1
|
Verscheure E, Stierum R, Schlünssen V, Lund Würtz AM, Vanneste D, Kogevinas M, Harding BN, Broberg K, Zienolddiny-Narui S, Erdem JS, Das MK, Makris KC, Konstantinou C, Andrianou X, Dekkers S, Morris L, Pronk A, Godderis L, Ghosh M. Characterization of the internal working-life exposome using minimally and non-invasive sampling methods - a narrative review. ENVIRONMENTAL RESEARCH 2023; 238:117001. [PMID: 37683788 DOI: 10.1016/j.envres.2023.117001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023]
Abstract
During recent years, we are moving away from the 'one exposure, one disease'-approach in occupational settings and towards a more comprehensive approach, taking into account the totality of exposures during a life course by using an exposome approach. Taking an exposome approach however is accompanied by many challenges, one of which, for example, relates to the collection of biological samples. Methods used for sample collection in occupational exposome studies should ideally be minimally invasive, while at the same time sensitive, and enable meaningful repeated sampling in a large population and over a longer time period. This might be hampered in specific situations e.g., people working in remote areas, during pandemics or with flexible work hours. In these situations, using self-sampling techniques might offer a solution. Therefore, our aim was to identify existing self-sampling techniques and to evaluate the applicability of these techniques in an occupational exposome context by conducting a literature review. We here present an overview of current self-sampling methodologies used to characterize the internal exposome. In addition, the use of different biological matrices was evaluated and subdivided based on their level of invasiveness and applicability in an occupational exposome context. In conclusion, this review and the overview of self-sampling techniques presented herein can serve as a guide in the design of future (occupational) exposome studies while circumventing sample collection challenges associated with exposome studies.
Collapse
Affiliation(s)
- Eline Verscheure
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Vivi Schlünssen
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Anne Mette Lund Würtz
- Department of Public Health, Research unit for Environment, Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Dorian Vanneste
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Manolis Kogevinas
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Barbara N Harding
- Environment and Health over the Lifecourse Program, ISGlobal, Barcelona, Spain
| | - Karin Broberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Mrinal K Das
- National Institute of Occupational Health, Oslo, Norway
| | - Konstantinos C Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Corina Konstantinou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Xanthi Andrianou
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol, Cyprus
| | - Susan Dekkers
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | | | - Anjoeka Pronk
- Netherlands Organisation for Applied Scientific Research TNO, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium; Idewe, External Service for Prevention and Protection at work, Heverlee, Belgium.
| | - Manosij Ghosh
- Department of Public Health and Primary Care, Centre for Environment and Health, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
2
|
Sun J, Tung SR, Wang D, Kitzmiller JP, Smith S. A comparison of genetic sampling methodologies for candidate-gene analyses. JOURNAL OF TRANSLATIONAL SCIENCE 2019; 5. [PMID: 31749990 PMCID: PMC6867604 DOI: 10.15761/jts.1000306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Much of the recent gains in knowledge regarding the influence of patient genetics on medication pharmacokinetics (drug absorption, distribution, metabolism and elimination) how patients process medications) and pharmacodynamics (drug response) have been attributed to the technologic advances in genetic testing methodologies and the involvement of large clinical data sets and biobanks. Indeed, Genome Wide Association Studies (GWAS) and Phenome Wide Association Studies (PWAS) along with ever-evolving biomedical informatics techniques and the expansion of the -omics sciences (e.g., transcriptomics, metabolomics, proteomics) have brought about unprecedented advances in precision medicine. Although the simpler candidate-gene analysis technique is not considered cutting-edge, it is reliable and important to the translation of pharmacogenomic research and the advancement of precision medicine. Leveraging the knowledge of biological plausibility (i.e., genetic mutation → altered function of protein product → altered drug pharmacokinetics/dynamics) to appropriately select genes for inclusion, the candidate-gene analysis technique does not necessitate large patient cohorts nor extensive multi-gene genetic analysis arrays. It is often the ideal method for clinicians to begin evaluating whether genetic information might improve their pharmacologic treatment strategies for their patients. Having access to specific patient populations and expertise regarding their medical subspecialty, physician scientists can implement a candidate-gene analysis in small cohorts. Even with less than 100 patients, results can often be used to determine whether further investigation is warranted and to inform future studies. Herein, we present a comparison of select contemporary methodologies regarding collection, processing and genotype testing applicable to the efficient implementation of candidate-gene studies.
