1
|
Kodeboyina SK, Lee TJ, Churchwell L, Ulrich L, Bollinger K, Bogorad D, Estes A, Zhi W, Sharma S, Sharma A. The Constitutive Proteome of Human Aqueous Humor and Race Specific Alterations. Proteomes 2020; 8:proteomes8040034. [PMID: 33217969 PMCID: PMC7709111 DOI: 10.3390/proteomes8040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 12/29/2022] Open
Abstract
Aqueous humor (AH) is the fluid in the anterior and posterior chambers of the eye that contains proteins regulating ocular homeostasis. Analysis of aqueous humor proteome is challenging, mainly due to low sample volume and protein concentration. In this study, by utilizing state of the art technology, we performed Liquid-Chromatography Mass spectrometry (LC-MS/MS) analysis of 88 aqueous humor samples from subjects undergoing cataract surgery. A total of 2263 unique proteins were identified, which were sub-divided into four categories that were based on their detection in the number of samples: High (n = 152), Medium (n = 91), Low (n = 128), and Rare (n = 1892). A total of 243 proteins detected in at least 50% of the samples were considered as the constitutive proteome of human aqueous humor. The biological processes and pathways enriched in the AH proteins mainly include vesicle mediated transport, acute phase response signaling, LXR/RXR activation, complement system, and secretion. The enriched molecular functions are endopeptidase activity, and various binding functions, such as protein binding, lipid binding, and ion binding. Additionally, this study provides a novel insight into race specific differences in the AH proteome. A total of six proteins were upregulated, and five proteins were downregulated in African American subjects as compared to Caucasians.
Collapse
Affiliation(s)
- Sai Karthik Kodeboyina
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Lara Churchwell
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Lane Ulrich
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Kathryn Bollinger
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - David Bogorad
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Amy Estes
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA; (S.K.K.); (T.J.L.); (L.C.); (W.Z.); (S.S.)
- Department of Ophthalmology, Augusta University, Augusta, GA 30912, USA; (L.U.); (K.B.); (D.B.); (A.E.)
- Department of Population Health Sciences, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
2
|
Fernández-Vega Cueto A, Álvarez L, García M, Artime E, Álvarez Barrios A, Rodríguez-Uña I, Coca-Prados M, González-Iglesias H. Systemic Alterations of Immune Response-Related Proteins during Glaucoma Development in the Murine Model DBA/2J. Diagnostics (Basel) 2020; 10:E425. [PMID: 32585848 PMCID: PMC7345206 DOI: 10.3390/diagnostics10060425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 11/20/2022] Open
Abstract
Animal models of glaucoma, a neurodegenerative disease affecting the retina, offer the opportunity to study candidate molecular biomarkers throughout the disease. In this work, the DBA/2J glaucomatous mouse has been used to study the systemic levels of several proteins previously identified as potential biomarkers of glaucoma, along the pre- to post-glaucomatous transition. Serum samples obtained from glaucomatous and control mice at 4, 10, and 14 months, were classified into different experimental groups according to the optic nerve damage at 14 months old. Quantifications of ten serum proteins were carried out by enzyme immunoassays. Changes in the levels of some of these proteins in the transition to glaucomatous stages were identified, highlighting the significative decrease in the concentration of complement C4a protein. Moreover, the five-protein panel consisting of complement C4a, complement factor H, ficolin-3, apolipoprotein A4, and transthyretin predicted the transition to glaucoma in 78% of cases, and to the advanced disease in 89%. Our data, although still preliminary, suggest that disease development in DBA/2J mice is associated with important molecular changes in immune response and complement system proteins and demonstrate the utility of this model in identifying, at systemic level, potential markers for the diagnosis of glaucoma.
Collapse
Affiliation(s)
- Andrés Fernández-Vega Cueto
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Montserrat García
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Ana Álvarez Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| | - Ignacio Rodríguez-Uña
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
| | - Miguel Coca-Prados
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Héctor González-Iglesias
- Instituto Oftalmológico Fernández-Vega, Avenida Doctores Fernández-Vega, 34, 33012 Oviedo, Spain; (A.F.-V.C.); (M.G.); (I.R.-U.)
