1
|
Wutke S, Blank SM, Boevé JL, Faircloth BC, Koch F, Linnen CR, Malm T, Niu G, Prous M, Schiff NM, Schmidt S, Taeger A, Vilhelmsen L, Wahlberg N, Wei M, Nyman T. Phylogenomics and biogeography of sawflies and woodwasps (Hymenoptera, Symphyta). Mol Phylogenet Evol 2024; 199:108144. [PMID: 38972494 DOI: 10.1016/j.ympev.2024.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Phylogenomic approaches have recently helped elucidate various insect relationships, but large-scale comprehensive analyses on relationships within sawflies and woodwasps are still lacking. Here, we infer the relationships and long-term biogeographic history of these hymenopteran groups using a large dataset of 354 UCE loci collected from 385 species that represent all major lineages. Early Hymenoptera started diversifying during the Early Triassic ∼249 Ma and spread all over the ancient supercontinent Pangaea. We recovered Xyeloidea as a monophyletic sister group to other Hymenoptera and Pamphilioidea as sister to Unicalcarida. Within the diverse family Tenthredinidae, our taxonomically and geographically expanded taxon sampling highlights the non-monophyly of several traditionally defined subfamilies. In addition, the recent removal of Athalia and related genera from the Tenthredinidae into the separate family Athaliidae is supported. The deep historical biogeography of the group is characterised by independent dispersals and re-colonisations between the northern (Laurasia) and southern (Gondwana) palaeocontinents. The breakup of these landmasses led to ancient vicariance in several Gondwanan lineages, while interchange across the Northern Hemisphere has continued until the Recent. The little-studied African sawfly fauna is likewise a diverse mixture of groups with varying routes of colonization. Our results reveal interesting parallels in the evolution and biogeography of early hymenopterans and other ancient insect groups.
Collapse
Affiliation(s)
- Saskia Wutke
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland.
| | - Stephan M Blank
- Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany
| | - Jean-Luc Boevé
- OD Taxonomy and Phylogeny, Royal Belgian Institute of Natural Sciences, Brussels, Belgium
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Frank Koch
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| | | | - Tobias Malm
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Gengyun Niu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Marko Prous
- Museum of Natural History, University of Tartu, Estonia
| | - Nathan M Schiff
- Formerly with the USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Stoneville, MS, USA
| | - Stefan Schmidt
- SNSB-Zoologische Staatssammlung München, Munich, Germany
| | - Andreas Taeger
- Senckenberg Deutsches Entomologisches Institut, Müncheberg, Germany
| | - Lars Vilhelmsen
- Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Denmark
| | | | - Meicai Wei
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
2
|
Henríquez-Piskulich P, Hugall AF, Stuart-Fox D. A supermatrix phylogeny of the world's bees (Hymenoptera: Anthophila). Mol Phylogenet Evol 2024; 190:107963. [PMID: 37967640 DOI: 10.1016/j.ympev.2023.107963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Abstract
The increasing availability of large molecular phylogenies has provided new opportunities to study the evolution of species traits, their origins and diversification, and biogeography; yet there are limited attempts to synthesise existing phylogenetic information for major insect groups. Bees (Hymenoptera: Anthophila) are a large group of insect pollinators that have a worldwide distribution, and a wide variation in ecology, morphology, and life-history traits, including sociality. For these reasons, as well as their major economic importance as pollinators, numerous molecular phylogenetic studies of family and genus-level relationships have been published, providing an opportunity to assemble a bee 'tree-of-life'. We used publicly available genetic sequence data, including phylogenomic data, reconciled to a taxonomic database, to produce a concatenated supermatrix phylogeny for the Anthophila comprising 4,586 bee species, representing 23% of species and 82% of genera. At family, subfamily, and tribe levels, support for expected relationships was robust, but between and within some genera relationships remain uncertain. Within families, sampling of genera ranged from 67 to 100% but species coverage was lower (17-41%). Our phylogeny mostly reproduces the relationships found in recent phylogenomic studies with a few exceptions. We provide a summary of these differences and the current state of molecular data available and its gaps. We discuss the advantages and limitations of this bee supermatrix phylogeny (available online at beetreeoflife.org), which may enable new insights into long standing questions about evolutionary drivers in bees, and potentially insects more generally.
