1
|
Marie Butty E, Forsyth B, Labato MA. Irreversible Electroporation Balloon Therapy for Palliative Treatment of Obstructive Urethral Transitional Cell Carcinoma in Dogs. J Am Anim Hosp Assoc 2022; 58:231-239. [PMID: 36049240 DOI: 10.5326/jaaha-ms-7160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 11/11/2022]
Abstract
Progression of transitional cell carcinoma (TCC) in dogs often leads to urinary obstruction. This observational pilot study aimed to evaluate the safety and efficacy of irreversible electroporation (IRE) balloon therapy for the palliative treatment of TCC with partial urethral obstruction. Three client-owned dogs diagnosed with TCC causing partial urethral obstruction were enrolled. After ultrasonographic and cystoscopic examination, IRE pulse protocols were delivered through a balloon catheter device inflated within the urethral lumen. After the procedure, the patients were kept overnight for monitoring and a recheck was planned 28 days later. No complication was observed during the procedure and postprocedural monitoring. After 28 days, one dog had a complete normalization of the urine stream, one dog had stable stranguria, and one dog was presented with a urethral obstruction secondary to progression of the TCC. On recheck ultrasound, one dog had a 38% diminution of the urethral mass diameter whereas the other two dogs had a mass stable in size. IRE balloon therapy seems to be a feasible and apparently safe minimally invasive novel therapy for the palliative treatment of TCC causing urethral obstruction. Further studies are needed to better characterize the safety, efficacy, and outcome of this therapy.
Collapse
Affiliation(s)
- Emmanuelle Marie Butty
- From the Department of Clinical Sciences, Small Animal Internal Medicine, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts (E.M.B., M.A.L.)
| | - Bruce Forsyth
- Research and Development Interventional Oncology, Boston Scientific Corporation, Marlborough, Massachusetts (B.F.)
| | - Mary Anna Labato
- From the Department of Clinical Sciences, Small Animal Internal Medicine, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts (E.M.B., M.A.L.)
| |
Collapse
|
2
|
Partridge BR, Kani Y, Lorenzo MF, Campelo SN, Allen IC, Hinckley J, Hsu FC, Verbridge SS, Robertson JL, Davalos RV, Rossmeisl JH. High-Frequency Irreversible Electroporation (H-FIRE) Induced Blood-Brain Barrier Disruption Is Mediated by Cytoskeletal Remodeling and Changes in Tight Junction Protein Regulation. Biomedicines 2022; 10:1384. [PMID: 35740406 PMCID: PMC9220673 DOI: 10.3390/biomedicines10061384] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is the deadliest malignant brain tumor. Its location behind the blood-brain barrier (BBB) presents a therapeutic challenge by preventing effective delivery of most chemotherapeutics. H-FIRE is a novel tumor ablation method that transiently disrupts the BBB through currently unknown mechanisms. We hypothesized that H-FIRE mediated BBB disruption (BBBD) occurs via cytoskeletal remodeling and alterations in tight junction (TJ) protein regulation. Intracranial H-FIRE was delivered to Fischer rats prior to sacrifice at 1-, 24-, 48-, 72-, and 96 h post-treatment. Cytoskeletal proteins and native and ubiquitinated TJ proteins (TJP) were evaluated using immunoprecipitation, Western blotting, and gene-expression arrays on treated and sham control brain lysates. Cytoskeletal and TJ protein expression were further evaluated with immunofluorescent microscopy. A decrease in the F/G-actin ratio, decreased TJP concentrations, and increased ubiquitination of TJP were observed 1-48 h post-H-FIRE compared to sham controls. By 72-96 h, cytoskeletal and TJP expression recovered to pretreatment levels, temporally corresponding with increased claudin-5 and zonula occludens-1 gene expression. Ingenuity pathway analysis revealed significant dysregulation of claudin genes, centered around claudin-6 in H-FIRE treated rats. In conclusion, H-FIRE is capable of permeating the BBB in a spatiotemporal manner via cytoskeletal-mediated TJP modulation. This minimally invasive technology presents with applications for localized and long-lived enhanced intracranial drug delivery.