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (E.A.); (A.Á.B.); (M.C.-P.)
| |
Collapse
|
3
|
Geisert EE, Williams RW. Using BXD mouse strains in vision research: A systems genetics approach. Mol Vis 2020; 26:173-187. [PMID: 32180682 PMCID: PMC7058434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
We illustrate the growing power of the BXD family of mice (recombinant inbred strains from a cross of C57BL/6J and DBA/2J mice) and companion bioinformatic tools to study complex genome-phenome relations related to glaucoma. Over the past 16 years, our group has integrated powerful murine resources and web-accessible tools to identify networks modulating visual system traits-from photoreceptors to the visual cortex. Recent studies focused on retinal ganglion cells and glaucoma risk factors, including intraocular pressure (IOP), central corneal thickness (CCT), and susceptibility of cellular stress. The BXD family was exploited to define key gene variants and then establish linkage to glaucoma in human cohorts. The power of this experimental approach to precision medicine is highlighted by recent studies that defined cadherin 11 (Cdh11) and a calcium channel (Cacna2d1) as genes modulating IOP, Pou6f2 as a genetic link between CCT and retinal ganglion cell (RGC) death, and Aldh7a1 as a gene that modulates the susceptibility of RGCs to death after elevated IOP. The role of three of these gene variants in glaucoma is discussed, along with the pathways activated in the disease process.
Collapse
Affiliation(s)
- Eldon E. Geisert
- Department of Ophthalmology, Emory University, 1365B Clifton Road NE Atlanta GA, 30322
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, 71 S Manassas St, Memphis TN 38163
| |
Collapse
|
4
|
Parolini C. Effects of Fish n-3 PUFAs on Intestinal Microbiota and Immune System. Mar Drugs 2019; 17:E374. [PMID: 31234533 PMCID: PMC6627897 DOI: 10.3390/md17060374] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023] Open
Abstract
Studies over several decades have documented the beneficial actions of n-3 polyunsaturated fatty acids (PUFAs), which are plentiful in fish oil, in different disease states. Mechanisms responsible for the efficacy of n-3 PUFAs include: (1) Reduction of triglyceride levels; (2) anti-arrhythmic and antithrombotic effects, and (3) resolution of inflammatory processes. The human microbiota project and subsequent studies using next-generation sequencing technology have highlighted that thousands of different microbial species are present in the human gut, and that there has been a significant variability of taxa in the microbiota composition among people. Several factors (gestational age, mode of delivery, diet, sanitation and antibiotic treatment) influence the bacterial community in the human gastrointestinal tract, and among these diet habits play a crucial role. The disturbances in the gut microbiota composition, i.e., gut dysbiosis, have been associated with diseases ranging from localized gastrointestinal disorders to neurologic, respiratory, metabolic, ocular, and cardiovascular illnesses. Many studies have been published about the effects of probiotics and prebiotics on the gut microbiota/microbioma. On the contrary, PUFAs in the gut microbiota have been less well defined. However, experimental studies suggested that gut microbiota, n-3 PUFAs, and host immune cells work together to ensure the intestinal wall integrity. This review discussed current evidence concerning the links among gut microbiota, n-3 PUFAs intake, and human inflammatory disease.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, 20122 Milano, Italy.
| |
Collapse
|
5
|
Lu Y, Zhou D, Lu H, Xu F, Yue J, Tong J, Lu L. Investigating a downstream gene of Gpnmb using the systems genetics method. Mol Vis 2019; 25:222-236. [PMID: 31057322 PMCID: PMC6478243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 04/21/2019] [Indexed: 11/01/2022] Open
Abstract
Purpose Glaucoma is characterized by optic nerve damage and retinal ganglion cell loss. The glycoprotein neuromedin B-associated (Gpnmb) gene is well-known to be involved in the glaucoma disease process. The purpose of this study is to identify a downstream gene through which Gpnmb affects the glaucoma phenotypes using a systems genetics approach. Methods Retinal gene expression data for the BXD recombinant inbred (RI) strains (n=75) have previously been generated in our laboratory for a glaucoma study, and these data were used for genetic and bioinformatics analysis. Expression quantitative trait locus (eQTL) mapping and genetic correlation methods were used to identify a gene downstream of Gpnmb. Gene-set enrichment analysis was used to evaluate gene function and to construct coexpression networks. Results The level of Gpnmb expression is associated with a highly statistically significant cis-eQTL. Stanniocalcin 1 (Stc1) has a significant trans-eQTL mapping to the Gpnmb locus. The expression of Gpnmb and Stc1 is highly correlated in the retina and other tissues, as well as with glaucoma-related phenotypes. Gene Ontology and pathway analysis showed that Stc1 and its covariates are highly associated with apoptosis, oxidative stress, and mitochondrial activity. A generated gene network indicated that Gpnmb and Stc1 are directly connected to and interact with other genes with similar biologic functions. Conclusions These results suggest that Stc1 may be a downstream candidate of Gpnmb, and that both genes interact with other genes in a network to develop glaucoma pathogenesis through mechanisms such as apoptosis and oxidative stress.
