to exhibit a defect in p12 expression. Analysis of several SCLC cell lines showed that they exhibit hypersensitivity to PARP inhibitors, providing evidence that loss of p12 expression could represent a novel molecular basis for HR deficiency.
Collapse
Affiliation(s)
- Sufang Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Hsiao Hsiang Chao
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Xiaoxiao Wang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Zhongtao Zhang
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Ernest Y C Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States
| | - Marietta Y W T Lee
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY 10595, United States.
| |
Collapse
|
16
|
Prasad R, Horton JK, Dai DP, Wilson SH. Repair pathway for PARP-1 DNA-protein crosslinks. DNA Repair (Amst) 2018; 73:71-77. [PMID: 30466837 DOI: 10.1016/j.dnarep.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/03/2018] [Accepted: 11/09/2018] [Indexed: 02/06/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a regulatory enzyme involved in many different processes of DNA and RNA metabolism, including DNA repair. Previously, PARP-1 was found capable of forming a covalent DNA-protein crosslink (DPC) at the apurinic/apyrimidinic (AP) site in double-stranded DNA. The C1´ atom of the AP site participates in Schiff base formation with a lysine side chain in PARP-1, and a covalent bond is formed upon reduction of the Schiff base. The PARP-1 DPC is formed in vivo where DPC formation correlates with AP site induction by a monofunctional alkylating agent. Here, we examined repair of PARP-1 DPCs in mouse fibroblasts and found that a proteasome inhibitor, MG-132, reduces repair resulting in accumulation of PARP-1 DPCs and increased alkylating agent cytotoxicity. Using a model DNA substrate mimicking the PARP-1 DPC after proteasomal degradation, we found that repair is completed by a sub-pathway of base excision repair (BER). Tyrosyl-DNA phosphodiesterase 1 was proficient in removing the ring-open AP site sugar at the phosphodiester linkage, leaving an intermediate for processing by other BER enzymes. The results reveal proteasomal degradation of the PARP-1 DPC is active in mouse fibroblasts and that a model repair intermediate is processed by the BER machinery.
Collapse
Affiliation(s)
- Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Julie K Horton
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Da-Peng Dai
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, NIEHS, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
17
|
Mehrotra S, Gopalakrishnan M, Gobburu J, Ji J, Greer JM, Piekarz R, Karp JE, Pratz KW, Rudek MA. Exposure-Response of Veliparib to Inform Phase II Trial Design in Refractory or Relapsed Patients with Hematological Malignancies. Clin Cancer Res 2017; 23:6421-6429. [PMID: 28751440 PMCID: PMC5837045 DOI: 10.1158/1078-0432.ccr-17-0143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/04/2017] [Accepted: 07/18/2017] [Indexed: 11/16/2022]
Abstract
Purpose: A phase I trial of veliparib in combination with topotecan plus carboplatin (T+C) demonstrated a 33% objective response rate in patients with hematological malignancies. The objective is to perform exposure-response analysis to inform the phase II trial design.Experimental Design: Pharmacokinetic, efficacy, and safety data from 95 patients, who were administered 10 to 100 mg b.i.d. doses of veliparib for either 8, 14, or 21 days with T+C, were utilized for exposure-efficacy (objective response and overall survival) and exposure-safety (≥grade 3 mucositis) analysis. Multivariate cox proportional hazards and logistic regression analyses were conducted. The covariates evaluated were disease status, duration of treatment, and number of prior therapies.Results: The odds of having objective response were 1.08-fold with 1,000 ng/hr/mL increase in AUC, 1.8-fold with >8 days treatment, 2.8-fold in patients with myeloproliferative neoplasms (MPN), and 0.5-fold with ≥2 prior therapies. Based on analysis of overall survival, hazard of death decreased by 1.5% for 1,000 ng/hr/mL increase in AUC, 39% with >8 days treatment, 44% in patients with MPN, while increased by 19% with ≥2 prior therapies. The odds of having ≥grade 3 mucositis increased by 29% with 1,000 ng.h/mL increase in AUC.Conclusions: Despite shallow exposure-efficacy relationship, doses lower than 80 mg do not exceed veliparib single agent preclinical IC50 Shallow exposure-mucositis relationship also supports the 80-mg dose. Based on benefit/risk assessment, veliparib at a dose of 80 mg b.i.d. for at least 14 days in combination with T+C is recommended to be studied in MPN patients. Clin Cancer Res; 23(21); 6421-9. ©2017 AACR.
