1
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|
2
|
Kim GJ, Lee T, Ahn S, Uh Y, Kim SH. Efficient diagnosis of IDH-mutant gliomas: 1p/19qNET assesses 1p/19q codeletion status using weakly-supervised learning. NPJ Precis Oncol 2023; 7:94. [PMID: 37717080 PMCID: PMC10505231 DOI: 10.1038/s41698-023-00450-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
Accurate identification of molecular alterations in gliomas is crucial for their diagnosis and treatment. Although, fluorescence in situ hybridization (FISH) allows for the observation of diverse and heterogeneous alterations, it is inherently time-consuming and challenging due to the limitations of the molecular method. Here, we report the development of 1p/19qNET, an advanced deep-learning network designed to predict fold change values of 1p and 19q chromosomes and classify isocitrate dehydrogenase (IDH)-mutant gliomas from whole-slide images. We trained 1p/19qNET on next-generation sequencing data from a discovery set (DS) of 288 patients and utilized a weakly-supervised approach with slide-level labels to reduce bias and workload. We then performed validation on an independent validation set (IVS) comprising 385 samples from The Cancer Genome Atlas, a comprehensive cancer genomics resource. 1p/19qNET outperformed traditional FISH, achieving R2 values of 0.589 and 0.547 for the 1p and 19q arms, respectively. As an IDH-mutant glioma classifier, 1p/19qNET attained AUCs of 0.930 and 0.837 in the DS and IVS, respectively. The weakly-supervised nature of 1p/19qNET provides explainable heatmaps for the results. This study demonstrates the successful use of deep learning for precise determination of 1p/19q codeletion status and classification of IDH-mutant gliomas as astrocytoma or oligodendroglioma. 1p/19qNET offers comparable results to FISH and provides informative spatial information. This approach has broader applications in tumor classification.
Collapse
Affiliation(s)
- Gi Jeong Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Medicine, Yonsei University Graduate School, Seoul, Republic of Korea
| | - Tonghyun Lee
- Department of Artificial Intelligence, Yonsei University College of Computing, Seoul, Republic of Korea
| | - Sangjeong Ahn
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youngjung Uh
- Department of Artificial Intelligence, Yonsei University College of Computing, Seoul, Republic of Korea.
| | - Se Hoon Kim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ali RH, Alateeqi M, Jama H, Alrumaidhi N, Alqallaf A, Mohammed EM, Almurshed M, Bahzad S. Evaluation of the Oncomine Comprehensive Assay v3 panel for the detection of 1p/19q codeletion in oligodendroglial tumours. J Clin Pathol 2023; 76:103-110. [PMID: 34489310 DOI: 10.1136/jclinpath-2021-207876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/26/2021] [Indexed: 01/24/2023]
Abstract
AIMS Accurate assessment of 1p/19q codeletion status in diffuse gliomas is of paramount importance for diagnostic, prognostic and predictive purposes. While targeted next generation sequencing (NGS) has been widely implemented for glioma molecular profiling, its role in detecting structural chromosomal variants is less well established, requiring supplementary informatic tools for robust detection. Herein, we evaluated a commercially available amplicon-based targeted NGS panel (Oncomine Comprehensive Assay v3) for the detection of 1p/19q losses in glioma tissues using an Ion Torrent platform and the standard built-in NGS data analysis pipeline solely. METHODS Using as little as 20 ng of DNA from formalin-fixed paraffin-embedded tissues, we analysed 25 previously characterised gliomas for multi-locus copy number losses (CNLs) on 1p and 19q, including 11 oligodendrogliomas (ODG) and 14 non-oligodendroglial (non-ODG) controls. Fluorescence in-situ hybridisation (FISH) was used as a reference standard. RESULTS The software confidently detected combined contiguous 1p/19q CNLs in 11/11 ODGs (100% sensitivity), using a copy number cut-off of ≤1.5 and a minimum of 10 amplicons covering the regions. Only partial non-specific losses were identified in non-ODGs (100% specificity). Copy number averages of ODG and non-ODG groups were significantly different (p<0.001). NGS was concordant with FISH and was superior to it in distinguishing partial from contiguous losses indicative of whole-arm chromosomal deletion. CONCLUSIONS This commercial NGS panel, along with the standard Ion Torrent algorithm, accurately detected 1p/19q losses in ODG samples, obviating the need for specialised custom-made informatic analyses. This can easily be incorporated into routine glioma workflow as an alternative to FISH.