Collapse
Affiliation(s)
- Ye Lu
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Diana Zhou
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Hong Lu
- Department of Ophthalmology, Nantong Eye Institute, Affiliated Hospital of Nantong University, Nantong, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN
| | - Junming Yue
- Department of Pathology, University of Tennessee Health Science Center, Memphis, TN
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University College of Medicine, Hangzhou, China
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
6
|
Sudha D, Kohansal-Nodehi M, Kovuri P, Manda SS, Neriyanuri S, Gopal L, Bhende P, Chidambaram S, Arunachalam JP. Proteomic profiling of human intraschisis cavity fluid. Clin Proteomics 2017; 14:13. [PMID: 28450823 PMCID: PMC5404285 DOI: 10.1186/s12014-017-9148-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 04/07/2017] [Indexed: 12/24/2022] Open
Abstract
Background X-linked retinoschisis (XLRS) is a vitreoretinal degenerative disorder causing vision deterioration, due to structural defects in retina. The hallmark of this disease includes radial streaks arising from the fovea and splitting of inner retinal layers (schisis). Although these retinal changes are attributed to mutations in the retinoschisin gene, schisis is also observed in patients who do not carry mutations. In addition, the origin of intraschisis fluid, the triggering point of schisis formation and its progression are largely unknown still. So far, there is no report on the complete proteomic analysis of this fluid. Schisis fluid proteome could reflect biochemical changes in the disease condition, helping in better understanding and management of retinoschisis. Therefore it was of interest to investigate the intraschisis fluid proteome using high-resolution mass spectrometry. Methods Two male XLRS patients (aged 4 and 40 years) underwent clinical and genetic evaluation followed by surgical extraction of intraschisis fluids. The two fluid samples were resolved on a SDS-PAGE and the processed peptides were analyzed by Q-Exactive plus hybrid quadrupole-Orbitrap mass spectrometry. Functional annotation of the identified proteins was performed using Ingenuity pathway analysis software. Results Mass spectrometry analysis detected 770 nonredundant proteins in the intraschisis fluid. Retinol dehydrogenase 14 was found to be abundant in the schisis fluid. Gene ontology based analysis indicated that 19% of the intraschisis fluid proteins were localized to the extracellular matrix and 15% of the proteins were involved in signal transduction. Functional annotation identified three primary canonical pathways to be associated with the schisis fluid proteome viz., LXR/RXR activation, complement system and acute phase response signalling, which are involved in immune and inflammatory responses. Collectively, our results show that intraschisis fluid comprises specific inflammatory proteins which highly reflect the disease environment. Conclusion Based on our study, it is suggested that inflammation might play a key role in the pathogenesis of XLRS. To our knowledge, this is the first report describing the complete proteome of intraschisis fluid, which could serve as a template for future research and facilitate the development of therapeutic modalities for XLRS. Electronic supplementary material The online version of this article (doi:10.1186/s12014-017-9148-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dhandayuthapani Sudha
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India.,School of Biotechnology, SASTRA University, Thanjavur, India
| | | | - Purnima Kovuri
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | - Srividya Neriyanuri
- Elite School of Optometry, Unit of Medical Research Foundation, Chennai, India
| | - Lingam Gopal
- Shri Bhagwan Mahavir Vitreo-Retinal Services, Medical Research Foundation, Chennai, India
| | - Pramod Bhende
- Shri Bhagwan Mahavir Vitreo-Retinal Services, Medical Research Foundation, Chennai, India
| | | | - Jayamuruga Pandian Arunachalam
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Chennai, India.,Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth Medical University, Mahatma Gandhi Medical College and Research Institute Campus, Puducherry, India
| |
Collapse
|
7
|
Williams PA, Marsh-Armstrong N, Howell GR. Neuroinflammation in glaucoma: A new opportunity. Exp Eye Res 2017; 157:20-27. [PMID: 28242160 PMCID: PMC5497582 DOI: 10.1016/j.exer.2017.02.014] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 02/16/2017] [Accepted: 02/23/2017] [Indexed: 10/20/2022]
Abstract
Mounting evidence suggests neuroinflammation is a key process in glaucoma, yet the precise roles are not known. Understanding these complex processes, which may also be a key in other common neurodegenerations such as Alzheimer's disease, will lead to targeted therapeutics for a disease that affects as many as 80 million people worldwide. Here, we define neuroinflammation as any immune-relevant response by a variety of cell types including astrocytes, microglia, and peripherally derived cells occurring in the optic nerve head and/or retina. In this review article, we first discuss clinical evidence for neuroinflammation in glaucoma and define neuroinflammation in glaucoma. We then review the inflammatory pathways that have been associated with glaucoma. Finally, we set out key research directions that we believe will greatly advance our understanding of the role of neuroinflammation in glaucoma. This review arose from a discussion of neuroinflammation in glaucoma at the 2015 meeting of The Lasker/IRRF Initiative for Innovation in Vision Science. This manuscript sets out to summarize one of these sessions; "Inflammation and Glaucomatous Neurodegeneration", as well as to review the current state of the literature surrounding neuroinflammation in glaucoma.
