1
|
Kim H, Taslakjian B, Kim S, Tirrell MV, Guler MO. Therapeutic Peptides, Proteins and their Nanostructures for Drug Delivery and Precision Medicine. Chembiochem 2024; 25:e202300831. [PMID: 38408302 DOI: 10.1002/cbic.202300831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/05/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Peptide and protein nanostructures with tunable structural features, multifunctionality, biocompatibility and biomolecular recognition capacity enable development of efficient targeted drug delivery tools for precision medicine applications. In this review article, we present various techniques employed for the synthesis and self-assembly of peptides and proteins into nanostructures. We discuss design strategies utilized to enhance their stability, drug-loading capacity, and controlled release properties, in addition to the mechanisms by which peptide nanostructures interact with target cells, including receptor-mediated endocytosis and cell-penetrating capabilities. We also explore the potential of peptide and protein nanostructures for precision medicine, focusing on applications in personalized therapies and disease-specific targeting for diagnostics and therapeutics in diseases such as cancer.
Collapse
Affiliation(s)
- HaRam Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Boghos Taslakjian
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Sarah Kim
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Matthew V Tirrell
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| | - Mustafa O Guler
- The Pritzker School of Molecular Engineering, The University of Chicago, 5640 S. Ellis Ave., Chicago, 60637, IL, USA
| |
Collapse
|
2
|
Pryyma A, Matinkhoo K, Bu YJ, Merkens H, Zhang Z, Bénard F, Perrin DM. Synthesis and preliminary evaluation of octreotate conjugates of bioactive synthetic amatoxins for targeting somatostatin receptor (sstr2) expressing cells. RSC Chem Biol 2022; 3:69-78. [PMID: 35128410 PMCID: PMC8729174 DOI: 10.1039/d1cb00036e] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/27/2021] [Indexed: 11/28/2022] Open
Abstract
Targeted cancer therapy represents a paradigm-shifting approach that aims to deliver a toxic payload selectively to target-expressing cells thereby sparing normal tissues the off-target effects associated with traditional chemotherapeutics. Since most targeted constructs rely on standard microtubule inhibitors or DNA-reactive molecules as payloads, new toxins that inhibit other intracellular targets are needed to realize the full potential of targeted therapy. Among these new payloads, α-amanitin has gained attraction as a payload in targeted therapy. Here, we conjugate two synthetic amanitins at different sites to demonstrate their utility as payloads in peptide drug conjugates (PDCs). As an exemplary targeting agent, we chose octreotate, a well-studied somatostatin receptor (sstr2) peptide agonist for the conjugation to synthetic amatoxins via three tailor-built linkers. The linker chemistry permitted the evaluation of one non-cleavable and two cleavable self-immolative conjugates. The immolating linkers were chosen to take advantage of either the reducing potential of the intracellular environment or the high levels of lysosomal proteases in tumor cells to trigger toxin release. Cell-based assays on target-positive Ar42J cells revealed target-specific reduction in viability with up to 1000-fold enhancement in bioactivity compared to the untargeted amatoxins. Altogether, this preliminary study enabled the development of a highly modular synthetic platform for the construction of amanitin-based conjugates that can be readily extended to various targeting moieties.
Collapse
Affiliation(s)
- Alla Pryyma
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Kaveh Matinkhoo
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Yong Jia Bu
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| | - Helen Merkens
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Zhengxing Zhang
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - Francois Bénard
- Department of Molecular Oncology, BC Cancer Vancouver BC V5Z 1L3 Canada
| | - David M Perrin
- Department of Chemistry, University of British Columbia 2036 Main Mall Vancouver BC V6T 1Z1 Canada
| |
Collapse
|
3
|
Abstract
There is a growing interest for the discovery of new cancer-targeted delivery systems for drug delivery and diagnosis. A synopsis of the bibliographic data will be presented on bombesin, neurotensin, octreotide, Arg-Gly-Asp, luteinizing hormone-releasing hormone and other peptides. Many of them have reached the clinics for therapeutic or diagnostic purposes, and have been utilized as carriers of known cytotoxic agents such as doxorubicin, paclitaxel, cisplatin, methotrexate or dyes and radioisotopes. In our article, recent advances in the development of peptides as carriers of cytotoxic drugs or radiometals will be analyzed.