Collapse
Affiliation(s)
- Rola H Ali
- Department of Pathology, Kuwait University, Jabriya, Kuwait .,Cytogenetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Noor Alrumaidhi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | - Ali Alqallaf
- Cytogenetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| | | | | | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Kuwait
| |
Collapse
|
4
|
Massaad E, Tabbarah A, Barmada M, Rbeiz J, Nasser S, Farra C. FISH analyses for 1p and 19q status on gliomas: Reporting an 8 years' experience from a tertiary care center in the Middle East. Ann Diagn Pathol 2022; 57:151899. [DOI: 10.1016/j.anndiagpath.2022.151899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/25/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
|
5
|
McAleenan A, Jones HE, Kernohan A, Robinson T, Schmidt L, Dawson S, Kelly C, Spencer Leal E, Faulkner CL, Palmer A, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JP, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Cochrane Database Syst Rev 2022; 3:CD013387. [PMID: 35233774 PMCID: PMC8889390 DOI: 10.1002/14651858.cd013387.pub2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Complete deletion of both the short arm of chromosome 1 (1p) and the long arm of chromosome 19 (19q), known as 1p/19q codeletion, is a mutation that can occur in gliomas. It occurs in a type of glioma known as oligodendroglioma and its higher grade counterpart known as anaplastic oligodendroglioma. Detection of 1p/19q codeletion in gliomas is important because, together with another mutation in an enzyme known as isocitrate dehydrogenase, it is needed to make the diagnosis of an oligodendroglioma. Presence of 1p/19q codeletion also informs patient prognosis and prediction of the best drug treatment. The main two tests in use are fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)-based loss of heterozygosity (LOH) assays (also known as PCR-based short tandem repeat or microsatellite analysis). Many other tests are available. None of the tests is perfect, although PCR-based LOH is expected to have very high sensitivity. OBJECTIVES To estimate the sensitivity and specificity and cost-effectiveness of different deoxyribonucleic acid (DNA)-based techniques for determining 1p/19q codeletion status in glioma. SEARCH METHODS We searched MEDLINE, Embase and BIOSIS up to July 2019. There were no restrictions based on language or date of publication. We sought economic evaluation studies from the results of this search and using the National Health Service Economic Evaluation Database. SELECTION CRITERIA We included cross-sectional studies in adults with glioma or any subtype of glioma, presenting raw data or cross-tabulations of two or more DNA-based tests for 1p/19q codeletion. We also sought economic evaluations of these tests. DATA COLLECTION AND ANALYSIS We followed procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened titles/abstracts/full texts, performed data extraction, and undertook applicability and risk of bias assessments using QUADAS-2. Meta-analyses used the hierarchical summary ROC model to estimate and compare test accuracy. We used FISH and PCR-based LOH as alternate reference standards to examine how tests compared with those in common use, and conducted a latent class analysis comparing FISH and PCR-based LOH. We constructed an economic model to evaluate cost-effectiveness. MAIN RESULTS We included 53 studies examining: PCR-based LOH, FISH, single nucleotide polymorphism (SNP) array, next-generation sequencing (NGS), comparative genomic hybridisation (CGH), array comparative genomic hybridisation (aCGH), multiplex-ligation-dependent probe amplification (MLPA), real-time PCR, chromogenic in situ hybridisation (CISH), mass spectrometry (MS), restriction fragment length polymorphism (RFLP) analysis, G-banding, methylation array and NanoString. Risk of bias was low for only one study; most gave us concerns about how patients were selected or about missing data. We had applicability concerns about many of the studies because only patients with specific subtypes of glioma were included. 1520 participants contributed to analyses using FISH as the reference, 1304 participants to analyses involving PCR-based LOH as the reference and 262 participants to analyses of comparisons between methods from studies not including FISH or PCR-based LOH. Most evidence was available for comparison of FISH with PCR-based LOH (15 studies, 915 participants): PCR-based LOH detected 94% of FISH-determined codeletions (95% credible interval (CrI) 83% to 98%) and FISH detected 91% of codeletions determined by PCR-based LOH (CrI 78% to 97%). Of tumours determined not to have a deletion by FISH, 94% (CrI 87% to 98%) had a deletion detected by PCR-based LOH, and of those determined not to have a deletion by PCR-based LOH, 96% (CrI 90% to 99%) had a deletion detected by FISH. The latent class analysis suggested that PCR-based LOH may be slightly more accurate than FISH. Most other techniques appeared to have high sensitivity (i.e. produced few false-negative results) for detection of 1p/19q codeletion when either FISH or PCR-based LOH was considered as the reference standard, although there was limited evidence. There was some indication of differences in specificity (false-positive rate) with some techniques. Both NGS and SNP array had high specificity when considered against FISH as the reference standard (NGS: 6 studies, 243 participants; SNP: 6 studies, 111 participants), although we rated certainty in the evidence as low or very low. NGS and SNP array also had high specificity when PCR-based LOH was considered the reference standard, although with much more uncertainty as these results were based on fewer studies (just one study with 49 participants for NGS and two studies with 33 participants for SNP array). G-banding had low sensitivity and specificity when PCR-based LOH was the reference standard. Although MS had very high sensitivity and specificity when both FISH and PCR-based LOH were considered the