Collapse
Affiliation(s)
- Brittanie R. Partridge
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Yukitaka Kani
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Melvin F. Lorenzo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
| | - Sabrina N. Campelo
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Jonathan Hinckley
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Sciences, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA;
| | - Scott S. Verbridge
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - John L. Robertson
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Blacksburg, VA 24061, USA; (I.C.A.); (S.S.V.); (J.L.R.); (R.V.D.)
| | - Rafael V. Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA; (M.F.L.); (S.N.C.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia Tech, Blacksburg, VA 24061, USA; (B.R.P.); (Y.K.); (J.H.)
- Center of Engineered Health, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
3
|
Murphy KR, Aycock KN, Hay AN, Rossmeisl JH, Davalos RV, Dervisis NG. High-frequency irreversible electroporation brain tumor ablation: exploring the dynamics of cell death and recovery. Bioelectrochemistry 2022; 144:108001. [PMID: 34844040 PMCID: PMC8792323 DOI: 10.1016/j.bioelechem.2021.108001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 11/02/2022]
Abstract
Improved therapeutics for malignant brain tumors are urgently needed. High-frequency irreversible electroporation (H-FIRE) is a minimally invasive, nonthermal tissue ablation technique, which utilizes high-frequency, bipolar electric pulses to precisely kill tumor cells. The mechanisms of H-FIRE-induced tumor cell death and potential for cellular recovery are incompletely characterized. We hypothesized that tumor cells treated with specific H-FIRE electric field doses can survive and retain proliferative capacity. F98 glioma and LL/2 Lewis lung carcinoma cell suspensions were treated with H-FIRE to model primary and metastatic brain cancer, respectively. Cell membrane permeability, apoptosis, metabolic viability, and proliferative capacity were temporally measured using exclusion dyes, condensed chromatin staining, WST-8 fluorescence, and clonogenic assays, respectively. Both tumor cell lines exhibited dose-dependent permeabilization, with 1,500 V/cm permitting and 3,000 V/cm inhibiting membrane recovery 24 h post-treatment. Cells treated with 1,500 V/cm demonstrated significant and progressive recovery of apoptosis and metabolic activity, in contrast to cells treated with higher H-FIRE doses. Cancer cells treated with recovery-permitting doses of H-FIRE maintained while those treated with recovery-inhibiting doses lost proliferative capacity. Taken together, our data suggest that H-FIRE induces reversible and irreversible cellular damage in a dose-dependent manner, and the presence of dose-dependent recovery mechanisms permits tumor cell proliferation.
Collapse
Affiliation(s)
- Kelsey R Murphy
- Department of Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - Kenneth N Aycock
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States.
| | - Alayna N Hay
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - John H Rossmeisl
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States.
| | - Rafael V Davalos
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States; ICTAS Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, United States.
| | - Nikolaos G Dervisis
- Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Blacksburg, VA 24061, United States; Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, United States.
