1
|
Mamun TI, Bourhia M, Neoaj T, Akash S, Azad MAK, Hossain MS, Rahman MM, Bin Jardan YA, Ibenmoussa S, Sitotaw B. Structure based functional identification of an uncharacterized protein from Coxiella burnetii involved in adipogenesis. Sci Rep 2024; 14:16789. [PMID: 39039093 PMCID: PMC11263603 DOI: 10.1038/s41598-024-66072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/26/2024] [Indexed: 07/24/2024] Open
Abstract
Coxiella burnetii, the causative agent of Q fever, is an intracellular pathogen posing a significant global public health threat. There is a pressing need for dependable and effective treatments, alongside an urgency for further research into the molecular characterization of its genome. Within the genomic landscape of Coxiella burnetii, numerous hypothetical proteins remain unidentified, underscoring the necessity for in-depth study. In this study, we conducted comprehensive in silico analyses to identify and prioritize potential hypothetical protein of Coxiella burnetii, aiming to elucidate the structure and function of uncharacterized protein. Furthermore, we delved into the physicochemical properties, localization, and molecular dynamics and simulations, and assessed the primary, secondary, and tertiary structures employing a variety of bioinformatics tools. The in-silico analysis revealed that the uncharacterized protein contains a conserved Mth938-like domain, suggesting a role in preadipocyte differentiation and adipogenesis. Subcellular localization predictions indicated its presence in the cytoplasm, implicating a significant role in cellular processes. Virtual screening identified ligands with high binding affinities, suggesting the protein's potential as a drug target against Q fever. Molecular dynamics simulations confirmed the stability of these complexes, indicating their therapeutic relevance. The findings provide a structural and functional overview of an uncharacterized protein from C. burnetii, implicating it in adipogenesis. This study underscores the power of in-silico approaches in uncovering the biological roles of uncharacterized proteins and facilitating the discovery of new therapeutic strategies. The findings provide valuable preliminary data for further investigation into the protein's role in adipogenesis.
Collapse
Affiliation(s)
- Tajul Islam Mamun
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Mohammed Bourhia
- Laboratory of Biotechnology and Natural Resources Valorization, Faculty of Sciences, Ibn Zohr University, 80060, Agadir, Morocco.
| | - Taufiq Neoaj
- Department of Pharmacology and Toxicology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Shopnil Akash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md A K Azad
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
| | - Md Sarowar Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Birulia, Ashulia, Dhaka, 1216, Bangladesh
- Faculty of Pharmaceutical Science, Assam Down Town University, Guwahati, Assam, India
| | - Md Masudur Rahman
- Department of Pathology, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 11451, Riyadh, Saudi Arabia
| | - Samir Ibenmoussa
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, 34000, Montpellier, France
| | - Baye Sitotaw
- Department of Biology, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia.
| |
Collapse
|
2
|
Yadav K, Dwivedi S, Gupta S, Dubey AK, Singh VK, Tanveer A, Yadav S, Yadav D. Genome mining of Fusarium reveals structural and functional diversity of pectin lyases: a bioinformatics approach. 3 Biotech 2022; 12:261. [PMID: 36082361 PMCID: PMC9445148 DOI: 10.1007/s13205-022-03333-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
Abstract
Pectin lyase (PNL) is an important enzyme of the pectinases group which degrades pectin polymer to 4,5-unsaturated oligogalacturonides by a unique β-elimination mechanism and is used in several industries. The existence of multigene families of pectin lyases has been investigated by mining microbial genomes. In the present study, 52 pectin lyase genes were predicted from sequenced six species of Fusarium, namely F. fujikuroi, F. graminearum, F. proliferatum, F. oxysporum, F. verticillioides and F. virguliforme. These sequences were in silico characterized for several physico-chemical, structural and functional attributes. The translated PNL proteins showed variability with 344-1142 amino acid residues, 35.44-127.41 kDa molecular weight, and pI ranging from 4.63 to 9.28. The aliphatic index ranged from 75.33 to 84.75. Multiple sequence alignment analysis showed several conserved amino acid residues and five distinct groups marked as I, II, III, IV, and V were observed in the phylogenetic tree. The Three-dimensional Structure of five of these PNLs, each representing a distinct group of phylogenetic trees was predicted using I-TASSER Server and validated. The pectin lyase proteins of Fusarium species revealed close similarity with pectin lyase of Aspergillus niger PelA(1IDJ) and PelB(1QCX). Diversity in the structural motifs was observed among Fusarium species with 2 β-sheets, 1 β-hairpin, 7-12 β bulges, 18-25 strands, 6 -11 helices, 1 helix-helix interaction, 32-49 β turns, 2-6 γ turns and 2- 3 disulfide bonds. The unique Pec_lyase domain was uniformly observed among all PNL proteins confirming its identity. The genome-wide mining of Fusarium species was attempted to provide the diversity of PNL genes, which could be explored for diverse applications after performing cloning and expression studies. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03333-w.