Collapse
Affiliation(s)
- Shailly Mehrotra
- Center for Translational Medicine, University of Maryland, Baltimore, Maryland
| | | | - Jogarao Gobburu
- Center for Translational Medicine, University of Maryland, Baltimore, Maryland
| | - Jiuping Ji
- Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jacqueline M Greer
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Richard Piekarz
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, Maryland
| | - Judith E Karp
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Keith W Pratz
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Michelle A Rudek
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland.
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
- Department of Medicine, Division of Clinical Pharmacology, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
18
|
RBR-type E3 ubiquitin ligase RNF144A targets PARP1 for ubiquitin-dependent degradation and regulates PARP inhibitor sensitivity in breast cancer cells. Oncotarget 2017; 8:94505-94518. [PMID: 29212245 PMCID: PMC5706891 DOI: 10.18632/oncotarget.21784] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/23/2017] [Indexed: 01/06/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1), a critical DNA repair protein, is frequently upregulated in breast tumors with a key role in breast cancer progression. Consequently, PARP inhibitors have emerged as promising therapeutics for breast cancers with DNA repair deficiencies. However, relatively little is known about the regulatory mechanism of PARP1 expression and the determinants of PARP inhibitor sensitivity in breast cancer cells. Here, we report that ring finger protein 144A (RNF144A), a RING-between-RING (RBR)-type E3 ubiquitin ligase with an unexplored functional role in human cancers, interacts with PARP1 through its carboxy-terminal region containing the transmembrane domain, and targets PARP1 for ubiquitination and subsequent proteasomal degradation. Moreover, induced expression of RNF144A decreases PARP1 protein levels and renders breast cancer cells resistant to the clinical-grade PARP inhibitor olaparib. Conversely, knockdown of endogenous RNF144A increases PARP1 protein levels and enhances cellular sensitivity to olaparib. Together, these findings define RNF144A as a novel regulator of PARP1 protein abundance and a potential determinant of PARP inhibitor sensitivity in breast cancer cells, which may eventually guide the optimal use of PARP inhibitors in the clinic.
Collapse
|
19
|
Clinton TN, Bagrodia A, Lotan Y, Margulis V, Raj GV, Woldu SL. Tissue-based biomarkers in prostate cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2017; 2:249-260. [PMID: 29226251 PMCID: PMC5722240 DOI: 10.1080/23808993.2017.1372687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/24/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Prostate cancer is a heterogeneous disease. Existing risk stratification tools based on standard clinlicopathologic variables (prostate specific antigen [PSA], Gleason score, and tumor stage) provide a modest degree of predictive ability. Advances in high-throughput sequencing has led to the development of several novel tissue-based biomarkers that can improve prognostication in prostate cancer management. AREAS COVERED The authors review commercially-available, tissue-based biomarker assays that improve upon existing risk-stratification tools in several areas of prostate cancer management, including the appropriateness of active surveillance and aiding in decision making regarding the use of adjuvant therapy. Additionally, some of the obstacles to the widespread adoption of these biomarkers and discuss several investigational sources of new biomarkers are discussed. EXPERT COMMENTARY Work is ongoing to answer pertinent clinical questions in prostate cancer management including which patients should undergo biopsy, active surveillance, receive adjuvant therapy, and what systemic therapy is best in the first-line. Incorporation into novel biomarkers may allow for the incorporation of a 'personalized' approach to management. Further validation will be required and questions of cost must be considered before wide scale adoption of these biomarkers. Tumor heterogeneity may impose a ceiling on the prognostic ability of biomarkers using currently available techniques.