Collapse
Affiliation(s)
| | - Andrew F Hugall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia; Department of Sciences, Museums Victoria, Melbourne, Victoria, Australia.
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Blaimer BB, Santos BF, Cruaud A, Gates MW, Kula RR, Mikó I, Rasplus JY, Smith DR, Talamas EJ, Brady SG, Buffington ML. Key innovations and the diversification of Hymenoptera. Nat Commun 2023; 14:1212. [PMID: 36869077 PMCID: PMC9984522 DOI: 10.1038/s41467-023-36868-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/21/2023] [Indexed: 03/05/2023] Open
Abstract
The order Hymenoptera (wasps, ants, sawflies, and bees) represents one of the most diverse animal lineages, but whether specific key innovations have contributed to its diversification is still unknown. We assembled the largest time-calibrated phylogeny of Hymenoptera to date and investigated the origin and possible correlation of particular morphological and behavioral innovations with diversification in the order: the wasp waist of Apocrita; the stinger of Aculeata; parasitoidism, a specialized form of carnivory; and secondary phytophagy, a reversal to plant-feeding. Here, we show that parasitoidism has been the dominant strategy since the Late Triassic in Hymenoptera, but was not an immediate driver of diversification. Instead, transitions to secondary phytophagy (from parasitoidism) had a major influence on diversification rate in Hymenoptera. Support for the stinger and the wasp waist as key innovations remains equivocal, but these traits may have laid the anatomical and behavioral foundations for adaptations more directly associated with diversification.
Collapse
Affiliation(s)
- Bonnie B Blaimer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany.
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA.
| | - Bernardo F Santos
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Center for Integrative Biodiversity Discovery, Invalidenstraße 43, Berlin, 10115, Germany
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Astrid Cruaud
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - Michael W Gates
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Robert R Kula
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - István Mikó
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Jean-Yves Rasplus
- CBGP, INRAe, CIRAD, IRD, Montpellier SupAgro, Université de Montpellier, Montpellier, France
| | - David R Smith
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Elijah J Talamas
- Florida State Collection of Arthropods, Division of Plant Industry, Florida Department of Agriculture and Consumer Services, 1911 SW 34th St, Gainesville, FL, 32608, USA
| | - Seán G Brady
- National Museum of Natural History, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| | - Matthew L Buffington
- Systematic Entomology Laboratory, USDA-ARS, c/o NMNH, Smithsonian Institution, 10th & Constitution Ave. NW, Washington, DC, USA
| |
Collapse
|
4
|
Carnovale CS, Fernández GP, Merino ML, Mora MS. Redefining the Distributional Boundaries and Phylogenetic Relationships for Ctenomids From Central Argentina. Front Genet 2021; 12:698134. [PMID: 34422000 PMCID: PMC8372524 DOI: 10.3389/fgene.2021.698134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
With about 68 recognized living species, subterranean rodents of the genus Ctenomys are found in a multiplicity of habitats, from the dunes of the Atlantic coast to the Andes Mountains, including environments ranging from humid steppes of Pampas to the dry deserts of Chaco region. However, this genus needs an exhaustive reevaluation of its systematic and phylogenetic relationships regarding the different groups that compose it. This knowledge is essential to propose biodiversity conservation strategies both at species level and at higher hierarchical levels. In order to clarify the taxonomy and the recent evolutionary history from populations of Ctenomys in the Pampas region, Argentina, phylogenetic relationships among them were evaluated using mitochondrial DNA sequences: gene encoding cytochrome b protein (1,140 bp) and the non-coding D-loop region (434 bp). To infer the divergence times inside the Ctenomys clade, a Bayesian calibrate tree using fossil remains data from different families within Caviomorpha was performed at first. Secondly, that calibration data was used as priors in a new Bayesian phylogenetic inference within the genus Ctenomys. This phylogenetic tree emphasized on species currently distributed on the Pampas region, more precisely considering both the talarum and mendocinus groups. Bayesian inferences (BI) were integrated with the results of a Maximum Likelihood approach (ML). Based on these results, the distributional limits of the mendocinus and talarum groups appear to be related to the physiognomy of the Pampas region soils. On the other hand, the validity of C. pundti complex as a differentiated species of C. talarum is debated. According to previous evidence from morphological and chromosomal studies, these results show a very low divergence between those species that originally were classified within the talarum group. Mitochondrial DNA sequences from populations associated with these putative species have not recovered as reciprocal monophyletic groups in the phylogenetic analyses. In conclusion, C. talarum and C. pundti complex might be considered as the same biological species, or lineages going through a recent or incipient differentiation process. The results obtained in this study have important implications for conservation policies and practices, since both species are currently categorized as Vulnerable and Endangered, respectively.