| |
Collapse
|
4
|
Acerbo E, Safieddine S, Weber P, Botzanowski B, Missey F, Carrère M, Gross RE, Bartolomei F, Carron R, Jirsa V, Vanzetta I, Trébuchon A, Williamson A. Non-thermal Electroporation Ablation of Epileptogenic Zones Stops Seizures in Mice While Providing Reduced Vascular Damage and Accelerated Tissue Recovery. Front Behav Neurosci 2022; 15:774999. [PMID: 35002646 PMCID: PMC8740210 DOI: 10.3389/fnbeh.2021.774999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
In epilepsy, the most frequent surgical procedure is the resection of brain tissue in the temporal lobe, with seizure-free outcomes in approximately two-thirds of cases. However, consequences of surgery can vary strongly depending on the brain region targeted for removal, as surgical morbidity and collateral damage can lead to significant complications, particularly when bleeding and swelling are located near delicate functional cortical regions. Although focal thermal ablations are well-explored in epilepsy as a minimally invasive approach, hemorrhage and edema can be a consequence as the blood-brain barrier is still disrupted. Non-thermal irreversible electroporation (NTIRE), common in many other medical tissue ablations outside the brain, is a relatively unexplored method for the ablation of neural tissue, and has never been reported as a means for ablation of brain tissue in the context of epilepsy. Here, we present a detailed visualization of non-thermal ablation of neural tissue in mice and report that NTIRE successfully ablates epileptic foci in mice, resulting in seizure-freedom, while causing significantly less hemorrhage and edema compared to conventional thermal ablation. The NTIRE approach to ablation preserves the blood-brain barrier while pathological circuits in the same region are destroyed. Additionally, we see the reinnervation of fibers into ablated brain regions from neighboring areas as early as day 3 after ablation. Our evidence demonstrates that NTIRE could be utilized as a precise tool for the ablation of surgically challenging epileptogenic zones in patients where the risk of complications and hemorrhage is high, allowing not only reduced tissue damage but potentially accelerated recovery as vessels and extracellular matrix remain intact at the point of ablation.
Collapse
Affiliation(s)
- Emma Acerbo
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Sawssan Safieddine
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Pascal Weber
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Boris Botzanowski
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Florian Missey
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Marcel Carrère
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, United States
| | - Fabrice Bartolomei
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Romain Carron
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France.,Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Aix-Marseille Université, Marseille, France
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Ivo Vanzetta
- Institut de Neurosciences de la Timone, CNRS, Aix-Marseille Université, Marseille, France
| | - Agnès Trébuchon
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences des Systèmes, UMR 1106, Aix-Marseille Université, Marseille, France.,Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Fang Z, Chen L, Moser MAJ, Zhang W, Qin Z, Zhang B. Electroporation-Based Therapy for Brain Tumors: A Review. J Biomech Eng 2021; 143:100802. [PMID: 33991087 DOI: 10.1115/1.4051184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 12/21/2022]
Abstract
Electroporation-based therapy (EBT), as a high-voltage-pulse technology has been prevalent with favorable clinical outcomes in the treatment of various solid tumors. This review paper aims to promote the clinical translation of EBT for brain tumors. First, we briefly introduced the mechanism of pore formation in a cell membrane activated by external electric fields using a single cell model. Then, we summarized and discussed the current in vitro and in vivo preclinical studies, in terms of (1) the safety and effectiveness of EBT for brain tumors in animal models, and (2) the blood-brain barrier (BBB) disruption induced by EBT. Two therapeutic effects could be achieved in EBT for brain tumors simultaneously, i.e., the tumor ablation induced by irreversible electroporation (IRE) and transient BBB disruption induced by reversible electroporation (RE). The BBB disruption could potentially improve the uptake of antitumor drugs thereby enhancing brain tumor treatment. The challenges that hinder the application of EBT in the treatment of human brain tumors are discussed in the review paper as well.
Collapse
Affiliation(s)
- Zheng Fang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| | - Lingchao Chen
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Michael A J Moser
- Department of Surgery, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon SK S7N 5A9, Canada
| | - Zhiyong Qin
- Department of Neurosurgery, Huashan Hospital Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Bing Zhang
- Energy-Based Tumor Ablation Laboratory, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
7
|
Partridge B, Rossmeisl JH, Kaloss AM, Basso EKG, Theus MH. Novel ablation methods for treatment of gliomas. J Neurosci Methods 2020; 336:108630. [PMID: 32068011 DOI: 10.1016/j.jneumeth.2020.108630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/18/2022]
Abstract
Primary brain tumors are among the deadliest cancers that remain highly incurable. A need exists for new approaches to tumor therapy that can circumvent the blood brain barrier (BBB), target highly resistant tumors and cancer stem-like cells (CSCs) as well create an anti-cancer immunomodulatory environment. Successful treatments may also require a combinatory approach utilizing surgery, chemotherapy, radiation and novel ablation strategies that can both eliminate the bulk tumor and prevent any potential residual CSCs from propagating in the resected tissue. A number of thermal and non-thermal ablation methods have been developed and tested, which have gained much enthusiasm for the treatment of brain tumors. Here we review the most common primary brain tumors and the candidate ablation methods for targeting the tumor and its microenvironment.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alexandra M Kaloss
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Erwin Kristobal Gudenschwager Basso
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA
| | - Michelle H Theus
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA 24061, USA; School of Neuroscience, Virginia Tech, Blacksburg VA 24061, USA; Center for Regenerative Medicine, VT College of Veterinary Medicine, Blacksburg, Virginia, 24061, USA.