Collapse
|
4
|
Redko B, Ragozin E, Andreii B, Helena T, Amnon A, Talia SZ, Mor OH, Genady K, Gary G. Synthesis, drug release, and biological evaluation of new anticancer drug-bioconjugates containing somatostatin backbone cyclic analog as a targeting moiety. Biopolymers 2015; 104:743-52. [DOI: 10.1002/bip.22694] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Boris Redko
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
- Department of Chemistry; The Julius Spokojny Bioorganic Chemistry Laboratory; Bar Ilan University; Ramat Gan 52900 Israel
| | - Elena Ragozin
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
| | - Bazylevich Andreii
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
| | - Tuchinsky Helena
- Department of Molecular Biology; Ariel University; Ariel 40700 Israel
| | - Albeck Amnon
- Department of Chemistry; The Julius Spokojny Bioorganic Chemistry Laboratory; Bar Ilan University; Ramat Gan 52900 Israel
| | - Shekhter Zahavi Talia
- Department of Molecular Microbiology and Biotechnology; George S. Wise Faculty of Life Sciences; Tel-Aviv University; Tel-Aviv 69978 Israel
| | - Oron-Herman Mor
- The Advanced Technologies Center; Sheba Medical Center; Tel Hashomer 52621 Israel
| | - Kostenich Genady
- The Advanced Technologies Center; Sheba Medical Center; Tel Hashomer 52621 Israel
| | - Gellerman Gary
- Department of Biological Chemistry; Ariel University; Ariel 40700 Israel
| |
Collapse
|
5
|
Sun L, Qian Q, Sun G, Mackey LV, Fuselier JA, Coy DH, Yu CY. Valproic acid induces NET cell growth arrest and enhances tumor suppression of the receptor-targeted peptide-drug conjugate via activating somatostatin receptor type II. J Drug Target 2015. [PMID: 26211366 DOI: 10.3109/1061186x.2015.1066794] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Human pancreatic carcinoids, a type of neuroendocrine tumors, are asymptomatic and difficult to diagnose, with the effects of traditional anti-cancer therapies being limited. The histone deacetylase (HDAC) inhibitor valproic acid (VPA) was evaluated for its effects alone and in combination with receptor-targeting peptide-drug conjugate via increasing drug internalization. MATERIALS AND METHODS The in vitro and in vivo assays were used to evaluate the effects of VPA and somatostatin receptor-targeting camptothecin-somatostatin conjugate (CPT-SST). RESULTS VPA induced proliferation suppression, cell apoptosis and cell cycle arrest. VPA acts as a HDAC inhibitor to induce a decrease of HDAC4 and an increase of acetylated histone 4 (AcH4). Meanwhile, most importantly, besides activating Notch signaling, VPA was observed to stimulate the expression of somatostatin receptor type 2 (SSTR2) that has been applied for receptor-targeting therapies. This characteristic was used for a combination therapy of VPA and CPT-SST. The combination displayed much more potent anti-tumor effects on carcinoid tumor growth by increasing SSTR2 density and drug internalization in target tumor cells. CONCLUSION The combination of VPA and a SSTR2-targeting agent provides us a promising approach in treatment of carcinoid tumors.