Collapse
Affiliation(s)
| | - Nick Marsh-Armstrong
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA; Graduate Program of Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
8
|
The Role of the IL-20 Subfamily in Glaucoma. Mediators Inflamm 2016; 2016:4083735. [PMID: 26903709 PMCID: PMC4745377 DOI: 10.1155/2016/4083735] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 12/23/2022] Open
Abstract
Glaucoma is a common disease that leads to loss of peripheral vision and, if left untreated, ultimately to blindness. While the exact cause(s) of glaucoma is still unknown, two leading risk factors are age and elevated intraocular pressure. Several studies suggest a possible link between glaucoma and inflammation in humans and animal models. In particular, our lab recently identified a T104M mutation in IL-20 receptor-B (IL-20RB) in primary open angle glaucoma patients from a large pedigree. Several of the interleukin- (IL-) 20 family of cytokines and receptors are expressed in ocular tissues including the trabecular meshwork, optic nerve head, and retinal ganglion cells. The DBA/2J mouse develops high intraocular pressures with age and has characteristic optic nerve defects that make it a useful glaucoma model. IL-24 expression is significantly upregulated in the retina of these mice, while IL-20RA expression in the optic nerve is downregulated following pressure-induced damage. The identification of a mutation in the IL-20RB gene in a glaucoma pedigree and changes in expression levels of IL-20 family members in the DBA/2J mouse suggest that disruption of normal IL-20 signaling in the eye may contribute to degenerative processes associated with glaucoma.
Collapse
|
9
|
Using genetic mouse models to gain insight into glaucoma: Past results and future possibilities. Exp Eye Res 2015; 141:42-56. [PMID: 26116903 DOI: 10.1016/j.exer.2015.06.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/16/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Abstract
While all forms of glaucoma are characterized by a specific pattern of retinal ganglion cell death, they are clinically divided into several distinct subclasses, including normal tension glaucoma, primary open angle glaucoma, congenital glaucoma, and secondary glaucoma. For each type of glaucoma there are likely numerous molecular pathways that control susceptibility to the disease. Given this complexity, a single animal model will never precisely model all aspects of all the different types of human glaucoma. Therefore, multiple animal models have been utilized to study glaucoma but more are needed. Because of the powerful genetic tools available to use in the laboratory mouse, it has proven to be a highly useful mammalian system for studying the pathophysiology of human disease. The similarity between human and mouse eyes coupled with the ability to use a combination of advanced cell biological and genetic tools in mice have led to a large increase in the number of studies using mice to model specific glaucoma phenotypes. Over the last decade, numerous new mouse models and genetic tools have emerged, providing important insight into the cell biology and genetics of glaucoma. In this review, we describe available mouse genetic models that can be used to study glaucoma-relevant disease/pathobiology. Furthermore, we discuss how these models have been used to gain insights into ocular hypertension (a major risk factor for glaucoma) and glaucomatous retinal ganglion cell death. Finally, the potential for developing new mouse models and using advanced genetic tools and resources for studying glaucoma are discussed.