| |
Collapse
|
8
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|
9
|
Wasson EM, Alinezhadbalalami N, Brock RM, Allen IC, Verbridge SS, Davalos RV. Understanding the role of calcium-mediated cell death in high-frequency irreversible electroporation. Bioelectrochemistry 2020; 131:107369. [PMID: 31706114 PMCID: PMC10039453 DOI: 10.1016/j.bioelechem.2019.107369] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022]
Abstract
High-frequency irreversible electroporation (H-FIRE) is an emerging electroporation-based therapy used to ablate cancerous tissue. Treatment consists of delivering short, bipolar pulses (1-10μs) in a series of 80-100 bursts (1 burst/s, 100μs on-time). Reducing pulse duration leads to reduced treatment volumes compared to traditional IRE, therefore larger voltages must be applied to generate ablations comparable in size. We show that adjuvant calcium enhances ablation area in vitro for H-FIRE treatments of several pulse durations (1, 2, 5, 10μs). Furthermore, H-FIRE treatment using 10μs pulses delivered with 1mM CaCl2 results in cell death thresholds (771±129V/cm) comparable to IRE thresholds without calcium (698±103V/cm). Quantifying the reversible electroporation threshold revealed that CaCl2 enhances the permeabilization of cells compared to a NaCl control. Gene expression analysis determined that CaCl2 upregulates expression of eIFB5 and 60S ribosomal subunit genes while downregulating NOX1/4, leading to increased signaling in pathways that may cause necroptosis. The opposite was found for control treatment without CaCl2 suggesting cells experience an increase in pro survival signaling. Our study is the first to identify key genes and signaling pathways responsible for differences in cell response to H-FIRE treatment with and without calcium.
Collapse
Affiliation(s)
- Elisa M Wasson
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Nastaran Alinezhadbalalami
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rebecca M Brock
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA.
| | - Irving C Allen
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, 1 Riverside Circle, Roanoke, VA 24016, United States of America; Department of Biomedical Sciences and Pathobiology, Virginia Tech, 205 Duck Pond Drive, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Scott S Verbridge
- Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| | - Rafael V Davalos
- Department of Mechanical Engineering, Virginia Tech, Goodwin Hall, 635 Prices Fork Road, Blacksburg, VA 24061, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech- Wake Forest University, 325 Stanger Street, Blacksburg, VA 24061, USA; Institute for Critical Technology and Applied Sciences Center for Engineered Health, Virginia Tech, Kelly Hall, Blacksburg, VA 24061, USA.
| |
Collapse
|
10
|
Latouche EL, Arena CB, Ivey JW, Garcia PA, Pancotto TE, Pavlisko N, Verbridge SS, Davalos RV, Rossmeisl JH. High-Frequency Irreversible Electroporation for Intracranial Meningioma: A Feasibility Study in a Spontaneous Canine Tumor Model. Technol Cancer Res Treat 2018; 17:1533033818785285. [PMID: 30071778 PMCID: PMC6077896 DOI: 10.1177/1533033818785285] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High-frequency irreversible electroporation is a nonthermal method of tissue ablation
that uses bursts of 0.5- to 2.0-microsecond bipolar electric pulses to permeabilize cell
membranes and induce cell death. High-frequency irreversible electroporation has potential
advantages for use in neurosurgery, including the ability to deliver pulses without
inducing muscle contraction, inherent selectivity against malignant cells, and the
capability of simultaneously opening the blood–brain barrier surrounding regions of
ablation. Our objective was to determine whether high-frequency irreversible
electroporation pulses capable of tumor ablation could be delivered to dogs with
intracranial meningiomas. Three dogs with intracranial meningiomas were treated.