reference standard, these results were based on only one study with a small number of participants. Real-time PCR also showed high specificity with FISH as a reference standard, although there were only two studies including 40 participants. We found no relevant economic evaluations. Our economic model using FISH as the reference standard suggested that the resource-optimising test depends on which measure of diagnostic accuracy is most important. With FISH as the reference standard, MLPA is likely to be cost-effective if society was willing to pay GBP 1000 or less for a true positive detected. However, as the value placed on a true positive increased, CISH was most cost-effective. Findings differed when the outcome measure changed to either true negative detected or correct diagnosis. When PCR-based LOH was used as the reference standard, MLPA was likely to be cost-effective for all measures of diagnostic accuracy at lower threshold values for willingness to pay. However, as the threshold values increased, none of the tests were clearly more likely to be considered cost-effective. AUTHORS' CONCLUSIONS In our review, most techniques (except G-banding) appeared to have good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma against both FISH and PCR-based LOH as a reference standard. However, we judged the certainty of the evidence low or very low for all the tests. There are possible differences in specificity, with both NGS and SNP array having high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. The economic analysis should be interpreted with caution due to the small number of studies.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Hayley E Jones
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tomos Robinson
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne , UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Emmelyn Spencer Leal
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Abigail Palmer
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Luke Vale
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, UK
| | - Julian Pt Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Kathreena M Kurian
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
6
|
Van der Eecken K, Van der Linden M, Raman L, Creytens D, Dedeurwaerdere F, De Winne K, Ferdinande L, Lammens M, Menten B, Rottiers I, Van Gaever B, Van den Broecke C, Van de Vijver K, Van Roy N, Verbeke S, Van Dorpe J. Shallow whole-genome sequencing: a useful, easy to apply molecular technique for CNA detection on FFPE tumor tissue-a glioma-driven study. Virchows Arch 2022; 480:677-686. [PMID: 35034191 DOI: 10.1007/s00428-022-03268-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
Copy number alterations (CNAs) have increasingly become part of the diagnostic algorithm of glial tumors. Alterations such as homozygous deletion of CDKN2A/B, 7 +/ 10 - chromosome copy number changes or EGFR amplification are predictive of a poor prognosis. The codeletion of chromosome arms 1p and 19q, typically associated with oligodendroglioma, implies a more favorable prognosis. Detection of this codeletion by the current diagnostic standard, being fluorescence in situ hybridization (FISH), is sometimes however subject to technical and interpretation problems. In this study, we evaluated CNA detection by shallow whole-genome sequencing (sWGS) as an inexpensive, complementary molecular technique. A cohort of 36 glioma tissue samples, enriched with "difficult" and "ambiguous" cases, was analyzed by sWGS. sWGS results were compared with FISH assays of chromosomes 1p and 19q. In addition, CNAs relevant to glioblastoma diagnosis were explored. In 4/36 samples, EGFR (7p11.2) amplifications and homozygous loss of CDKN2A/B were identified by sWGS. Six out of 8 IDH-wild-type glioblastomas demonstrated a prognostic chromosome 7/chromosome 10 signature. In 11/36 samples, local interstitial and terminal 1p/19q alterations were detected by sWGS, implying that FISH's targeted nature might promote false arm-level extrapolations. In this cohort, differences in overall survival between patients with and without codeletion were better pronounced by the sequencing-based distinction (likelihood ratio of 7.48) in comparison to FISH groupings (likelihood ratio of 0.97 at diagnosis and 1.79 ± 0.62 at reobservation), suggesting sWGS is more accurate than FISH. We recognized adverse effects of tissue block age on FISH signals. In addition, we show how sWGS reveals relevant aberrations beyond the 1p/19q state, such as EGFR amplification, combined gain of chromosome 7 and loss of chromosome 10, and homozygous loss of CDKN2A/B. The findings presented by this study might stimulate implementation of sWGS as a complementary, easy to apply technique for copy number detection.
Collapse
Affiliation(s)
- Kim Van der Eecken
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Malaïka Van der Linden
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Lennart Raman
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - David Creytens
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | | | - Koen De Winne
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Liesbeth Ferdinande
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Martin Lammens
- Department of Pathology, Antwerp University Hospital, Antwerp, Belgium
| | - Björn Menten
- Cancer Research Institute (CRIG), Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Isabelle Rottiers
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Bram Van Gaever
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
| | | | - Koen Van de Vijver
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Nadine Van Roy
- Cancer Research Institute (CRIG), Ghent, Belgium
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent University Hospital, Ghent, Belgium
| | - Sofie Verbeke
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium
- Cancer Research Institute (CRIG), Ghent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University, Ghent University Hospital, Ghent, Belgium.