Collapse
Affiliation(s)
- Kanchan Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Shruti Dwivedi
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Supriya Gupta
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Amit K. Dubey
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Vinay K. Singh
- Centre for Bioinformatics, School of Biotechnology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| | - Aiman Tanveer
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Sangeeta Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| | - Dinesh Yadav
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh 273009 India
| |
Collapse
|
3
|
Kader MA, Ahammed A, Khan MS, Ashik SAA, Islam MS, Hossain MU. Hypothetical protein predicted to be tumor suppressor: a protein functional analysis. Genomics Inform 2022; 20:e6. [PMID: 35399005 PMCID: PMC9002001 DOI: 10.5808/gi.21073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/08/2022] [Indexed: 12/22/2022] Open
Abstract
Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.
Collapse
Affiliation(s)
- Md Abdul Kader
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Akash Ahammed
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Sharif Khan
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Sheikh Abdullah Al Ashik
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | | | | |
Collapse
|
4
|
Abstract
The demand for ecofriendly green catalysts for biofuel synthesis is greatly increasing with the effects of fossil fuel depletion. Fungal lipases are abundantly used as biocatalysts for the synthesis of biofuel. The use of Botrytis cinerea lipase is an excellent approach for the conversion of agroindustrial residues into biofuel. In this study, phylogenetic analyses were carried out and the physicochemical properties of B. cinerea lipase were assessed. Furthermore, the protein structure of B. cinerea lipase was predicted and refined. Putative energy-rich phytolipid compounds were explored as a substrate for the synthesis of biofuel, owing to B. cinerea lipase catalysis. Approximately 161 plant-based fatty acids were docked with B. cinerea lipase in order to evaluate their binding affinities and interactions. Among the docked fatty acids, the top ten triglycerides having the lowest number of binding affinities with B. cinerea lipase were selected, and their interactions were assessed. The top three triglycerides having the greatest number of hydrogen bonds and hydrophobic interactions were selected for simulations of 20 ns. The docking and simulations revealed that docosahexaenoic acid, dicranin, and hexadeca-7,10,13-trienoic acid had stable bonding with the B. cinerea lipase. Therefore, B. cinerea lipase has the potential to be used for the transesterification of fatty acids into biofuels, whereas docosahexaenoic acid, dicranin, and hexadeca-7,10,13-trienoic acid can be used as substrates of B. cinerea lipase for biofuel synthesis.
Collapse
|
5
|
Rani S, Kumari P, Poddar R, Chattopadhyay S. Study of lipase producing gene in wheat - an in silico approach. J Genet Eng Biotechnol 2021; 19:73. [PMID: 33999287 PMCID: PMC8128969 DOI: 10.1186/s43141-021-00150-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/18/2021] [Indexed: 11/10/2022]
Abstract
BACKGROUND Lipases (EC 3.1.1.3) catalyze the hydrolysis of oil into free fatty acids and glycerol forming the 3rd largest group of commercialized enzymes. Plant lipases grab attention recently because of their specificity, less production and purified cost, and easy availability. In silico approach is the first step to identify different genes coding for lipase in a most common indigenous plant, wheat, to explore the possibility of this plant as an alternative source for commercial lipase production. As the hierarchy organization of genes reflects an ancient process of gene duplication and divergence, many of the theoretical and analytical tools of the phylogenetic systematics can be utilized for comparative genomic studies. Also, in addition to experimental identification and characterization of genes, for computational genomic analysis, Arabidopsis has become a popular strategy to identify crop genes which are economically important, as Arabidopsis genes had been well identified and characterized for lipase. A number of articles had been reported in which genes of wheat have shown strong homology with Arabidopsis. The complete genome sequences of rice and Arabidopsis constitute a valuable resource for comparative genome analysis as they are representatives of the two major evolutionary lineages within the angiosperms. Here, in this in silico approach, Arabidopsis and Oryza sativa serve as models for dicotyledonous and monocotyledonous species, respectively, and the genomic sequence data available was used to identify the lipase genes in wheat. RESULTS In this present study, Ensembl Plants database was explored for lipase producing gene present in wheat genome and 21 genes were screened down as they contain specific domain and motif for lipase (GXSXG). According to the evolutionary analysis, it was found that the gene TraesCS5B02G157100, located in 5B chromosome, has 58.35% sequence similarity with the reported lipase gene of Arabidopsis thaliana and gene TraesCS3A02G463500 located in the 3A chromosome has 51.74% sequence similarity with the reported lipase gene of Oryza sativa. Homology modeling was performed using protein sequences coded by aforementioned genes and optimized by molecular dynamic simulations. Further with the help of molecular docking of modeled structures with tributyrin, binding efficiency was checked, and the difference in energies (DE) was -9.83 kcal/mol and -6.67 kcal/mol, respectively. CONCLUSIONS The present work provides a basic understanding of the gene-encoding lipase in wheat, which could be easily accessible and used as a potent industrial enzyme. The study enlightens another direction which can be used further to explore plant lipases.