Collapse
Affiliation(s)
- Cecilia Soledad Carnovale
- Centro de Bioinvestigaciones (CeBio), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA-CICBA) / Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires CITNOBA (UNNOBA-CONICET), Pergamino, Argentina
| | - Gabriela Paula Fernández
- Centro de Bioinvestigaciones (CeBio), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA-CICBA) / Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires CITNOBA (UNNOBA-CONICET), Pergamino, Argentina
| | - Mariano Lisandro Merino
- Centro de Bioinvestigaciones (CeBio), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA-CICBA) / Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires CITNOBA (UNNOBA-CONICET), Pergamino, Argentina.,Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA), La Plata, Argentina
| | - Matías Sebastián Mora
- Grupo de Investigación: Ecología y Genética de Poblaciones de Mamíferos, Instituto de Investigaciones Marinas y Costeras (IIMyC, CONICET), Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| |
Collapse
|
5
|
Parada A, Hanson J, D'Elía G. Ultraconserved Elements Improve the Resolution of Difficult Nodes within the Rapid Radiation of Neotropical Sigmodontine Rodents (Cricetidae: Sigmodontinae). Syst Biol 2021; 70:1090-1100. [PMID: 33787920 DOI: 10.1093/sysbio/syab023] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/14/2022] Open
Abstract
Sigmodontine rodents (Cricetidae, Sigmodontinae) represent the second largest muroid subfamily and the most species-rich group of New World mammals, encompassing above 410 living species and ca. 87 genera. Even with advances on the clarification of sigmodontine phylogenetic relationships that have been made recently, the phylogenetic relationships among the 12 main group of genera (i.e., tribes) remain poorly resolved, in particular among those forming the large clade Oryzomyalia. This pattern has been interpreted as consequence of a rapid radiation upon the group entrance into South America. Here, we attempted to resolve phylogenetic relationships within Sigmodontinae using target capture and high-throughput sequencing of ultraconserved elements (UCEs). We enriched and sequenced UCEs for 56 individuals and collected data from four already available genomes. Analyses of distinct data sets, based on the capture of 4,634 loci, resulted in a highly resolved phylogeny consistent across different methods. Coalescent species-tree based approaches, concatenated matrices, and Bayesian analyses recovered similar topologies that were congruent at the resolution of difficult nodes. We recovered good support for the intertribal relationships within Oryzomyalia; for instance, the tribe Oryzomyini appears as the sister taxa of the remaining oryzomyalid tribes. The estimates of divergence times agree with results of previous studies. We inferred the crown age of the sigmodontine rodents at the end of Middle Miocene, while the main lineages of Oryzomyalia appear to have radiated in a short interval during the Late Miocene. Thus, the collection of a genomic scale data set with a wide taxonomic sampling, provided resolution for the first time of the relationships among the main lineages of Sigmodontinae. We expect the phylogeny presented here will become the backbone for future systematic and evolutionary studies of the group.