Patient-specific treatment plans were generated using magnetic resonance imaging-based
tissue segmentation, volumetric meshing, and finite element modeling. Following tumor
biopsy, high-frequency irreversible electroporation pulses were stereotactically delivered
in situ followed by tumor resection and morphologic and volumetric
assessments of ablations. Clinical evaluations of treatment included pre- and
posttreatment clinical, laboratory, and magnetic resonance imaging examinations and
adverse event monitoring for 2 weeks posttreatment. High-frequency irreversible
electroporation pulses were administered successfully in all patients. No adverse events
directly attributable to high-frequency irreversible electroporation were observed.
Individual ablations resulted in volumes of tumor necrosis ranging from 0.25 to 1.29
cm3. In one dog, nonuniform ablations were observed, with viable tumor cells
remaining around foci of intratumoral mineralization. In conclusion, high-frequency
irreversible electroporation pulses can be delivered to brain tumors, including areas
adjacent to critical vasculature, and are capable of producing clinically relevant volumes
of tumor ablation. Mineralization may complicate achievement of complete tumor
ablation.
Collapse
Affiliation(s)
| | | | - Jill W Ivey
- 2 Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering, Blacksburg, VA, USA
| | | | - Theresa E Pancotto
- 3 Veterinary and Comparative Neuro-oncology Laboratory, Virginia Tech, Blacksburg, VA, USA.,4 Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Noah Pavlisko
- 3 Veterinary and Comparative Neuro-oncology Laboratory, Virginia Tech, Blacksburg, VA, USA.,4 Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| | - Scott S Verbridge
- 2 Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering, Blacksburg, VA, USA
| | - Rafael V Davalos
- 2 Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering, Blacksburg, VA, USA
| | - John H Rossmeisl
- 2 Department of Biomedical Engineering and Mechanics, Virginia Tech-Wake Forest University School of Biomedical Engineering, Blacksburg, VA, USA.,3 Veterinary and Comparative Neuro-oncology Laboratory, Virginia Tech, Blacksburg, VA, USA.,4 Department of Small Animal Clinical Sciences, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
11
|
Brighi C, Puttick S, Rose S, Whittaker AK. The potential for remodelling the tumour vasculature in glioblastoma. Adv Drug Deliv Rev 2018; 136-137:49-61. [PMID: 30308226 DOI: 10.1016/j.addr.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/19/2022]
Abstract
Despite significant improvements in the clinical management of glioblastoma, poor delivery of systemic therapies to the entire population of tumour cells remains one of the biggest challenges in the achievement of more effective treatments. On the one hand, the abnormal and dysfunctional tumour vascular network largely limits blood perfusion, resulting in an inhomogeneous delivery of drugs to the tumour. On the other hand, the presence of an intact blood-brain barrier (BBB) in certain regions of the tumour prevents chemotherapeutic drugs from permeating through the tumour vessels and reaching the diseased cells. In this review we analyse in detail the implications of the presence of a dysfunctional vascular network and the impenetrable BBB on drug transport. We discuss advantages and limitations of the currently available strategies for remodelling the tumour vasculature aiming to ameliorate the above mentioned limitations. Finally we review research methods for visualising vascular dysfunction and highlight the power of DCE- and DSC-MRI imaging to assess changes in blood perfusion and BBB permeability.