Collapse
Affiliation(s)
- Timothy N Clinton
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Aditya Bagrodia
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Yair Lotan
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Vitaly Margulis
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Ganesh V Raj
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| | - Solomon L Woldu
- University of Texas Southwestern Medical Center, Department of Urology, Dallas, Texas
| |
Collapse
|
20
|
Wang Q, Xiong J, Qiu D, Zhao X, Yan D, Xu W, Wang Z, Chen Q, Panday S, Li A, Wang S, Zhou J. Inhibition of PARP1 activity enhances chemotherapeutic efficiency in cisplatin-resistant gastric cancer cells. Int J Biochem Cell Biol 2017; 92:164-172. [PMID: 28827033 DOI: 10.1016/j.biocel.2017.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 01/28/2023]
Abstract
Cisplatin (DDP) is the first line chemotherapeutic drug for several cancers, including gastric cancer (GC). Unfortunately, the rapid development of drug resistance remains a significant challenge for the clinical application of cisplatin. There is an urgent need to develop new strategies to overcome DDP resistance for cancer treatment. In this study, four types of human GC cells have been divided into naturally sensitive or naturally resistant categories according to their responses to cisplatin. PARP1 activity (poly (ADP-ribose), PAR) was found to be greatly increased in cisplatin-resistant GC cells. PARP1 inhibitors significantly enhanced cisplatin-induced DNA damage and apoptosis in the resistant GC cells via the inhibition of PAR. Mechanistically, PARP1 inhibitors suppress DNA-PKcs stability and reduce the capability of DNA double-strand break (DSB) repair via the NHEJ pathway. This was also verified in BGC823/DDP GC cells with acquired cisplatin resistance. In conclusion, we identified that PARP1 is a useful interceptive target in cisplatin-resistant GC cells. Our data provide a promising therapeutic strategy against cisplatin resistance in GC cells that has potential translational significance.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jianping Xiong
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Danping Qiu
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xue Zhao
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Donglin Yan
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wenxia Xu
- Laboratory of Cancer Biology, Biomedical Research Center, Sir Runrun Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Zhangding Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qi Chen
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sapna Panday
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Aiping Li
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Shouyu Wang
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Key Laboratory of Modern Toxicology of the Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
21
|
|
22
|
PARP inhibitors: review of mechanisms of action and BRCA1/2 mutation targeting. MENOPAUSE REVIEW 2017; 15:215-219. [PMID: 28250726 PMCID: PMC5327624 DOI: 10.5114/pm.2016.65667] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 12/28/2016] [Indexed: 02/03/2023]
Abstract
Poly(ADP-ribose) polymerases have shown true promise in early clinical studies due to reported activity in BRCA-associated cancers. PARP inhibitors may represent a potentially important new class of chemotherapeutic agents directed at targeting cancers with defective DNA-damage repair. In order to widen the prospective patient population that would benefit from PARP inhibitors, predictive biomarkers based on a clear understanding of the mechanism of action are required. In addition, a more sophisticated understanding of the toxicity profile is required if PARP inhibitors are to be employed in the curative, rather than the palliative, setting. PARP inhibitors have successfully moved into clinical practice in the past few years, with approval granted from the Food and Drug Administration (FDA) and European Medicines Agency (EMA) within the past two years. The United States FDA approval of olaparib applies to fourth-line treatment in germline BRCA-mutant ovarian cancer, and European EMA approval of olaparib for maintenance therapy in both germline and somatic BRCA-mutant platinum-sensitive ovarian cancer. This review covers the current understanding of PARP, its inhibition, and the basis of the excitement surrounding these new agents. It also evaluates future approaches and directions required to achieve full understanding of the intricate interplay of these agents at the cellular level.