- Cancer Research Institute (CRIG), Ghent, Belgium.
| |
Collapse
|
7
|
Predicting chromosome 1p/19q codeletion by RNA expression profile: a comparison of current prediction models. Aging (Albany NY) 2020; 11:974-985. [PMID: 30710490 PMCID: PMC6382420 DOI: 10.18632/aging.101795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Chromosome 1p/19q codeletion is increasingly being recognized as the crucial genetic marker for glioma patients and have been included in WHO classification of glioma in 2016. Fluorescent in situ hybridization, a widely used method in detecting 1p/19q status, has some methodological limitations which might influence the clinical management for doctors. Here, we attempted to explore an RNA sequencing computational method to detect 1p/19q status. METHODS We included 692 samples with 1p/19q status information from TCGA cohort as training set and 222 samples with 1p/19q status information from REMBRANDT cohort as validation set. We reviewed and compared five tools: TSPairs, GSVA, PAM, Caret, smoother, with respect to their accuracy, sensitivity and specificity. RESULTS In TCGA cohort, the GSVA method showed the highest accuracy (98.4%) in predicting 1p/19q status (sensitivity=95.5%, specificity=99.6%) and smoother method showed the second-highest accuracy (accuracy=97.8%, sensitivity=96.4%, specificity=98.3%). While in REMBRANDT cohort, smoother method exhibited the highest accuracy (98.6%) (sensitivity= 96.7%, specificity=98.9%) in 1p/19q status prediction. CONCLUSIONS Our independent assessment of five tools revealed that smoother method was selected as the most stable and accurate method in predicting 1p/19q status. This method could be regarded as a potential alternative method for clinical practice in future.
Collapse
|
8
|
A review of predictive, prognostic and diagnostic biomarkers for brain tumours: towards personalised and targeted cancer therapy. JOURNAL OF RADIOTHERAPY IN PRACTICE 2019. [DOI: 10.1017/s1460396919000955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractBackground:Brain tumours are relatively rare disease but present a large medical challenge as there is currently no method for early detection of the tumour and are typically not diagnosed until patients have progressed to symptomatic stage which significantly decreases chances of survival and also minimises treatment efficacy. However, if brain cancers can be diagnosed at early stages and also if clinicians have the potential to prospectively identify patients likely to respond to specific treatments, then there is a very high potential to increase patients’ treatment efficacy and survival. In recent years, there have been several investigations to identify biomarkers for brain cancer risk assessment, early detection and diagnosis, the likelihood of identifying which group of patients will benefit from a particular treatment and monitoring patient response to treatment.Materials and methods:This paper reports on a review of 21 current clinical and emerging biomarkers used in risk assessment, screening for early detection and diagnosis, and monitoring the response of treatment of brain cancers.Conclusion:Understanding biomarkers, molecular mechanisms and signalling pathways can potentially lead to personalised and targeted treatment via therapeutic targeting of specific genetic aberrant pathways which play key roles in malignant brain tumour formation. The future holds promising for the use of biomarker analysis as a major factor for personalised and targeted brain cancer treatment, since biomarkers have the potential to measure early disease detection and diagnosis, the risk of disease development and progression, improved patient stratification for various treatment paradigms, provide accurate information of patient response to a specific treatment and inform clinicians about the likely outcome of a brain cancer diagnosis independent of the treatment received.