Collapse
Affiliation(s)
- Andrés Parada
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - John Hanson
- RTLGenomics, Lubbock, TX, USA. Department of Biology, Columbus State University, Columbus, GA, USA
| | - Guillermo D'Elía
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
6
|
Budd GE, Mann RP. Survival and selection biases in early animal evolution and a source of systematic overestimation in molecular clocks. Interface Focus 2020; 10:20190110. [PMID: 32637066 PMCID: PMC7333906 DOI: 10.1098/rsfs.2019.0110] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Important evolutionary events such as the Cambrian Explosion have inspired many attempts at explanation: why do they happen when they do? What shapes them, and why do they eventually come to an end? However, much less attention has been paid to the idea of a 'null hypothesis'-that certain features of such diversifications arise simply through their statistical structure. Such statistical features also appear to influence our perception of the timing of these events. Here, we show in particular that study of unusually large clades leads to systematic overestimates of clade ages from some types of molecular clocks, and that the size of this effect may be enough to account for the puzzling mismatches seen between these molecular clocks and the fossil record. Our analysis of the fossil record of the late Ediacaran to Cambrian suggests that it is likely to be recording a true evolutionary radiation of the bilaterians at this time, and that explanations involving various sorts of cryptic origins for the bilaterians do not seem to be necessary.
Collapse
Affiliation(s)
- Graham E. Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala 752 36, Sweden
| | - Richard P. Mann
- Department of Statistics, School of Mathematics, University of Leeds, Leeds LS2 9JT, UK
- The Alan Turing Institute, London NW1 2DB, UK
| |
Collapse
|
7
|
Ramírez-Reyes T, Blair C, Flores-Villela O, Piñero D, Lathrop A, Murphy R. Phylogenomics and molecular species delimitation reveals great cryptic diversity of leaf-toed geckos (Phyllodactylidae: Phyllodactylus), ancient origins, and diversification in Mexico. Mol Phylogenet Evol 2020; 150:106880. [PMID: 32512192 DOI: 10.1016/j.ympev.2020.106880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
We utilize the efficient GBS technique to obtain thousands of nuclear loci and SNPs to reconstruct the evolutionary history of Mexican leaf-toed geckos (Phyllodactylus). Through the incorporation of unprecedented sampling for this group of geckos, in combination with genomic data analysis, we generate mostly consistent phylogenetic hypotheses using two approaches: supermatrix and coalescent-based inference. All topologies depict three, mutually exclusive major clades. Clade I comprises P. bordai and all species closer to P. bordai than to any other Phyllodactylus. Clade II comprises P. nocticolus and all species closer to P. nocticolus than to any other Phyllodactylus. Clade III comprises P. tuberculosus and all species closer to P. tuberculosus than to any other Phyllodactylus. Analyses estimate the age for the most recent common ancestor of Phyllodactylus in the Eocene (~43 mya), and the ancestors of each major clade date to the Eocene-Oligocene transition (32-36 mya). This group includes one late-Eocene lineage (P. bordai), Oligocene lineages (P. paucituberculatus, P. delcampi), but also topological patterns that indicate a recent radiation occurred during the Pleistocene on islands in the Gulf of California. The wide spatial and temporal scale indicates a complex and unique biogeographic history for each major clade. The 33 species delimited by BPP and stepping-stone BFD*coalescent based genomic approaches reflect this history. This diversity delimited for Mexican leaf-toed geckos demonstrates a vast underestimation in the number of species based on morphological data alone.
Collapse
Affiliation(s)
- Tonatiuh Ramírez-Reyes
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510 Ciudad de México, Mexico; Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior de CU, Ciudad Universitaria, 04510 Ciudad de México, Mexico; Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, 04510 Ciudad de México, Mexico.
| | - Christopher Blair
- Department of Biological Sciences, New York City College of Technology, The City University of New York, 285 Jay Street, Brooklyn, NY 11201, USA; Biology PhD Program, CUNY Graduate Center, 365 5th Ave., New York, NY 10016, USA
| | - Oscar Flores-Villela
- Museo de Zoología, Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior de CU, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Daniel Piñero
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-275, 04510 Ciudad de México, Mexico
| | - Amy Lathrop
- Royal Ontario Museum, Centre for Biodiversity and Conservation Biology, Toronto, Ontario, Canada
| | - Robert Murphy
- Royal Ontario Museum, Centre for Biodiversity and Conservation Biology, Toronto, Ontario, Canada; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
8
|
When did anoles diverge? An analysis of multiple dating strategies. Mol Phylogenet Evol 2018; 127:655-668. [DOI: 10.1016/j.ympev.2018.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/27/2018] [Accepted: 06/06/2018] [Indexed: 11/17/2022]
|
9
|
Wray GA. Molecular clocks and the early evolution of metazoan nervous systems. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0046. [PMID: 26554040 DOI: 10.1098/rstb.2015.0046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation.