Collapse
Affiliation(s)
- Shradha Rani
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Priya Kumari
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Raju Poddar
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India
| | - Soham Chattopadhyay
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, 835215, India.
| |
Collapse
|
6
|
Tan Y, Henehan GT, Kinsella GK, Ryan BJ. An extracellular lipase from Amycolatopsis mediterannei is a cutinase with plastic degrading activity. Comput Struct Biotechnol J 2021; 19:869-879. [PMID: 33598102 PMCID: PMC7851449 DOI: 10.1016/j.csbj.2021.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 11/04/2022] Open
Abstract
Amycolatopsis mediterranei lipase (AML) exhibits cutinase-like structural features. AML shows 60–70% sequence similarity to a few plastic degrading cutinases. AML has the ability to degrade poly(caprolactone) and poly(butylene succinate).
An extracellular lipase from Amycolatopsis mediteranei (AML) with potential applications in process biotechnology was recently cloned and examined in this laboratory. In the present study, the 3D structure of AML was elucidated by comparative modelling. AML lacked the ‘lid’ structure observed in most true lipases and shared similarities with plastic degrading enzymes. Modelling and substrate specificity studies showed that AML was a cutinase with a relatively exposed active site and specificity for medium chain fatty acyl moieties. AML rapidly hydrolysed the aliphatic plastics poly(ε-caprolactone) and poly(1,4-butylene succinate) extended with 1,6-diisocyanatohexane under mild conditions. These plastics are known to be slow to degrade in landfill. Poly(L-lactic acid) was not hydrolysed by AML, nor was the aromatic plastic Polyethylene Terephthalate (PET). The specificity of AML is partly explained by active site topology and analysis reveals that minor changes in the active site region can have large effects on substrate preference. These findings show that extracellular Amycolatopsis enzymes are capable of degrading a wider range of plastics than is generally recognised. The potential for application of AML in the bioremediation of plastics is discussed.
Collapse
Affiliation(s)
- Yeqi Tan
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| | - Gary T Henehan
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| | - Gemma K Kinsella
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| | - Barry J Ryan
- School of Food Sciences and Environmental Health, Technological University Dublin, Grangegorman, Dublin 7 D07 H6K8, Ireland
| |
Collapse
|
7
|
Rahman A, Susmi TF, Yasmin F, Karim ME, Hossain MU. Functional annotation of an ecologically important protein from Chloroflexus aurantiacus involved in polyhydroxyalkanoates (PHA) biosynthetic pathway. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03598-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
In Silico Analysis of New Potent Anti-hyperglycemic Molecule for Diabetes Type 2 Management. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09905-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Gaur M, Tiwari A, Chauhan RP, Pandey D, Kumar A. Molecular modeling, docking and protein-protein interaction analysis of MAPK signalling cascade involved in Camalexin biosynthesis in Brassica rapa. Bioinformation 2018; 14:145-152. [PMID: 29983484 PMCID: PMC6016760 DOI: 10.6026/97320630014145] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/02/2018] [Accepted: 04/03/2018] [Indexed: 11/23/2022] Open
Abstract
Phytoalexins are small antimicrobial molecules synthesized and accumulated by plants upon exposure to pathogens. Camalexin is an indole-derived phytoalexin, which is accumulated in plants including Arabidopsis thaliana, and other Brassicaceae, which plays a major role in disease resistance against fungal pathogens. The productivity of Brassica crops is adversely affected by Alternaria blight disease, which is caused by Alternaria brassicae. In Arabidopsis thaliana, MAP kinase signalling cascade is known to be involved in synthesis of camalexin, which contributes to disease resistance against a necrtrophic fungal pathogen, Botrytis cinerea. In the present study, MAPK signalling cascade leading to biosynthesis of camalexin that triggers defense responses in B. rapa upon exposure to the most devastating nectrophic fungus, Alternaria brassicae has been elucidated with the help of previously reported MAPK cascade in Arabidopsis thaliana, Molecular modelling, docking, and