Collapse
|
9
|
Chen SCC, Lo CM, Wang SH, Su ECY. RNA editing-based classification of diffuse gliomas: predicting isocitrate dehydrogenase mutation and chromosome 1p/19q codeletion. BMC Bioinformatics 2019; 20:659. [PMID: 31870275 PMCID: PMC6929429 DOI: 10.1186/s12859-019-3236-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/14/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accurate classification of diffuse gliomas, the most common tumors of the central nervous system in adults, is important for appropriate treatment. However, detection of isocitrate dehydrogenase (IDH) mutation and chromosome1p/19q codeletion, biomarkers to classify gliomas, is time- and cost-intensive and diagnostic discordance remains an issue. Adenosine to inosine (A-to-I) RNA editing has emerged as a novel cancer prognostic marker, but its value for glioma classification remains largely unexplored. We aim to (1) unravel the relationship between RNA editing and IDH mutation and 1p/19q codeletion and (2) predict IDH mutation and 1p/19q codeletion status using machine learning algorithms. RESULTS By characterizing genome-wide A-to-I RNA editing signatures of 638 gliomas, we found that tumors without IDH mutation exhibited higher total editing level compared with those carrying it (Kolmogorov-Smirnov test, p < 0.0001). When tumor grade was considered, however, only grade IV tumors without IDH mutation exhibited higher total editing level. According to 10-fold cross-validation, support vector machines (SVM) outperformed random forest and AdaBoost (DeLong test, p < 0.05). The area under the receiver operating characteristic curve (AUC) of SVM in predicting IDH mutation and 1p/19q codeletion were 0.989 and 0.990, respectively. After performing feature selection, AUCs of SVM and AdaBoost in predicting IDH mutation were higher than that of random forest (0.985 and 0.983 vs. 0.977; DeLong test, p < 0.05), but AUCs of the three algorithms in predicting 1p/19q codeletion were similar (0.976-0.982). Furthermore, 67% of the six continuously misclassified samples by our 1p/19q codeletion prediction models were misclassifications in the original labelling after inspection of 1p/19q status and/or pathology report, highlighting the accuracy and clinical utility of our models. CONCLUSIONS The study represents the first genome-wide analysis of glioma editome and identifies RNA editing as a novel prognostic biomarker for glioma. Our prediction models provide standardized, accurate, reproducible and objective classification of gliomas. Our models are not only useful in clinical decision-making, but also able to identify editing events that have the potential to serve as biomarkers and therapeutic targets in glioma management and treatment.
Collapse
Affiliation(s)
- Sean Chun-Chang Chen
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan.
| | - Chung-Ming Lo
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan
| | - Shih-Hua Wang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan
| | - Emily Chia-Yu Su
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei, 10675, Taiwan
| |
Collapse
|
10
|
McAleenan A, Jones HE, Kernohan A, Faulkner CL, Palmer A, Dawson S, Wragg C, Jefferies S, Brandner S, Vale L, Higgins JPT, Kurian KM. Diagnostic test accuracy and cost-effectiveness of tests for codeletion of chromosomal arms 1p and 19q in people with glioma. Hippokratia 2019. [DOI: 10.1002/14651858.cd013387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexandra McAleenan
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Hayley E Jones
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Ashleigh Kernohan
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Claire L Faulkner
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Abigail Palmer
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Dawson
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Christopher Wragg
- Southmead Hospital; Bristol Genetics Laboratory, Pathology Sciences; North Bristol NHS Trust Bristol UK BS10 5NB
| | - Sarah Jefferies
- Addenbrooke's Hospital; Department of Oncology; Hills Road Cambridge UK CB2 0QQ
| | - Sebastian Brandner
- The National Hospital for Neurology and Neurosurgery; Division of Neuropathology and Department of Neurodegeneration; University College Hospital NHS Foundation Trust and UCL Institute of Neurology Queen Square London UK WC1N 3BG
| | - Luke Vale
- Newcastle University; Institute of Health & Society; Baddiley-Clark Building, Richardson Road Newcastle upon Tyne UK NE2 4AA
| | - Julian P T Higgins
- University of Bristol; Population Health Sciences, Bristol Medical School; 39 Whatley Road Bristol UK BS8 2PS
| | - Kathreena M Kurian
- University of Bristol; Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences; Oakfield House, Oakfield Grove Bristol UK BS8 2BN
| |
Collapse
|
11
|
Comparison of 1p and 19q status of glioblastoma by whole exome sequencing, array-comparative genomic hybridization, and fluorescence in situ hybridization. Med Oncol 2018; 35:60. [PMID: 29600313 DOI: 10.1007/s12032-018-1119-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/23/2018] [Indexed: 12/30/2022]
Abstract
According to the 2016 World Health Organization classification of tumors of the central nervous system, detecting 1p/19q co-deletion became essential in clinical neuropathology for gliomas with oligodendroglioma-like morphology. Here, we assessed genomic profiles of glioblastoma in 80 cases including 1p/19q status using fluorescent in situ hybridization (FISH), array-comparative genomic hybridization (aCGH), and/or whole exome sequencing (WES). Paraffin-embedded tumor tissues were subjected to FISH analysis, and the corresponding frozen tissues from the same tumors were evaluated for aCGH and/or WES for 1p/19q co-deletion and other genetic parameters, which included IDH1-R132H, ATRX, TP53, CIC, and NOTCH1 mutations and MGMT methylation status. We also evaluated correlations between 1p/19q co-deletion status and molecular markers or clinical outcomes. The FISH analyses revealed 1p/19q co-deletion in two cases, isolated deletion of 1p in six cases, and 19q in two cases, whereas the aCGH and WES results showed isolated deletion of 19q in four cases and 19 monosomy in only one case. Eleven cases showed discordant 1p/19q results between aCGH/WES and FISH analysis, and in most of them, 1p and/or 19q deletion on FISH analysis corresponded to the partial deletions at 1p36 and/or 19q13 on aCGH/WES. Our cohort exhibited IDH1-R132H mutations (5.4%), MGMT promotor methylation (34.6%), and mutations in ATRX (9.5%), TP53 (33.3%), and NOTCH1 (3.8%) but not in CIC (0%). In addition, MGMT methylation and ATRX mutation were significantly associated with clinical prognosis. In glioblastomas, partial deletions of 1p36 and/or 19q13 were uncommon, some of which appeared as 1p and/or 19q deletions on FISH analysis.