Collapse
Affiliation(s)
- Gregory A Wray
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
Justi SA, Galvão C, Schrago CG. Geological Changes of the Americas and their Influence on the Diversification of the Neotropical Kissing Bugs (Hemiptera: Reduviidae: Triatominae). PLoS Negl Trop Dis 2016; 10:e0004527. [PMID: 27058599 PMCID: PMC4825970 DOI: 10.1371/journal.pntd.0004527] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 02/18/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The family Reduviidae (Hemiptera: Heteroptera), or assassin bugs, is among the most diverse families of the true bugs, with more than 6,000 species. The subfamily Triatominae (kissing bugs) is noteworthy not simply because it is the only subfamily of the Reduviidae whose members feed on vertebrate blood but particularly because all 147 known members of the subfamily are potential Chagas disease vectors. Due to the epidemiological relevance of these species and the lack of an efficient treatment and vaccine for Chagas disease, it is more common to find evolutionary studies focusing on the most relevant vectors than it is to find studies aiming to understand the evolution of the group as a whole. We present the first comprehensive phylogenetic study aiming to understand the events that led to the diversification of the Triatominae. METHODOLOGY/PRINCIPAL FINDINGS We gathered the most diverse samples of Reduviidae and Triatominae (a total of 229 Reduviidae samples, including 70 Triatominae species) and reconstructed a robust dated phylogeny with several fossil (Reduviidae and Triatominae) calibrations. Based on this information, the possible role of geological events in several of the major cladogenetic events within Triatominae was tested for the first time. We were able to not only correlate the geological changes in the Neotropics with Triatominae evolution but also add to an old discussion: Triatominae monophyly vs. paraphyly. CONCLUSIONS/SIGNIFICANCE We found that most of the diversification events observed within the Rhodniini and Triatomini tribes are closely linked to the climatic and geological changes caused by the Andean uplift in South America and that variations in sea levels in North America also played a role in the diversification of the species of Triatoma in that region.
Collapse
Affiliation(s)
- Silvia A. Justi
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cleber Galvão
- Laboratório Nacional e Internacional de Referência em Taxonomia de Triatomíneos, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil
| | - Carlos G. Schrago
- Departamento de Genética, Universidade Federal do Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
11
|
De Baets K, Dentzien-Dias P, Upeniece I, Verneau O, Donoghue PCJ. Constraining the Deep Origin of Parasitic Flatworms and Host-Interactions with Fossil Evidence. ADVANCES IN PARASITOLOGY 2015; 90:93-135. [PMID: 26597066 DOI: 10.1016/bs.apar.2015.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Novel fossil discoveries have contributed to our understanding of the evolutionary appearance of parasitism in flatworms. Furthermore, genetic analyses with greater coverage have shifted our views on the coevolution of parasitic flatworms and their hosts. The putative record of parasitic flatworms is consistent with extant host associations and so can be used to put constraints on the evolutionary origin of the parasites themselves. The future lies in new molecular clock analyses combined with additional discoveries of exceptionally preserved flatworms associated with hosts and coprolites. Besides direct evidence, the host fossil record and biogeography have the potential to constrain their evolutionary history, albeit with caution needed to avoid circularity, and a need for calibrations to be implemented in the most conservative way. This might result in imprecise, but accurate divergence estimates for the evolution of parasitic flatworms.