protein-protein interaction analysis of MAP kinases retrieved from Brassica rapa genome have been carried out to reveal the above cascade. The tertiary structure prediction of MAPKs obtained through molecular modelling revealed that all the protein models fulfil the criteria of being the stable structures. The molecular docking of predicted models for elucidating potential partners of MAPKs revealed strong interactions between MKK1, MKK4, MKK5, MAPK3 and MAPK6 with MKK9. The MAPK signalling cascade also shows different genes that express and play major role in camalexin biosynthesis in B. rapa during defense response to A. brassicae. The understanding of MAPK defense signaling pathway in B. rapa against devastating fungal pathogen Alternaria brassicae would help in devising strategies to develop disease resistance in Brassica crops.
Collapse
Affiliation(s)
- Manu Gaur
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Apoorv Tiwari
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
- Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India
| | - Ravendra P Chauhan
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G.B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India
| |
Collapse
|
10
|
Vici AC, da Cruz AF, Facchini FDA, de Carvalho CC, Pereira MG, Fonseca-Maldonado R, Ward RJ, Pessela BC, Fernandez-Lorente G, Torres FAG, Jorge JA, Polizeli MLTM. Beauveria bassiana Lipase A expressed in Komagataella (Pichia) pastoris with potential for biodiesel catalysis. Front Microbiol 2015; 6:1083. [PMID: 26500628 PMCID: PMC4595793 DOI: 10.3389/fmicb.2015.01083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 09/22/2015] [Indexed: 02/06/2023] Open
Abstract
Lipases (EC 3.1.1.3) comprise a biotechnologically important group of enzymes because they are able to catalyze both hydrolysis and synthesis reactions, depending on the amount of water in the system. One of the most interesting applications of lipase is in the biofuel industry for biodiesel production by oil and ethanol (or methanol) transesterification. Entomopathogenic fungi, which are potential source of lipases, are still poorly explored in biotechnological processes. The present work reports the heterologous expression and biochemical characterization of a novel Beauveria bassiana lipase with potential for biodiesel production. The His-tagged B. bassiana lipase A (BbLA) was produced in Komagataella pastoris in buffered methanol medium (BMM) induced with 1% methanol at 30°C. Purified BbLA was activated with 0.05% Triton X-100 and presented optimum activity at pH 6.0 and 50°C. N-glycosylation of the recombinant BbLA accounts for 31.5% of its molecular weight. Circular dichroism and molecular modeling confirmed a structure composed of α-helix and β-sheet, similar to α/β hydrolases. Immobilized BbLA was able to promote transesterification reactions in fish oil, demonstrating potential for biodiesel production. BbLA was successfully produced in K. pastoris and shows potential use for biodiesel production by the ethanolysis reaction.
Collapse
Affiliation(s)
- Ana C Vici
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Andrezza F da Cruz
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Fernanda D A Facchini
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Caio C de Carvalho
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Marita G Pereira
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Raquel Fonseca-Maldonado
- Departamento de Química, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Richard J Ward
- Departamento de Química, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Benevides C Pessela
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos, Consejo Superior de Investigaciones Cientificas, Madrid España
| | - Gloria Fernandez-Lorente
- Departamento de Biotecnología y Microbiología de Alimentos, Instituto de Investigación en Ciencias de los Alimentos, Consejo Superior de Investigaciones Cientificas, Madrid España
| | - Fernando A G Torres
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília Brazil
| | - João A Jorge
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| | - Maria L T M Polizeli
- Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Brazil
| |
Collapse
|
11
|
An insight into plant lipase research – challenges encountered. Protein Expr Purif 2014; 95:13-21. [DOI: 10.1016/j.pep.2013.11.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/13/2013] [Accepted: 11/15/2013] [Indexed: 11/22/2022]
|