Collapse
|
12
|
Immunohistochemical ATRX expression is not a surrogate for 1p19q codeletion. Brain Tumor Pathol 2018; 35:106-113. [DOI: 10.1007/s10014-018-0312-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
|
13
|
Li Y, Hu Y, Liu C, Wang Q, Han X, Han Y, Xie XS, Chen XH, Li X, Siegel ER, Afrasiabi K, Linskey ME, Zhou YX, Zhou YH. Human fibulin-3 protein variant expresses anti-cancer effects in the malignant glioma extracellular compartment in intracranial xenograft models. Oncotarget 2017; 8:106311-106323. [PMID: 29290950 PMCID: PMC5739735 DOI: 10.18632/oncotarget.22344] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/25/2017] [Indexed: 01/01/2023] Open
Abstract
Background Decades of cytotoxic and more recently immunotherapy treatments for malignant glioma have had limited success due to dynamic intra-tumoral heterogeneity. The dynamic interplay of cancer cell subpopulations has been found to be under the control of proteins in the cancer microenvironment. EGF-containing fibulin-like extracellular matrix protein (EFEMP1) (also fibulin-3) has the multiple functions of suppressing cancer growth and angiogenesis, while promoting cancer cell invasion. EFEMP1-derived tumor suppressor protein (ETSP) retains EFEMP1’s anti-growth and anti-angiogenic functions while actually inhibiting cancer cell invasion. Methods In this study, we examined the therapeutic effect on glioblastoma multiforme (GBM) of an in vitro synthesized protein, ZR30, which is based on the sequence of ETSP, excluding the signaling peptide. Results ZR30 showed the same effects as ETSP in blocking EGFR/NOTCH/AKT signaling pathways, when applied to cultures of multiple GBM cell lines and primary cultures. ZR30’s inhibition of MMP2 activation was shown not only for GBM cells, but also for other types of cancer cells having overexpression of MMP2. A significant improvement in survival of mice with orthotopic human GBM xenografts was observed after a single, intra-tumoral injection of ZR30. Using a model mimicking the intra-tumoral heterogeneity of GBM with cell subpopulations carrying different invasive and proliferative phenotypes, we demonstrated an equal and simultaneous tumor suppressive effect of ZR30 on both tumor cell subpopulations, with suppression of FOXM1 and activation of SEMA3B expressions in the xenografts. Conclusion Overall, the data support a complementary pleiotrophic therapeutic effect of ZR30 acting in the extracellular compartment of GBM.
Collapse
Affiliation(s)
- Yanyan Li
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Yuan Hu
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Chuanjin Liu
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Qingyue Wang
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Xiaoxiao Han
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Yong Han
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Xue-Shun Xie
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Xiong-Hui Chen
- Department of Emergency Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Li
- Neuroepigenetic Reseach Lab, Queensland Brain Institute, The University of Queensland, St Lucia, QLD, Australia
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kambiz Afrasiabi
- Brain Tumor Research Laboratory, Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Mark E Linskey
- Brain Tumor Research Laboratory, Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - You-Xin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory
| | - Yi-Hong Zhou
- Neurosurgery & Brain and Nerve Research Laboratory.,Brain Tumor Research Laboratory, Department of Surgery, University of California Irvine, Irvine, CA, USA.,Ziren Research, Irvine, CA, USA
| |
Collapse
|
14
|
Zhou YH, Chen Y, Hu Y, Yu L, Tran K, Giedzinski E, Ru N, Gau A, Pan F, Qiao J, Atkin N, Ly KC, Lee N, Siegel ER, Linskey ME, Wang P, Limoli C. The role of EGFR double minutes in modulating the response of malignant gliomas to radiotherapy. Oncotarget 2017; 8:80853-80868. [PMID: 29113349 PMCID: PMC5655244 DOI: 10.18632/oncotarget.20714] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 08/04/2017] [Indexed: 01/05/2023] Open
Abstract
EGFR amplification in cells having double minute chromosomes (DM) is commonly found in glioblastoma multiforme (GBM); however, how much it contributes to the current failure to treat GBM successfully is unknown. We studied two syngeneic primary cultures derived from a GBM with and without cells carrying DM, for their differential molecular and metabolic profiles, in vivo growth patterns, and responses to irradiation (IR). Each cell line has a distinct molecular profile consistent with an invasive “go” (with DM) or angiogenic “grow” phenotype (without DM) demonstrated in vitro and in intracranial xenograft models. Cells with DM were relatively radio-resistant and used higher glycolytic respiration and lower oxidative phosphorylation in comparison to cells without them. The DM-containing cell was able to restore tumor heterogeneity by mis-segregation of the DM-chromosomes, giving rise to cell subpopulations without them. As a response to IR, DM-containing cells switched their respiration from glycolic metabolism to oxidative phosphorylation and shifted molecular profiles towards that of cells without DM. Irradiated cells with DM showed the capacity to alter their extracellular microenvironment to not only promote invasiveness of the surrounding cells, regardless of DM status, but also to create a pro-angiogenic tumor microenvironment. IR of cells without DM was found primarily to increase extracellular MMP2 activity. Overall, our data suggest that the DM-containing cells of GBM are responsible for tumor recurrence due to their high invasiveness and radio-resistance and the mis-segregation of their DM chromosomes, to give rise to fast-growing cells lacking DM chromosomes.