Collapse
|
12
|
Microscopic histological characteristics of soft tissue sarcomas: analysis of tissue features and electrical resistance. Med Biol Eng Comput 2016; 55:1097-1108. [DOI: 10.1007/s11517-016-1573-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
|
13
|
Targeted cellular ablation based on the morphology of malignant cells. Sci Rep 2015; 5:17157. [PMID: 26596248 PMCID: PMC4657158 DOI: 10.1038/srep17157] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/26/2015] [Indexed: 11/25/2022] Open
Abstract
Treatment of glioblastoma multiforme (GBM) is especially challenging due to a shortage of methods to preferentially target diffuse infiltrative cells, and therapy-resistant glioma stem cell populations. Here we report a physical treatment method based on electrical disruption of cells, whose action depends strongly on cellular morphology. Interestingly, numerical modeling suggests that while outer lipid bilayer disruption induced by long pulses (~100 μs) is enhanced for larger cells, short pulses (~1 μs) preferentially result in high fields within the cell interior, which scale in magnitude with nucleus size. Because enlarged nuclei represent a reliable indicator of malignancy, this suggested a means of preferentially targeting malignant cells. While we demonstrate killing of both normal and malignant cells using pulsed electric fields (PEFs) to treat spontaneous canine GBM, we proposed that properly tuned PEFs might provide targeted ablation based on nuclear size. Using 3D hydrogel models of normal and malignant brain tissues, which permit high-resolution interrogation during treatment testing, we confirmed that PEFs could be tuned to preferentially kill cancerous cells. Finally, we estimated the nuclear envelope electric potential disruption needed for cell death from PEFs. Our results may be useful in safely targeting the therapy-resistant cell niches that cause recurrence of GBM tumors.
Collapse
|
14
|
Rossmeisl JH, Garcia PA, Pancotto TE, Robertson JL, Henao-Guerrero N, Neal RE, Ellis TL, Davalos RV. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J Neurosurg 2015; 123:1008-25. [DOI: 10.3171/2014.12.jns141768] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECT
Irreversible electroporation (IRE) is a novel nonthermal ablation technique that has been used for the treatment of solid cancers. However, it has not been evaluated for use in brain tumors. Here, the authors report on the safety and feasibility of using the NanoKnife IRE system for the treatment of spontaneous intracranial gliomas in dogs.
METHODS
Client-owned dogs with a telencephalic glioma shown on MRI were eligible. Dog-specific treatment plans were generated by using MRI-based tissue segmentation, volumetric meshing, and finite element modeling. After biopsy confirmation of glioma, IRE treatment was delivered stereotactically with the NanoKnife system using pulse parameters and electrode configurations derived from therapeutic plans. The primary end point was an evaluation of safety over the 14 days immediately after treatment. Follow-up was continued for 12 months or until death with serial physical, neurological, laboratory, and MRI examinations.
RESULTS
Seven dogs with glioma were treated. The mean age of the dogs was 9.3 ± 1.6 years, and the mean pretreatment tumor volume was 1.9 ± 1.4 cm3. The median preoperative Karnofsky Performance Scale score was 70 (range 30–75). Severe posttreatment toxicity was observed in 2 of the 7 dogs; one developed fatal (Grade 5) aspiration pneumonia, and the other developed treatment-associated cerebral edema, which resulted in transient neurological deterioration. Results of posttreatment diagnostic imaging, tumor biopsies, and neurological examinations indicated that tumor ablation was achieved without significant direct neurotoxicity in 6 of the 7 dogs. The median 14-day post-IRE Karnofsky Performance Scale score of the 6 dogs that survived to discharge was 80 (range 60–90), and this score was improved over the pretreatment value in every case. Objective tumor responses were seen in 4 (80%) of 5 dogs with quantifiable target lesions. The median survival was 119 days (range 1 to > 940 days).
CONCLUSION
With the incorporation of additional therapeutic planning procedures, the NanoKnife system is a novel technology capable of controlled IRE ablation of telencephalic gliomas.