Collapse
Affiliation(s)
- Jessie Sun
- Department of Biological Chemistry, The Ohio State University, Columbus, Ohio, USA
| | - Steven R Tung
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio, USA
| | - Danxin Wang
- College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Joseph P Kitzmiller
- The Center for Pharmacogenomcis, The Ohio State University, Columbus, Ohio, USA.,Deceased 03 October 2018
| | - Sakima Smith
- Department of Cardiovascular Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
3
|
Trost B, Walker S, Haider SA, Sung WWL, Pereira S, Phillips CL, Higginbotham EJ, Strug LJ, Nguyen C, Raajkumar A, Szego MJ, Marshall CR, Scherer SW. Impact of DNA source on genetic variant detection from human whole-genome sequencing data. J Med Genet 2019; 56:809-817. [PMID: 31515274 PMCID: PMC6929712 DOI: 10.1136/jmedgenet-2019-106281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/04/2019] [Accepted: 07/20/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Whole blood is currently the most common DNA source for whole-genome sequencing (WGS), but for studies requiring non-invasive collection, self-collection, greater sample stability or additional tissue references, saliva or buccal samples may be preferred. However, the relative quality of sequencing data and accuracy of genetic variant detection from blood-derived, saliva-derived and buccal-derived DNA need to be thoroughly investigated. METHODS Matched blood, saliva and buccal samples from four unrelated individuals were used to compare sequencing metrics and variant-detection accuracy among these DNA sources. RESULTS We observed significant differences among DNA sources for sequencing quality metrics such as percentage of reads aligned and mean read depth (p<0.05). Differences were negligible in the accuracy of detecting short insertions and deletions; however, the false positive rate for single nucleotide variation detection was slightly higher in some saliva and buccal samples. The sensitivity of copy number variant (CNV) detection was up to 25% higher in blood samples, depending on CNV size and type, and appeared to be worse in saliva and buccal samples with high bacterial concentration. We also show that methylation-based enrichment for eukaryotic DNA in saliva and buccal samples increased alignment rates but also reduced read-depth uniformity, hampering CNV detection. CONCLUSION For WGS, we recommend using DNA extracted from blood rather than saliva or buccal swabs; if saliva or buccal samples are used, we recommend against using methylation-based eukaryotic DNA enrichment. All data used in this study are available for further open-science investigation.
Collapse
Affiliation(s)
- Brett Trost
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Susan Walker
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Syed A Haider
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Wilson W L Sung
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sergio Pereira
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Charly L Phillips
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Lisa J Strug
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Charlotte Nguyen
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Akshaya Raajkumar
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael J Szego
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Christian R Marshall
- Department of Paediatric Laboratory Medicine, Genome Diagnostics, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
The NEIGHBOR consortium primary open-angle glaucoma genome-wide association study: rationale, study design, and clinical variables. J Glaucoma 2014; 22:517-25. [PMID: 22828004 DOI: 10.1097/ijg.0b013e31824d4fd8] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Primary open-angle glaucoma (POAG) is a common disease with complex inheritance. The identification of genes predisposing to POAG is an important step toward the development of novel gene-based methods of diagnosis and treatment. Genome-wide association studies (GWAS) have successfully identified genes contributing to complex traits such as POAG however, such studies frequently require very large sample sizes, and thus, collaborations and consortia have been of critical importance for the GWAS approach. In this report we describe the formation of the NEIGHBOR consortium, the harmonized case control definitions used for a POAG GWAS, the clinical features of the cases and controls, and the rationale for the GWAS study design.