Collapse
Affiliation(s)
- Yi-Hong Zhou
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Yumay Chen
- UC Irvine Diabetes Center and Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Yuanjie Hu
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Liping Yu
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Katherine Tran
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Erich Giedzinski
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| | - Ning Ru
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Alex Gau
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Francine Pan
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Jiao Qiao
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Naomi Atkin
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Khang Chi Ly
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Nathan Lee
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Eric R Siegel
- Departments of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Mark E Linskey
- UC Irvine Brain Tumor Laboratory and Department of Surgery, University of California Irvine, Irvine, CA, USA
| | - Ping Wang
- UC Irvine Diabetes Center and Department of Medicine, University of California Irvine, Irvine, CA, USA
| | - Charles Limoli
- Department of Radiation Oncology, University of California Irvine, Irvine, CA, USA
| |
Collapse
|
15
|
Rajmohan KS, Sugur HS, Shwetha SD, Ramesh A, Thennarasu K, Pandey P, Arivazhagan A, Santosh V. Prognostic significance of histomolecular subgroups of adult anaplastic (WHO Grade III) gliomas: applying the ‘integrated’ diagnosis approach. J Clin Pathol 2016; 69:686-94. [DOI: 10.1136/jclinpath-2015-203456] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Accepted: 12/04/2015] [Indexed: 12/24/2022]
|
16
|
Woehrer A, Hainfellner JA. Molecular diagnostics: techniques and recommendations for 1p/19q assessment. CNS Oncol 2015; 4:295-306. [PMID: 26545171 DOI: 10.2217/cns.15.28] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Several morphology- and polymerase chain reaction (PCR)-based methods for chromosome 1p 19q deletion status assessment are available. Important prerequisites for all molecular techniques concern tissue quality and selection of regions of interest. The most common methods for diagnostic 1p 19q assessment are fluorescence in situ hybridization and PCR-based microsatellite analysis. While the latter requires the use of autologous blood samples, more advanced techniques such as array comparative genomic hybridization, multiplex ligation-dependent probe amplification or real-time PCR are independent from autologous DNA samples. However, due to high technical demand and experience required their applicability as diagnostic tests remains to be shown. On the other hand, chromogenic in situ hybridization evolves as attractive alternative to FISH. Herein, the available test methods are reviewed and outlined, their advantages and drawbacks being discussed in detail.
Collapse
Affiliation(s)
- Adelheid Woehrer
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Johannes A Hainfellner
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
17
|
Hashmi AA, Faridi N, Malik B, Edhi MM, Khurshid A, Khan M. Morphologic spectrum of glial tumors: an increased trend towards oligodendroglial tumors in Pakistan. Int Arch Med 2014; 7:33. [PMID: 25009580 PMCID: PMC4088292 DOI: 10.1186/1755-7682-7-33] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/21/2014] [Indexed: 12/02/2022] Open
Abstract
Background Glial tumors are most common brain tumors in our population. While the exact etiology and pathogenesis is unknown, the evaluation of current trends in the frequency and morphology of glial tumors is imperative to constitute better diagnostic and treatment protocols. Data pertaining to frequency and spectrum of glial tumors is scarcely available in our population. The aim of this study was to determine the morphologic spectrum of glial tumors prevalent in our population. Method 126 cases of glial tumors were retrospectively analyzed over a period of 5 years. Patients from all age groups and both genders were included in this study. Glial tumors were classified and graded according to WHO classification. Results Glial tumors were more common in males with a sex ratio of 2:1 and mean age of 38.26 years. Astrocytomas were most common glial tumors (51.6%) followed by oligodendrogliomas (23%). Glioblastoma was the most frequent astrocytic tumor and was incomparably frequent in older age group. Conclusion In our study, Oligodendrogliomas and mixed oligoastrocytomas represent major pattern of disease in comparison with available regional data. Knowledge of these changing trends and patterns of glial tumor morphology and frequency can help in improvements and applications of newly emerging diagnostic and treatment modalities.