Collapse
Affiliation(s)
- John H. Rossmeisl
- 1Department of Small Animal Clinical Sciences and
- 2Veterinary and Comparative Neurooncology Laboratory, Virginia-Maryland Regional College of Veterinary Medicine, and
- 3Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia; and
| | - Paulo A. Garcia
- 2Veterinary and Comparative Neurooncology Laboratory, Virginia-Maryland Regional College of Veterinary Medicine, and
- 3Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia; and
| | | | - John L. Robertson
- 1Department of Small Animal Clinical Sciences and
- 2Veterinary and Comparative Neurooncology Laboratory, Virginia-Maryland Regional College of Veterinary Medicine, and
- 3Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia; and
| | | | - Robert E. Neal
- 3Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia; and
| | - Thomas L. Ellis
- 4Department of Neurosurgery and Deep Brain Stimulation Program, School of Medicine, Wake Forest University, Winston-Salem, North Carolina
| | - Rafael V. Davalos
- 3Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, Virginia; and
| |
Collapse
|
15
|
Campana LG, Cesari M, Dughiero F, Forzan M, Rastrelli M, Rossi CR, Sieni E, Tosi AL. Electrical resistance of human soft tissue sarcomas: an ex vivo study on surgical specimens. Med Biol Eng Comput 2015; 54:773-87. [PMID: 26324245 DOI: 10.1007/s11517-015-1368-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
This paper presents a study about electrical resistance, which using fixed electrode geometry could be correlated to the tissue resistivity, of different histological types of human soft tissue sarcomas measured during electroporation. The same voltage pulse sequence was applied to the tumor mass shortly after surgical resection by means of a voltage pulse generator currently used in clinical practice for electrochemotherapy that uses reversible electroporation. The voltage pulses were applied by means of a standard hexagonal electrode composed by seven, 20-mm-long equispaced needles. Irrespective of tumor size, the electrode applies electric pulses to the same volume of tissue. The resistance value was computed from the voltage and current recorded by the pulse generator, and it was correlated with the histological characteristics of the tumor tissue which was assessed by a dedicated pathologist. Some differences in resistance values, which could be correlated to a difference in tissue resistivity, were noticed according to sarcoma histotype. Lipomatous tumors (i.e., those rich in adipose tissue) displayed the highest resistance values (up to 1700 Ω), whereas in the other soft tissue sarcomas, such as those originating from muscle, nerve sheath, or fibrous tissue, the electrical resistance measured was between 40 and 110 Ω. A variability in resistance was found also within the same histotype. Among lipomatous tumors, the presence of myxoid tissue between adipocytes reduced the electrical resistance (e.g., 50-100 Ω). This work represents the first step in order to explore the difference in tissue electrical properties of STS. These results may be used to verify whether tuning electric field intensity according to the specific STS histotype could improve tissue electroporation and ultimately treatment efficacy.
Collapse
Affiliation(s)
- L G Campana
- Sarcoma and Melanoma Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| | - M Cesari
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy
| | - F Dughiero
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy
| | - M Forzan
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy
| | - M Rastrelli
- Sarcoma and Melanoma Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| | - C R Rossi
- Sarcoma and Melanoma Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| | - E Sieni
- Department of Industrial Engineering, University of Padova, Via Gradenigo, 6/a, 35131, Padua, Italy.