Collapse
Affiliation(s)
- Kenneth De Baets
- Fachgruppe PaläoUmwelt, GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paula Dentzien-Dias
- Núcleo de Oceanografia Geológica, Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Ieva Upeniece
- Department of Geology, University of Latvia, Riga, Latvia
| | - Olivier Verneau
- Centre de Formation et de Recherche sur les Environnements Méditerranéens, University of Perpignan Via Domitia, Perpignan, France; CNRS, Centre de Formation et de Recherche sur les Environnements Méditerranéens, Perpignan, France; Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Philip C J Donoghue
- School of Earth Sciences, University of Bristol, Life Science Building, Bristol, UK
| |
Collapse
|
12
|
van Tuinen M, Torres CR. Potential for bias and low precision in molecular divergence time estimation of the Canopy of Life: an example from aquatic bird families. Front Genet 2015; 6:203. [PMID: 26106406 PMCID: PMC4459087 DOI: 10.3389/fgene.2015.00203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 05/25/2015] [Indexed: 11/13/2022] Open
Abstract
Uncertainty in divergence time estimation is frequently studied from many angles but rarely from the perspective of phylogenetic node age. If appropriate molecular models and fossil priors are used, a multi-locus, partitioned analysis is expected to equally minimize error in accuracy and precision across all nodes of a given phylogeny. In contrast, if available models fail to completely account for rate heterogeneity, substitution saturation and incompleteness of the fossil record, uncertainty in divergence time estimation may increase with node age. While many studies have stressed this concern with regard to deep nodes in the Tree of Life, the inference that molecular divergence time estimation of shallow nodes is less sensitive to erroneous model choice has not been tested explicitly in a Bayesian framework. Because of available divergence time estimation methods that permit fossil priors across any phylogenetic node and the present increase in efficient, cheap collection of species-level genomic data, insight is needed into the performance of divergence time estimation of shallow (<10 MY) nodes. Here, we performed multiple sensitivity analyses in a multi-locus data set of aquatic birds with six fossil constraints. Comparison across divergence time analyses that varied taxon and locus sampling, number and position of fossil constraint and shape of prior distribution showed various insights. Deviation from node ages obtained from a reference analysis was generally highest for the shallowest nodes but determined more by temporal placement than number of fossil constraints. Calibration with only the shallowest nodes significantly underestimated the aquatic bird fossil record, indicating the presence of saturation. Although joint calibration with all six priors yielded ages most consistent with the fossil record, ages of shallow nodes were overestimated. This bias was found in both mtDNA and nDNA regions. Thus, divergence time estimation of shallow nodes may suffer from bias and low precision, even when appropriate fossil priors and best available substitution models are chosen. Much care must be taken to address the possible ramifications of substitution saturation across the entire Tree of Life.
Collapse
Affiliation(s)
- Marcel van Tuinen
- Department of Biology and Marine Biology, University of North Carolina at WilmingtonWilmington, NC, USA
- Centre of Evolutionary and Ecological Studies, Marine Evolution and Conservation Group, University of GroningenGroningen, Netherlands
| | - Christopher R. Torres
- Department of Biology and Marine Biology, University of North Carolina at WilmingtonWilmington, NC, USA
- National Evolutionary Synthesis CenterDurham, NC, USA
- Department of Integrative Biology, University of Texas at AustinAustin, TX, USA
| |
Collapse
|
13
|
De Baets K, Littlewood DTJ. The Importance of Fossils in Understanding the Evolution of Parasites and Their Vectors. ADVANCES IN PARASITOLOGY 2015; 90:1-51. [PMID: 26597064 DOI: 10.1016/bs.apar.2015.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Knowledge concerning the diversity of parasitism and its reach across our current understanding of the tree of life has benefitted considerably from novel molecular phylogenetic methods. However, the timing of events and the resolution of the nature of the intimate relationships between parasites and their hosts in deep time remain problematic. Despite its vagaries, the fossil record provides the only direct evidence of parasites and parasitism in the fossil record of extant and extinct lineages. Here, we demonstrate the potential of the fossil record and other lines of geological evidence to calibrate the origin and evolution of parasitism by combining different kinds of dating evidence with novel molecular clock methodologies. Other novel methods promise to provide additional evidence for the presence or the life habit of pathogens and their vectors, including the discovery and analysis of ancient DNA and other biomolecules, as well as computed tomographic methods.
Collapse
|