Collapse
|
10
|
Andreeva K, Soliman MM, Cooper NGF. Regulatory networks in retinal ischemia-reperfusion injury. BMC Genet 2015; 16:43. [PMID: 25902940 PMCID: PMC4424502 DOI: 10.1186/s12863-015-0201-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/14/2015] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Retinal function is ordered by interactions between transcriptional and posttranscriptional regulators at the molecular level. These regulators include transcription factors (TFs) and posttranscriptional factors such as microRNAs (miRs). Some studies propose that miRs predominantly target the TFs rather than other types of protein coding genes and such studies suggest a possible interconnection of these two regulators in co-regulatory networks. RESULTS Our lab has generated mRNA and miRNA microarray expression data to investigate time-dependent changes in gene expression, following induction of ischemia-reperfusion (IR) injury in the rat retina. Data from different reperfusion time points following retinal IR-injury were analyzed. Paired expression data for miRNA-target gene (TG), TF-TG, miRNA-TF were used to identify regulatory loop motifs whose expressions were altered by the IR injury paradigm. These loops were subsequently integrated into larger regulatory networks and biological functions were assayed. Systematic analyses of the networks have provided new insights into retinal gene regulation in the early and late periods of IR. We found both overlapping and unique patterns of molecular expression at the two time points. These patterns can be defined by their characteristic molecular motifs as well as their associated biological processes. We highlighted the regulatory elements of miRs and TFs associated with biological processes in the early and late phases of ischemia-reperfusion injury. CONCLUSIONS The etiology of retinal ischemia-reperfusion injury is orchestrated by complex and still not well understood gene networks. This work represents the first large network analysis to integrate miRNA and mRNA expression profiles in context of retinal ischemia. It is likely that an appreciation of such regulatory networks will have prognostic potential. In addition, the computational framework described in this study can be used to construct miRNA-TF interactive systems networks for various diseases/disorders of the retina and other tissues.
Collapse
Affiliation(s)
- Kalina Andreeva
- Department of Anatomical Science and Neurobiology, University of Louisville, School of Medicine, 500 S. Preston Street, Louisville, KY, 40292, USA.
| | - Maha M Soliman
- Department of Anatomical Science and Neurobiology, University of Louisville, School of Medicine, 500 S. Preston Street, Louisville, KY, 40292, USA.
| | - Nigel G F Cooper
- Department of Anatomical Science and Neurobiology, University of Louisville, School of Medicine, 500 S. Preston Street, Louisville, KY, 40292, USA.
| |
Collapse
|
11
|
Bosco A, Romero CO, Breen KT, Chagovetz AA, Steele MR, Ambati BK, Vetter ML. Neurodegeneration severity can be predicted from early microglia alterations monitored in vivo in a mouse model of chronic glaucoma. Dis Model Mech 2015; 8:443-55. [PMID: 25755083 PMCID: PMC4415894 DOI: 10.1242/dmm.018788] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/26/2015] [Indexed: 12/30/2022] Open
Abstract
Microglia serve key homeostatic roles, and respond to neuronal perturbation and decline with a high spatiotemporal resolution. The course of all chronic CNS pathologies is thus paralleled by local microgliosis and microglia activation, which begin at early stages of the disease. However, the possibility of using live monitoring of microglia during early disease progression to predict the severity of neurodegeneration has not been explored. Because the retina allows live tracking of fluorescent microglia in their intact niche, here we investigated their early changes in relation to later optic nerve neurodegeneration. To achieve this, we used the DBA/2J mouse model of inherited glaucoma, which develops progressive retinal ganglion cell degeneration of variable severity during aging, and represents a useful model to study pathogenic mechanisms of retinal ganglion cell decline that are similar to those in human glaucoma. We imaged CX3CR1(+/GFP) microglial cells in vivo at ages ranging from 1 to 5 months by confocal scanning laser ophthalmoscopy (cSLO) and quantified cell density and morphological activation. We detected early microgliosis at the optic nerve head (ONH), where axonopathy first manifests, and could track attenuation of this microgliosis induced by minocycline. We also observed heterogeneous and dynamic patterns of early microglia activation in the retina. When the same animals were aged and analyzed for the severity of optic nerve pathology at 10 months of age, we found a strong correlation with the levels of ONH microgliosis at 3 to 4 months. Our findings indicate that live imaging and monitoring the time course and levels of early retinal microgliosis and microglia activation in glaucoma could serve as indicators of future neurodegeneration severity.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Cesar O Romero
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Kevin T Breen
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Alexis A Chagovetz
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84132, USA
| | - Michael R Steele
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Balamurali K Ambati
- Department of Ophthalmology and Visual Sciences, University of Utah, Salt Lake City, UT 84132, USA
| | - Monica L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
12
|
Templeton JP, Freeman NE, Nickerson JM, Jablonski MM, Rex TS, Williams RW, Geisert EE. Innate immune network in the retina activated by optic nerve crush. Invest Ophthalmol Vis Sci 2013; 54:2599-606. [PMID: 23493296 DOI: 10.1167/iovs.12-11175] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Innate immunity plays a role in many diseases, including glaucoma and AMD. We have used transcriptome profiling in the mouse to identify a network of genes involved in innate immunity that is present in the normal retina and that is activated by optic nerve crush (ONC). METHODS Using a recombinant inbred (RI) mouse strain set (BXD, C57BL/6 crossed with DBA/2J mice), we generate expression datasets (Illumina WG 6.2 arrays) in the normal mouse retina and 2 days after ONC. The normal dataset is constructed from retinas from 80 mouse strains and the ONC dataset is constructed from 62 strains. These large datasets are hosted by GeneNetwork.org, along with a series of powerful bioinformatic tools. RESULTS In the retina datasets, one intriguing network involves transcripts associated with the innate immunity. Using C4b to interrogate the normal dataset, we can identify a group of genes that are coregulated across the BXD RI strains. Many of the genes in this network are associated with the innate immune system, including Serping1, Casp1, C3, Icam1, Tgfbr2, Cfi, Clu, C1qg, Aif1, and Cd74. Following ONC, the expression of these genes is upregulated, along with an increase in coordinated expression across the BXD strains. Many of the genes in this network are risk factors for AMD, including C3, EFEMP1, MCDR2, CFB, TLR4, HTA1, and C1QTNF5. CONCLUSIONS We found a retina-intrinsic innate immunity network that is activated by injury including ONC. Many of the genes in this network are risk factors for retinal disease.