Collapse
|
23
|
Danza K, De Summa S, Pinto R, Pilato B, Palumbo O, Carella M, Popescu O, Digennaro M, Lacalamita R, Tommasi S. TGFbeta and miRNA regulation in familial and sporadic breast cancer. Oncotarget 2017; 8:50715-50723. [PMID: 28881597 PMCID: PMC5584195 DOI: 10.18632/oncotarget.14899] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/27/2016] [Indexed: 01/20/2023] Open
Abstract
The term ‘BRCAness’ was introduced to identify sporadic malignant tumors sharing characteristics similar to those germline BRCA-related. Among all mechanisms attributable to BRCA1 expression silencing, a major role has been assigned to microRNAs. MicroRNAs role in familial and sporadic breast cancer has been explored but few data are available about microRNAs involvement in homologous recombination repair control in these breast cancer subgroups. Our aim was to seek microRNAs associated to pathways underlying DNA repair dysfunction in breast cancer according to a family history of the disease. Affymetrix GeneChip microRNA Arrays were used to perform microRNA expression analysis in familial and sporadic breast cancer. Pathway enrichment analysis and microRNA target prediction was carried out using DIANA miRPath v.3 web-based computational tool and miRWalk v.2 database. We analyzed an external gene expression dataset (E-GEOD-49481), including both familial and sporadic breast cancers. For microRNA validation, an independent set of 19 familial and 10 sporadic breast cancers was used. Microarray analysis identified a signature of 28 deregulated miRNAs. For our validation analyses by real time PCR, we focused on miR-92a-1*, miR-1184 and miR-943 because associated to TGF-β signalling pathway, ATM and BRCA1 genes expression. Our results highlighted alterations in miR-92a-1*, miR-1184 and miR-943 expression levels suggesting their involvement in repair of DNA double-strand breaks through TGF-beta pathway control.
Collapse
Affiliation(s)
- Katia Danza
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Simona De Summa
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Rosamaria Pinto
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Brunella Pilato
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Orazio Palumbo
- IRCCS 'Casa Sollievo della Sofferenza', Medical Genetics Unit, San Giovanni Rotondo 71013, Italy
| | - Massimo Carella
- IRCCS 'Casa Sollievo della Sofferenza', Medical Genetics Unit, San Giovanni Rotondo 71013, Italy
| | - Ondina Popescu
- IRCCS 'Giovanni Paolo II', Anatomopathology Unit, Bari 70124, Italy
| | - Maria Digennaro
- IRCCS 'Giovanni Paolo II', Experimental Medical Oncology Unit, Bari 70124, Italy
| | - Rosanna Lacalamita
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| | - Stefania Tommasi
- IRCCS 'Giovanni Paolo II', Molecular Genetics Laboratory, Bari 70124, Italy
| |
Collapse
|
24
|
Oza J, Ganguly B, Kulkarni A, Ginjala V, Yao M, Ganesan S. A Novel Role of Chromodomain Protein CBX8 in DNA Damage Response. J Biol Chem 2016; 291:22881-22893. [PMID: 27555324 DOI: 10.1074/jbc.m116.725879] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Indexed: 12/18/2022] Open
Abstract
Induction of DNA damage induces a dynamic repair process involving DNA repair factors and epigenetic regulators. Chromatin alterations must occur for DNA repair factors to gain access to DNA lesions and restore original chromatin configuration to preserve the gene expression profile. We characterize the novel role of CBX8, a chromodomain-containing protein with established roles in epigenetic regulation in DNA damage response. CBX8 protein rapidly accumulates at the sites of DNA damage within 30 s and progresses to accumulate until 4 min before gradually dispersing back to its predamage distribution by 15 min. CBX8 recruitment to the sites of DNA damage is dependent upon PARP1 activation and not dependent on ATM activation. CBX8 biochemically interacts with TRIM33, and its recruitment to DNA damage is also dependent on the presence of TRIM33. Knockdown of CBX8 using siRNA significantly reduces the efficiency of both homologous and the other non-homologous recombination, as well as increases sensitivity of cells to ionizing radiation. These findings demonstrate that CBX8 functions in the PARP-dependent DNA damage response partly through interaction with TRIM33 and is required for efficient DNA repair.
Collapse
Affiliation(s)
- Jay Oza
- From the MD-PhD Program, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey 08903.,the Department of Cellular and Molecular Pharmacology, Rutgers-Graduate School of Biomedical Sciences, Piscataway, New Jersey 08854.,the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and.,the Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire 03766
| | - Bratati Ganguly
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Atul Kulkarni
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Vasudeva Ginjala
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Ming Yao
- the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| | - Shridar Ganesan
- the Department of Cellular and Molecular Pharmacology, Rutgers-Graduate School of Biomedical Sciences, Piscataway, New Jersey 08854, .,the Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, and
| |
Collapse
|