1
|
Harrison PM. Optimizing strategy for the discovery of compositionally-biased or low-complexity regions in proteins. Sci Rep 2024; 14:680. [PMID: 38182699 PMCID: PMC10770407 DOI: 10.1038/s41598-023-50991-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024] Open
Abstract
Proteins can contain tracts dominated by a subset of amino acids and that have a functional significance. These are often termed 'low-complexity regions' (LCRs) or 'compositionally-biased regions' (CBRs). However, a wide spectrum of compositional bias is possible, and program parameters used to annotate these regions are often arbitrarily chosen. Also, investigators are sometimes interested in longer regions, or sometimes very short ones. Here, two programs for annotating LCRs/CBRs, namely SEG and fLPS, are investigated in detail across the whole expanse of their parameter spaces. In doing so, boundary behaviours are resolved that are used to derive an optimized systematic strategy for annotating LCRs/CBRs. Sets of parameters that progressively annotate or 'cover' more of protein sequence space and are optimized for a given target length have been derived. This progressive annotation can be applied to discern the biological relevance of CBRs, e.g., in parsing domains for experimental constructs and in generating hypotheses. It is also useful for picking out candidate regions of interest of a given target length and bias signature, and for assessing the parameter dependence of annotations. This latter application is demonstrated for a set of human intrinsically-disordered proteins associated with cancer.
Collapse
Affiliation(s)
- Paul M Harrison
- Department of Biology, McGill University, Montreal, QC, Canada.
| |
Collapse
|
2
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
3
|
Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC, Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. Chem Rev 2018; 118:11519-11574. [PMID: 30281290 PMCID: PMC6650774 DOI: 10.1021/acs.chemrev.8b00038] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
Collapse
Affiliation(s)
- Corey J. Wilson
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andreas S. Bommarius
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yury O. Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory of Amyloid Biology & Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg 199034, Russia
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Anant K. Paravastu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Liang
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Chien Hsieh
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Jennifer M. Heemstra
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
4
|
Antonets KS, Kliver SF, Nizhnikov AA. Exploring Proteins Containing Amyloidogenic Regions in the Proteomes of Bacteria of the Order Rhizobiales. Evol Bioinform Online 2018; 14:1176934318768781. [PMID: 29720870 PMCID: PMC5922492 DOI: 10.1177/1176934318768781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/27/2018] [Indexed: 11/16/2022] Open
Abstract
Amyloids are protein fibrils with a highly ordered spatial structure called cross-β. To date, amyloids were shown to be implicated in a wide range of biological processes, both pathogenic and functional. In bacteria, functional amyloids are involved in forming biofilms, storing toxins, overcoming the surface tension, and other functions. Rhizobiales represent an economically important group of Alphaproteobacteria, various species of which are not only capable of fixing nitrogen in the symbiosis with leguminous plants but also act as the causative agents of infectious diseases in animals and plants. Here, we implemented bioinformatic screening for potentially amyloidogenic proteins in the proteomes of more than 80 species belonging to the order Rhizobiales. Using SARP (Sequence Analysis based on the Ranking of Probabilities) and Waltz bioinformatic algorithms, we identified the biological processes, where potentially amyloidogenic proteins are overrepresented. We detected protein domains and regions associated with amyloidogenic sequences in the proteomes of various Rhizobiales species. We demonstrated that amyloidogenic regions tend to occur in the membrane or extracellular proteins, many of which are involved in pathogenesis-related processes, including adhesion, assembly of flagellum, and transport of siderophores and lipopolysaccharides, and contain domains typical of the virulence factors (hemolysin, RTX, YadA, LptD); some of them (rhizobiocins, LptD) are also related to symbiosis.
Collapse
Affiliation(s)
- Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Sergey F Kliver
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation.,Department of Genetics, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
5
|
Belousov MV, Bondarev SA, Kosolapova AO, Antonets KS, Sulatskaya AI, Sulatsky MI, Zhouravleva GA, Kuznetsova IM, Turoverov KK, Nizhnikov AA. M60-like metalloprotease domain of the Escherichia coli YghJ protein forms amyloid fibrils. PLoS One 2018; 13:e0191317. [PMID: 29381728 PMCID: PMC5790219 DOI: 10.1371/journal.pone.0191317] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 01/03/2018] [Indexed: 12/31/2022] Open
Abstract
Amyloids are protein fibrils with a characteristic spatial structure. Amyloids were long perceived as the pathogens involved in a set of lethal diseases in humans and animals. In recent decades, it has become clear that amyloids represent a quaternary protein structure that is not only pathological but also functionally important and is widely used by different organisms, ranging from archaea to animals, to implement diverse biological functions. The greatest biological variety of amyloids is found in prokaryotes, where they control the formation of biofilms and cell wall sheaths, facilitate the overcoming of surface tension, and regulate the metabolism of toxins. Several amyloid proteins were identified in the important model, biotechnological and pathogenic bacterium Escherichia coli. In previous studies, using a method for the proteomic screening and identification of amyloids, we identified 61 potentially amyloidogenic proteins in the proteome of E. coli. Among these proteins, YghJ was the most enriched with bioinformatically predicted amyloidogenic regions. YghJ is a lipoprotein with a zinc metalloprotease M60-like domain that is involved in mucin degradation in the intestine as well as in proinflammatory responses. In this study, we analyzed the amyloid properties of the YghJ M60-like domain and demonstrated that it forms amyloid-like fibrils in vitro and in vivo.