Collapse
Affiliation(s)
- Justin P Templeton
- Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Bosco A, Crish SD, Steele MR, Romero CO, Inman DM, Horner PJ, Calkins DJ, Vetter ML. Early reduction of microglia activation by irradiation in a model of chronic glaucoma. PLoS One 2012; 7:e43602. [PMID: 22952717 PMCID: PMC3431380 DOI: 10.1371/journal.pone.0043602] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022] Open
Abstract
Glaucoma is a neurodegenerative disease that results in the progressive decline and ultimate death of retinal ganglion cells (RGCs). While multiple risk factors are associated with glaucoma, the mechanisms leading to onset and progression of the disease remain unknown. Molecular analysis in various glaucoma models has revealed involvement of non-neuronal cell populations, including astrocytes, Mueller glia and microglia, at early stages of glaucoma. High-dose irradiation was reported to have a significant long-term protective effect in the DBA/2J (D2) mouse model of glaucoma, although the cellular and molecular basis for this effect remains unclear. In particular, the acute effects of irradiation on specific cell populations, including non-neuronal cells, in the D2 retina and nerve have not been assessed. Here we report that irradiation induces transient reduction in proliferating microglia within the optic nerve head and glial lamina within the first week post-irradiation. This was accompanied by reduced microglial activation, with no effect on astrocyte gliosis in those regions. At later stages we confirm that early high-dose irradiation of the mouse head results in improvement of axonal structural integrity and anterograde transport function, without reduction of intraocular pressure. Thus reduced microglial activation induced by irradiation at early stages is associated with reduced optic nerve and retinal neurodegeneration in the D2 mouse model of glaucoma.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Samuel D. Crish
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Michael R. Steele
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Cesar O. Romero
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
| | - Denise M. Inman
- Department of Neurosurgery, University of Washington, Seattle, Washington, United States of America
| | - Philip J. Horner
- Department of Neurosurgery, University of Washington, Seattle, Washington, United States of America
| | - David J. Calkins
- Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Monica L. Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
14
|
Ochocinska MJ, Muñoz EM, Veleri S, Weller JL, Coon SL, Pozdeyev N, Iuvone PM, Goebbels S, Furukawa T, Klein DC. NeuroD1 is required for survival of photoreceptors but not pinealocytes: results from targeted gene deletion studies. J Neurochem 2012; 123:44-59. [PMID: 22784109 DOI: 10.1111/j.1471-4159.2012.07870.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NeuroD1 encodes a basic helix-loop-helix transcription factor involved in the development of neural and endocrine structures, including the retina and pineal gland. To determine the effect of NeuroD1 knockout in these tissues, a Cre/loxP recombination strategy was used to target a NeuroD1 floxed gene and generate NeuroD1 conditional knockout (cKO) mice. Tissue specificity was conferred using Cre recombinase expressed under the control of the promoter of Crx, which is selectively expressed in the pineal gland and retina. At 2 months of age, NeuroD1 cKO retinas have a dramatic reduction in rod- and cone-driven electroretinograms and contain shortened and disorganized outer segments; by 4 months, NeuroD1 cKO retinas are devoid of photoreceptors. In contrast, the NeuroD1 cKO pineal gland appears histologically normal. Microarray analysis of 2-month-old NeuroD1 cKO retina and pineal gland identified a subset of genes that were affected 2-100-fold; in addition, a small group of genes exhibit altered differential night/day expression. Included in the down-regulated genes are Aipl1, which is necessary to prevent retinal degeneration, and Ankrd33, whose protein product is selectively expressed in the outer segments. These findings suggest that NeuroD1 may act through Aipl1 and other genes to maintain photoreceptor homeostasis.