Collapse
|
5
|
Erickson SW, MacLeod SL, Hobbs CA. Cheek swabs, SNP chips, and CNVs: assessing the quality of copy number variant calls generated with subject-collected mail-in buccal brush DNA samples on a high-density genotyping microarray. BMC MEDICAL GENETICS 2012; 13:51. [PMID: 22734463 PMCID: PMC3506514 DOI: 10.1186/1471-2350-13-51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 06/21/2012] [Indexed: 01/15/2023]
Abstract
Background Multiple investigators have established the feasibility of using buccal brush samples to genotype single nucleotide polymorphisms (SNPs) with high-density genome-wide microarrays, but there is currently no consensus on the accuracy of copy number variants (CNVs) inferred from these data. Regardless of the source of DNA, it is more difficult to detect CNVs than to genotype SNPs using these microarrays, and it therefore remains an open question whether buccal brush samples provide enough high-quality DNA for this purpose. Methods To demonstrate the quality of CNV calls generated from DNA extracted from buccal samples, compared to calls generated from blood samples, we evaluated the concordance of calls from individuals who provided both sample types. The Illumina Human660W-Quad BeadChip was used to determine SNPs and CNVs of 39 Arkansas participants in the National Birth Defects Prevention Study (NBDPS), including 16 mother-infant dyads, who provided both whole blood and buccal brush DNA samples. Results We observed a 99.9% concordance rate of SNP calls in the 39 blood–buccal pairs. From the same dataset, we performed a similar analysis of CNVs. Each of the 78 samples was independently segmented into regions of like copy number using the Optimal Segmentation algorithm of Golden Helix SNP & Variation Suite 7. Across 640,663 loci on 22 autosomal chromosomes, segment-mean log R ratios had an average correlation of 0.899 between blood-buccal pairs of samples from the same individual, while the average correlation between all possible blood-buccal pairs of samples from unrelated individuals was 0.318. An independent analysis using the QuantiSNP algorithm produced average correlations of 0.943 between blood-buccal pairs from the same individual versus 0.332 between samples from unrelated individuals. Segment-mean log R ratios had an average correlation of 0.539 between mother-offspring dyads of buccal samples, which was not statistically significantly different than the average correlation of 0.526 between mother-offspring dyads of blood samples (p=0.302). Conclusions We observed performance from the subject-collected mail-in buccal brush samples comparable to that of blood. These results show that such DNA samples can be used for genome-wide scans of both SNPs and CNVs, and that high rates of CNV concordance were achieved whether using a change-point-based algorithm or one based on a hidden Markov model (HMM).
Collapse
Affiliation(s)
- Stephen W Erickson
- Department of Biostatistics, College of Medicine, University of Arkansas for Medical Science, 4301 W, Markham Street, Mail Slot 781, Little Rock, AR 72205-7199, USA.
| | | | | |
Collapse
|
6
|
Wiggs JL, Yaspan BL, Hauser MA, Kang JH, Allingham RR, Olson LM, Abdrabou W, Fan BJ, Wang DY, Brodeur W, Budenz DL, Caprioli J, Crenshaw A, Crooks K, Delbono E, Doheny KF, Friedman DS, Gaasterland D, Gaasterland T, Laurie C, Lee RK, Lichter PR, Loomis S, Liu Y, Medeiros FA, McCarty C, Mirel D, Moroi SE, Musch DC, Realini A, Rozsa FW, Schuman JS, Scott K, Singh K, Stein JD, Trager EH, Vanveldhuisen P, Vollrath D, Wollstein G, Yoneyama S, Zhang K, Weinreb RN, Ernst J, Kellis M, Masuda T, Zack D, Richards JE, Pericak-Vance M, Pasquale LR, Haines JL. Common variants at 9p21 and 8q22 are associated with increased susceptibility to optic nerve degeneration in glaucoma. PLoS Genet 2012; 8:e1002654. [PMID: 22570617 PMCID: PMC3343074 DOI: 10.1371/journal.pgen.1002654] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 03/01/2012] [Indexed: 01/07/2023] Open
Abstract
Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63-0.75], p = 1.86×10⁻¹⁸), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21-1.43], p = 3.87×10⁻¹¹). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50-0.67], p = 1.17×10⁻¹²) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53-0.72], p = 8.88×10⁻¹⁰). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41-0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54-1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma.
Collapse
Affiliation(s)
- Janey L Wiggs
- Department of Ophthalmology, Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wiggs JL, Kang JH, Yaspan BL, Mirel DB, Laurie C, Crenshaw A, Brodeur W, Gogarten S, Olson LM, Abdrabou W, DelBono E, Loomis S, Haines JL, Pasquale LR. Common variants near CAV1 and CAV2 are associated with primary open-angle glaucoma in Caucasians from the USA. Hum Mol Genet 2011; 20:4707-13. [PMID: 21873608 DOI: 10.1093/hmg/ddr382] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Primary open-angle glaucoma (POAG) is a genetically complex common disease characterized by progressive optic nerve degeneration that results in irreversible blindness. Recently, a genome-wide association study (GWAS) for POAG in an Icelandic population identified significant associations with single nucleotide polymorphisms (SNPs) between the CAV1 and CAV2 genes on chromosome 7q31. In this study, we confirm that the identified SNPs are associated with POAG in our Caucasian US population and that specific haplotypes located in the CAV1/CAV2 intergenic region are associated with the disease. We also present data suggesting that associations with several CAV1/CAV2 SNPs are significant mostly in women.
Collapse
Affiliation(s)
- Janey L Wiggs
- Harvard Medical School, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|