Collapse
Affiliation(s)
- Lichun Sun
- a Department of Pharmacy , The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China .,b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - Qingqing Qian
- a Department of Pharmacy , The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China
| | - Guangchun Sun
- a Department of Pharmacy , The Fifth People's Hospital of Shanghai, Fudan University , Shanghai , China
| | - L Vienna Mackey
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - Joseph A Fuselier
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - David H Coy
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and
| | - Cui-Yun Yu
- b Department of Medicine , Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans , LA , USA , and.,c Department of Pharmacy , Institute of Pharmacy & Pharmacology, University of South China , Hengyang , China
| |
Collapse
|
6
|
Sun L, Luo J, Mackey LV, Morris LM, Franko-Tobin LG, LePage KT, Coy DH. Investigation of cancer cell lines for peptide receptor-targeted drug development. J Drug Target 2012; 19:719-30. [PMID: 21830941 DOI: 10.3109/1061186x.2011.558089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Many tumors highly express specific populations of G-protein-coupled receptors (GPCRs) that could be utilized for receptor-targeted therapy. We confirmed significant quantities of mRNAs specific for certain somatostatin (SST), vasoactive intestinal peptide (VIP), and bombesin (BN) receptors in various commercially available tumor cell lines. Very few of the tumor cell lines examined displayed the high receptor-binding affinity despite exhibiting the expression of appropriate mRNAs and proteins of the cognate receptors. However, binding assays establish that some tumor cell lines, such as pancreatic cancer CFPAC-1, prostate cancer DU-145, and pancreatic carcinoid BON, demonstrate high BN receptor binding. BON cells also demonstrate high somatostatin receptor (SSTR) affinity binding. We also found that tumor cell lines, such as BON and host cells expressing SST receptor subtypes 1 or 2 (CHO-R1 or CHO-R2), underwent a decrease in cell surface receptor density in multiple passages. BON and CHO-R2 cells also rapidly internalize a significant proportion of cell surface ligand-receptor complexes. The tumor cells CFPAC-1, DU-145, and BON with high receptor binding could be useful for peptide drug studies. BON cells were further applied to test SST/BN analogs and cytotoxic conjugates. Furthermore, the in vivo antitumor assay showed that the cytotoxic conjugate CPT-SST targeting all SSTR subtypes displayed a potent tumor-suppressive ability to BON tumors expressing multiple SSTR subtypes.
Collapse
Affiliation(s)
- Lichun Sun
- Department of Medicine, Peptide Research Laboratories, Tulane Health Sciences Center , New Orleans, LA 70112-2699, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Grozinsky-Glasberg S, Shimon I, Rubinfeld H. The role of cell lines in the study of neuroendocrine tumors. Neuroendocrinology 2012; 96:173-87. [PMID: 22538498 DOI: 10.1159/000338793] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 04/09/2012] [Indexed: 12/12/2022]
Abstract
Cell lines originating from neuroendocrine tumors (NETs) represent useful experimental models to assess the control of synthesis and release of different hormones and hormone-like peptides, to evaluate the mechanisms of action of these agents in target tissues at the cellular and subcellular levels, and to study cell proliferation and tumor development, as well as the effect of different drugs on these complex processes. To date, the understanding of NET biology (with regard to their mechanisms of hormone secretion, cell proliferation and metastatic spread) has been hampered by the lack of appropriate animal models or cell lines for their study. In the present review, we aim to summarize the recent in vitro/in vivo data regarding cell lines derived from NETs which are most frequently employed in experimental neuroendocrinology.
Collapse
Affiliation(s)
- Simona Grozinsky-Glasberg
- Neuroendocrine Tumor Unit, Endocrinology and Metabolism Service, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | | | | |
Collapse
|
8
|
Sun L, Morris LM, Luo J, Mackey LV, Leslie JS, Franko-Tobin LG, Fuselier JA, LePage KT, Coy DH. Application of human pancreatic carcinoid BON cells for receptor-targeted drug development. J Drug Target 2010; 19:666-74. [PMID: 21083509 DOI: 10.3109/1061186x.2010.531728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In our previous study, we found that several tumor cell lines displayed high receptor-specific binding affinity, one of which, the human pancreatic carcinoid BON cell line, demonstrates high affinity binding of the bombesin (BN) and somatostatin (SST) receptor-specific ligands. In the present study, BON cells, as a representative model, were further applied to evaluate various peptide analogs and cytotoxic receptor-targeted peptide conjugates. We observed quick ligand-receptor internalization in BON cells as well as high binding affinity. Furthermore, BON cells have high expression of multidrug resistance-associated genes (MDR1) and show camptothecin (CPT) resistance. Various receptor-specific cytotoxic conjugates were synthesized and evaluated in the BON cell model via in vitro and in vivo studies. We found that all the tested conjugates displayed potent antitumor ability in xenografts. Especially, the CPT conjugates, CPT-SST, and CPT-BN, are most likely to increase sensitivity to CPT-resistant BON cells. Our findings suggest that appropriately defined tumor cell lines may provide physiologically relevant cell-based evaluations of novel peptide analogs and receptor-targeted chemotherapeutics.
Collapse
Affiliation(s)
- Lichun Sun
- Department of Medicine, Peptide Research Laboratories, Tulane Health Sciences Center, New Orleans, LA 70112-2699, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|