Collapse
Affiliation(s)
- Margaret J Ochocinska
- Section on Neuroendocrinology, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gallego BI, Salazar JJ, de Hoz R, Rojas B, Ramírez AI, Salinas-Navarro M, Ortín-Martínez A, Valiente-Soriano FJ, Avilés-Trigueros M, Villegas-Perez MP, Vidal-Sanz M, Triviño A, Ramírez JM. IOP induces upregulation of GFAP and MHC-II and microglia reactivity in mice retina contralateral to experimental glaucoma. J Neuroinflammation 2012; 9:92. [PMID: 22583833 PMCID: PMC3410794 DOI: 10.1186/1742-2094-9-92] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 05/14/2012] [Indexed: 02/06/2023] Open
Abstract
Background Ocular hypertension is a major risk factor for glaucoma, a neurodegenerative disease characterized by an irreversible decrease in ganglion cells and their axons. Macroglial and microglial cells appear to play an important role in the pathogenic mechanisms of the disease. Here, we study the effects of laser-induced ocular hypertension (OHT) in the macroglia, microglia and retinal ganglion cells (RGCs) of eyes with OHT (OHT-eyes) and contralateral eyes two weeks after lasering. Methods Two groups of adult Swiss mice were used: age-matched control (naïve, n = 9); and lasered (n = 9). In the lasered animals, both OHT-eyes and contralateral eyes were analyzed. Retinal whole-mounts were immunostained with antibodies against glial fibrillary acid protein (GFAP), neurofilament of 200kD (NF-200), ionized calcium binding adaptor molecule (Iba-1) and major histocompatibility complex class II molecule (MHC-II). The GFAP-labeled retinal area (GFAP-RA), the intensity of GFAP immunoreaction (GFAP-IR), and the number of astrocytes and NF-200 + RGCs were quantified. Results In comparison with naïve: i) astrocytes were more robust in contralateral eyes. In OHT-eyes, the astrocyte population was not homogeneous, given that astrocytes displaying only primary processes coexisted with astrocytes in which primary and secondary processes could be recognized, the former having less intense GFAP-IR (P < 0.001); ii) GFAP-RA was increased in contralateral (P <0.05) and decreased in OHT-eyes (P <0.001); iii) the mean intensity of GFAP-IR was higher in OHT-eyes (P < 0.01), and the percentage of the retinal area occupied by GFAP+ cells with higher intensity levels was increased in contralateral (P = 0.05) and in OHT-eyes (P < 0.01); iv) both in contralateral and in OHT-eyes, GFAP was upregulated in Müller cells and microglia was activated; v) MHC-II was upregulated on macroglia and microglia. In microglia, it was similarly expressed in contralateral and OHT-eyes. By contrast, in macroglia, MHC-II upregulation was observed mainly in astrocytes in contralateral eyes and in Müller cells in OHT-eyes; vi) NF-200+RGCs (degenerated cells) appeared in OHT-eyes with a trend for the GFAP-RA to decrease and for the NF-200+RGC number to increase from the center to the periphery (r = −0.45). Conclusion The use of the contralateral eye as an internal control in experimental induction of unilateral IOP should be reconsidered. The gliotic behavior in contralateral eyes could be related to the immune response. The absence of NF-200+RGCs (sign of RGC degeneration) leads us to postulate that the MHC-II upregulation in contralateral eyes could favor neuroprotection.