Collapse
Affiliation(s)
- Atif Ali Hashmi
- Department of Histopathology, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Naveen Faridi
- Department of Histopathology, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Babar Malik
- Department of medical oncology, Sindh institute of urology and transplantation, Karachi, Pakistan
| | | | - Amna Khurshid
- Department of Histopathology, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Mehmood Khan
- Medical Student, Dhaka Medical College, Dhaka, Bangladesh
| |
Collapse
|
18
|
Affiliation(s)
- Mark R Wick
- Departments of Pathology, University of Virginia Health System, Charlottesville, VA.
| | | | | |
Collapse
|
19
|
Tumor-specific chromosome mis-segregation controls cancer plasticity by maintaining tumor heterogeneity. PLoS One 2013; 8:e80898. [PMID: 24282558 PMCID: PMC3839911 DOI: 10.1371/journal.pone.0080898] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 10/17/2013] [Indexed: 12/23/2022] Open
Abstract
Aneuploidy with chromosome instability is a cancer hallmark. We studied chromosome 7 (Chr7) copy number variation (CNV) in gliomas and in primary cultures derived from them. We found tumor heterogeneity with cells having Chr7-CNV commonly occurs in gliomas, with a higher percentage of cells in high-grade gliomas carrying more than 2 copies of Chr7, as compared to low-grade gliomas. Interestingly, all Chr7-aneuploid cell types in the parental culture of established glioma cell lines reappeared in single-cell-derived subcultures. We then characterized the biology of three syngeneic glioma cultures dominated by different Chr7-aneuploid cell types. We found phenotypic divergence for cells following Chr7 mis-segregation, which benefited overall tumor growth in vitro and in vivo. Mathematical modeling suggested the involvement of chromosome instability and interactions among cell subpopulations in restoring the optimal equilibrium of tumor cell types. Both our experimental data and mathematical modeling demonstrated that the complexity of tumor heterogeneity could be enhanced by the existence of chromosomes with structural abnormality, in addition to their mis-segregations. Overall, our findings show, for the first time, the involvement of chromosome instability in maintaining tumor heterogeneity, which underlies the enhanced growth, persistence and treatment resistance of cancers.
Collapse
|
20
|
Lass U, Hartmann C, Capper D, Herold-Mende C, von Deimling A, Meiboom M, Mueller W. Chromogenic in situ hybridization is a reliable alternative to fluorescence in situ hybridization for diagnostic testing of 1p and 19q loss in paraffin-embedded gliomas. Brain Pathol 2012; 23:311-8. [PMID: 23107103 DOI: 10.1111/bpa.12003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/18/2012] [Indexed: 11/30/2022] Open
Abstract
Recent studies imply the importance of rapid and reliable diagnostic assessment of 1p/19q status in oligodendroglial tumors. To date, fluorescence in situ hybridization (FISH) is the most commonly applied technique. FISH, however, has several technical shortcomings that are suboptimal for diagnostic applications: results must be viewed in a fluorescence microscope, results are usually evaluated by a single investigator only, and signal fading excludes physical archiving. Also, in gliomas, the distinction of diffusely infiltrating tumor cells from reactively altered normal tissue may be challenging in fluorescence microscopy. Dual-color chromogenic in situ hybridization (CISH) has started to replace FISH in some diagnostic tests performed in pathology. Here, we present the first single institute experience with a side-by-side analysis of 1p/19q FISH and CISH in a series of 42 consecutive gliomas. FISH and CISH produced identical results for 1p and 19q in 93% of cases (n = 39/42). Discrepant results were reevaluated by repeated FISH and a polymerase chain reaction (PCR)-based microsatellite marker analysis for loss of heterozygosity. Reevaluation confirmed CISH data in all three cases. We conclude that CISH is a reliable alternative in 1p/19q testing in paraffin-embedded tissues likely to be more sensitive to detect 1p/19q status than FISH analysis.
Collapse
Affiliation(s)
- Ulrike Lass
- Clinical Cooperation Unit Neuropathology, G380, German Cancer Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|