Collapse
Affiliation(s)
- Mikhail V. Belousov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
| | - Stanislav A. Bondarev
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
- Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
| | - Anastasiia O. Kosolapova
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., Pushkin, St. Petersburg, Russian Federation
| | - Kirill S. Antonets
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., Pushkin, St. Petersburg, Russian Federation
| | - Anna I. Sulatskaya
- Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Maksim I. Sulatsky
- Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Galina A. Zhouravleva
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
- Laboratory of Amyloid Biology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
| | - Irina M. Kuznetsova
- Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
| | - Konstantin K. Turoverov
- Institute of Cytology, Russian Academy of Science, St. Petersburg, Russian Federation
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, St. Petersburg, Russian Federation
| | - Anton A. Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya nab., St. Petersburg, Russian Federation
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Podbelskogo sh., Pushkin, St. Petersburg, Russian Federation
- Vavilov Institute of General Genetics, Russian Academy of Sciences, St Petersburg Branch, Universitetskaya nab., St. Petersburg, Russian Federation
- * E-mail:
| |
Collapse
|
6
|
Nizhnikov AA, Antonets KS, Bondarev SA, Inge-Vechtomov SG, Derkatch IL. Prions, amyloids, and RNA: Pieces of a puzzle. Prion 2017; 10:182-206. [PMID: 27248002 DOI: 10.1080/19336896.2016.1181253] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Amyloids are protein aggregates consisting of fibrils rich in β-sheets. Growth of amyloid fibrils occurs by the addition of protein molecules to the tip of an aggregate with a concurrent change of a conformation. Thus, amyloids are self-propagating protein conformations. In certain cases these conformations are transmissible / infectious; they are known as prions. Initially, amyloids were discovered as pathological extracellular deposits occurring in different tissues and organs. To date, amyloids and prions have been associated with over 30 incurable diseases in humans and animals. However, a number of recent studies demonstrate that amyloids are also functionally involved in a variety of biological processes, from biofilm formation by bacteria, to long-term memory in animals. Interestingly, amyloid-forming proteins are highly overrepresented among cellular factors engaged in all stages of mRNA life cycle: from transcription and translation, to storage and degradation. Here we review rapidly accumulating data on functional and pathogenic amyloids associated with mRNA processing, and discuss possible significance of prion and amyloid networks in the modulation of key cellular functions.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia.,c All-Russia Research Institute for Agricultural Microbiology , St. Petersburg , Russia
| | - Kirill S Antonets
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Stanislav A Bondarev
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia
| | - Sergey G Inge-Vechtomov
- a Dept. of Genetics and Biotechnology , St. Petersburg State University , St. Petersburg , Russia.,b Vavilov Institute of General Genetics of the Russian Academy of Sciences, St. Petersburg Branch , St. Petersburg , Russia
| | - Irina L Derkatch
- d Department of Neuroscience , College of Physicians and Surgeons of Columbia University, Columbia University , New York , NY , USA
| |
Collapse
|
7
|
Antonets KS, Nizhnikov AA. Predicting Amyloidogenic Proteins in the Proteomes of Plants. Int J Mol Sci 2017; 18:ijms18102155. [PMID: 29035294 PMCID: PMC5666836 DOI: 10.3390/ijms18102155] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/21/2022] Open
Abstract
Amyloids are protein fibrils with characteristic spatial structure. Though amyloids were long perceived to be pathogens that cause dozens of incurable pathologies in humans and mammals, it is currently clear that amyloids also represent a functionally important form of protein structure implicated in a variety of biological processes in organisms ranging from archaea and bacteria to fungi and animals. Despite their social significance, plants remain the most poorly studied group of organisms in the field of amyloid biology. To date, amyloid properties have only been demonstrated in vitro or in heterologous systems for a small number of plant proteins. Here, for the first time, we performed a comprehensive analysis of the distribution of potentially amyloidogenic proteins in the proteomes of approximately 70 species of land plants using the Waltz and SARP (Sequence Analysis based on the Ranking of Probabilities) bioinformatic algorithms. We analyzed more than 2.9 million protein sequences and found that potentially amyloidogenic proteins are abundant in plant proteomes. We found that such proteins are overrepresented among membrane as well as DNA- and RNA-binding proteins of plants. Moreover, seed storage and defense proteins of most plant species are rich in amyloidogenic regions. Taken together, our data demonstrate the diversity of potentially amyloidogenic proteins in plant proteomes and suggest biological processes where formation of amyloids might be functionally important.
Collapse
Affiliation(s)
- Kirill S Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| | - Anton A Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology, 196608 Podbelskogo sh., 3, Pushkin, St. Petersburg 196608, Russia.