Collapse
Affiliation(s)
- Beatriz I Gallego
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lu H, Wang X, Pullen M, Guan H, Chen H, Sahu S, Zhang B, Chen H, Williams RW, Geisert EE, Lu L, Jablonski MM. Genetic dissection of the Gpnmb network in the eye. Invest Ophthalmol Vis Sci 2011; 52:4132-42. [PMID: 21398278 DOI: 10.1167/iovs.10-6493] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To use a systematic genetics approach to investigate the regulation of Gpnmb, a gene that contributes to pigmentary dispersion syndrome (PDS) and pigmentary glaucoma (PG) in the DBA/2J (D2) mouse. METHODS Global patterns of gene expression were studied in whole eyes of a large family of BXD mouse strains (n = 67) generated by crossing the PDS- and PG-prone parent (DBA/2J) with a resistant strain (C57BL/6J). Quantitative trait locus (eQTL) mapping methods and gene set analysis were used to evaluate Gpnmb coexpression networks in wild-type and mutant cohorts. RESULTS The level of Gpnmb expression was associated with a highly significant cis-eQTL at the location of the gene itself. This autocontrol of Gpnmb is likely to be a direct consequence of the known premature stop codon in exon 4. Both gene ontology and coexpression network analyses demonstrated that the mutation in Gpnmb radically modified the set of genes with which Gpnmb expression is correlated. The covariates of wild-type Gpnmb are involved in biological processes including melanin synthesis and cell migration, whereas the covariates of mutant Gpnmb are involved in the biological processes of posttranslational modification, stress activation, and sensory processing. CONCLUSIONS These results demonstrated that a systematic genetics approach provides a powerful tool for constructing coexpression networks that define the biological process categories within which similarly regulated genes function. The authors showed that the R150X mutation in Gpnmb dramatically modified its list of genetic covariates, which may explain the associated ocular pathology.
Collapse
Affiliation(s)
- Hong Lu
- Department of Ophthalmology, Affiliated Hospital of Nantong University, Nantong, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Ding C, Wang P, Tian N. Effect of general anesthetics on IOP in elevated IOP mouse model. Exp Eye Res 2011; 92:512-20. [PMID: 21457709 PMCID: PMC3116023 DOI: 10.1016/j.exer.2011.03.016] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 03/21/2011] [Accepted: 03/21/2011] [Indexed: 12/23/2022]
Abstract
Elevated intraocular pressure (IOP) is the best recognized risk factor for the pathogenesis of glaucoma and the extent of retinal ganglion cell (RGC) degeneration in glaucoma is closely correlated with the extent of IOP elevation. Therefore, accurately and reliably measuring IOP is critical in investigating the mechanism of pressure-induced RGC damage in glaucoma. However, IOP is measured under general anesthesia in most studies using mouse models and many anesthetics affect the IOP measurements in both human and animals. In the present study, we used a noninvasive approach to measure the IOP of mice with normal and elevated IOP. The approach used mice that were awake and mice that were under general anesthesia. Our results demonstrate that not only the behavioral training enables IOP measurement from conscious mice without using a restrainer, it also significantly improves the consistency and reliability of the IOP measurement. In addition, we provide a direct comparison between awake and anesthetized IOP measurements as a function of time after the induction of general anesthesia with several commonly used anesthetic agents. We found that all tested general anesthetics significantly altered the IOP measurements both in normal eyes and in those with elevated IOP. Therefore, we conclude that behavioral training of mice can provide an approach to measure awake IOP that does not require general anesthesia and thus produces reliable and consistent results.
Collapse
Affiliation(s)
- Chun Ding
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Hunan, China
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ping Wang
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ning Tian
- Department of Ophthalmology and Visual Science, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| |
Collapse
|
18
|
Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 2011; 519:599-620. [PMID: 21246546 DOI: 10.1002/cne.22516] [Citation(s) in RCA: 276] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Changes in microglial cell activation and distribution are associated with neuronal decline in the central nervous system (CNS), particularly under pathological conditions. Activated microglia converge on the initial site of axonal degeneration in human glaucoma, yet their part in its pathophysiology remains unresolved. To begin with, it is unknown whether microglia activation precedes or is a late consequence of retinal ganglion cell (RGC) neurodegeneration. Here we address this critical element in DBA/2J (D2) mice, an established model of chronic inherited glaucoma, using as a control the congenic substrain DBA/2J Gpnmb(+/SjJ) (D2G), which is not affected by glaucoma. We analyzed the spatial distribution and timecourse of microglial changes in the retina, as well as within the proximal optic nerve prior to and throughout ages when neurodegeneration has been reported. Exclusively in D2 mice, we detected early microglia clustering in the inner central retina and unmyelinated optic nerve regions, with microglia activation peaking by 3 months of age. Between 5 and 8 months of age, activated microglia persisted and concentrated in the optic disc, but also localized to the retinal periphery. Collectively, our findings suggest microglia activation is an early alteration in the retina and optic nerve in D2 glaucoma, potentially contributing to disease onset or progression. Ultimately, detection of microglial activation may have value in early disease diagnosis, while modulation of microglial responses may alter disease progression.
Collapse
Affiliation(s)
- Alejandra Bosco
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, Utah 84132, USA.
| | | | | |
Collapse
|