- Department of Genetics and Biotechnology, St. Petersburg State University, 199034 Universitetskaya nab., 7/9, St. Petersburg 199034, Russia.
| |
Collapse
|
8
|
Antonets KS, Nizhnikov AA. Amyloids and prions in plants: Facts and perspectives. Prion 2017; 11:300-312. [PMID: 28960135 PMCID: PMC5639834 DOI: 10.1080/19336896.2017.1377875] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/02/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023] Open
Abstract
Amyloids represent protein fibrils that have highly ordered structure with unique physical and chemical properties. Amyloids have long been considered lethal pathogens that cause dozens of incurable diseases in humans and animals. Recent data show that amyloids may not only possess pathogenic properties but are also implicated in the essential biological processes in a variety of prokaryotes and eukaryotes. Functional amyloids have been identified in archaea, bacteria, fungi, and animals, including humans. Plants are one of the most poorly studied groups of organisms in the field of amyloid biology. Although amyloid properties have not been shown under native conditions for any plant protein, studies demonstrating amyloid properties for a set of plant proteins in vitro or in heterologous systems in vivo have been published in recent years. In this review, we systematize the data on the amyloidogenic proteins of plants and their functions and discuss the perspectives of identifying novel amyloids using bioinformatic and proteomic approaches.
Collapse
Affiliation(s)
- K. S. Antonets
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| | - A. A. Nizhnikov
- All-Russia Research Institute for Agricultural Microbiology, St. Petersburg, Russian Federation
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russian Federation
| |
Collapse
|
9
|
Sze-To A, Fung S, Lee ESA, Wong AK. Prediction of Protein–Protein Interaction via co-occurring Aligned Pattern Clusters. Methods 2016; 110:26-34. [DOI: 10.1016/j.ymeth.2016.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/25/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022] Open
|
10
|
Antonets KS, Volkov KV, Maltseva AL, Arshakian LM, Galkin AP, Nizhnikov AA. Proteomic Analysis of Escherichia coli Protein Fractions Resistant to Solubilization by Ionic Detergents. BIOCHEMISTRY (MOSCOW) 2016; 81:34-46. [PMID: 26885581 DOI: 10.1134/s0006297916010041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Amyloids are protein fibrils adopting structure of cross-beta spine exhibiting either pathogenic or functionally significant properties. In prokaryotes, there are several groups of functional amyloids; however, all of them were identified by specialized approaches that do not reveal all cellular amyloids. Here, using our previously developed PSIA (Proteomic Screening and Identification of Amyloids) approach, we have conducted a proteomic screening for candidates for novel amyloid-forming proteins in Escherichia coli as one of the most important model organisms and biotechnological objects. As a result, we identified 61 proteins in fractions resistant to treatment with ionic detergents. We found that a fraction of proteins bearing potentially amyloidogenic regions predicted by bioinformatics algorithms was 3-5-fold more abundant among the identified proteins compared to those observed in the entire E. coli proteome. Almost all identified proteins contained potentially amyloidogenic regions, and four of them (BcsC, MukB, YfbK, and YghJ) have asparagine- and glutamine-rich regions underlying a crucial feature of many known amyloids. In this study, we demonstrate for the first time that at the proteome level there is a correlation between experimentally demonstrated detergent-resistance of proteins and potentially amyloidogenic regions predicted by bioinformatics approaches. The data obtained enable further comprehensive characterization of entirety of amyloids (or amyloidome) in bacterial cells.
Collapse
Affiliation(s)
- K S Antonets
- St. Petersburg State University, Department of Genetics and Biotechnology, St. Petersburg, 199034, Russia.
| | | | | | | | | | | |
Collapse
|
11
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG. Amyloids: from Pathogenesis to Function. BIOCHEMISTRY (MOSCOW) 2016; 80:1127-44. [PMID: 26555466 DOI: 10.1134/s0006297915090047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The term "amyloids" refers to fibrillar protein aggregates with cross-β structure. They have been a subject of intense scrutiny since the middle of the previous century. First, this interest is due to association of amyloids with dozens of incurable human diseases called amyloidoses, which affect hundreds of millions of people. However, during the last decade the paradigm of amyloids as pathogens has changed due to an increase in understanding of their role as a specific variant of quaternary protein structure essential for the living cell. Thus, functional amyloids are found in all domains of the living world, and they fulfill a variety of roles ranging from biofilm formation in bacteria to long-term memory regulation in higher eukaryotes. Prions, which are proteins capable of existing under the same conditions in two or more conformations at least one of which having infective properties, also typically have amyloid features. There are weighty reasons to believe that the currently known amyloids are only a minority of their real number. This review provides a retrospective analysis of stages in the development of amyloid biology that during the last decade resulted, on one hand, in reinterpretation of the biological role of amyloids, and on the other hand, in the development of systems biology of amyloids, or amyloidomics.
Collapse
Affiliation(s)
- A A Nizhnikov
- Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, 199034, Russia.
| | | | | |
Collapse
|