| | - A L Tosi
- Melanoma and Sarcoma Pathology Unit, Veneto Institute of Oncology IOV IRCCS, Via Gattamelata, 64, 35128, Padua, Italy
| |
Collapse
|
16
|
Marčan M, Pavliha D, Kos B, Forjanič T, Miklavčič D. Web-based tool for visualization of electric field distribution in deep-seated body structures and planning of electroporation-based treatments. Biomed Eng Online 2015; 14 Suppl 3:S4. [PMID: 26356007 PMCID: PMC4565468 DOI: 10.1186/1475-925x-14-s3-s4] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Treatments based on electroporation are a new and promising approach to treating tumors, especially non-resectable ones. The success of the treatment is, however, heavily dependent on coverage of the entire tumor volume with a sufficiently high electric field. Ensuring complete coverage in the case of deep-seated tumors is not trivial and can in best way be ensured by patient-specific treatment planning. The basis of the treatment planning process consists of two complex tasks: medical image segmentation, and numerical modeling and optimization. METHODS In addition to previously developed segmentation algorithms for several tissues (human liver, hepatic vessels, bone tissue and canine brain) and the algorithms for numerical modeling and optimization of treatment parameters, we developed a web-based tool to facilitate the translation of the algorithms and their application in the clinic. The developed web-based tool automatically builds a 3D model of the target tissue from the medical images uploaded by the user and then uses this 3D model to optimize treatment parameters. The tool enables the user to validate the results of the automatic segmentation and make corrections if necessary before delivering the final treatment plan. RESULTS Evaluation of the tool was performed by five independent experts from four different institutions. During the evaluation, we gathered data concerning user experience and measured performance times for different components of the tool. Both user reports and performance times show significant reduction in treatment-planning complexity and time-consumption from 1-2 days to a few hours. CONCLUSIONS The presented web-based tool is intended to facilitate the treatment planning process and reduce the time needed for it. It is crucial for facilitating expansion of electroporation-based treatments in the clinic and ensuring reliable treatment for the patients. The additional value of the tool is the possibility of easy upgrade and integration of modules with new functionalities as they are developed.
Collapse
|
17
|
Rodriguez A, Tatter SB, Debinski W. Neurosurgical Techniques for Disruption of the Blood-Brain Barrier for Glioblastoma Treatment. Pharmaceutics 2015; 7:175-87. [PMID: 26247958 PMCID: PMC4588193 DOI: 10.3390/pharmaceutics7030175] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/21/2015] [Accepted: 07/24/2015] [Indexed: 12/11/2022] Open
Abstract
The blood-brain barrier remains a main hurdle to drug delivery to the brain. The prognosis of glioblastoma remains grim despite current multimodal medical management. We review neurosurgical technologies that disrupt the blood-brain barrier (BBB). We will review superselective intra-arterial mannitol infusion, focused ultrasound, laser interstitial thermotherapy, and non-thermal irreversible electroporation (NTIRE). These technologies can lead to transient BBB and blood-brain tumor barrier disruption and allow for the potential of more effective local drug delivery. Animal studies and preliminary clinical trials show promise for achieving this goal.
Collapse
Affiliation(s)
- Analiz Rodriguez
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest University, Medical Center Boulevard, Winston Salem 27157, NC, USA.
| | - Stephen B Tatter
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest University, Medical Center Boulevard, Winston Salem 27157, NC, USA.
| | - Waldemar Debinski
- The Brain Tumor Center of Excellence, Department of Neurosurgery, Wake Forest University, Medical Center Boulevard, Winston Salem 27157, NC, USA.
| |
Collapse
|
18
|
Garcia PA, Davalos RV, Miklavcic D. A numerical investigation of the electric and thermal cell kill distributions in electroporation-based therapies in tissue. PLoS One 2014; 9:e103083. [PMID: 25115970 PMCID: PMC4130512 DOI: 10.1371/journal.pone.0103083] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022] Open
Abstract
Electroporation-based therapies are powerful biotechnological tools for enhancing the delivery of exogeneous agents or killing tissue with pulsed electric fields (PEFs). Electrochemotherapy (ECT) and gene therapy based on gene electrotransfer (EGT) both use reversible electroporation to deliver chemotherapeutics or plasmid DNA into cells, respectively. In both ECT and EGT, the goal is to permeabilize the cell membrane while maintaining high cell viability in order to facilitate drug or gene transport into the cell cytoplasm and induce a therapeutic response. Irreversible electroporation (IRE) results in cell kill due to exposure to PEFs without drugs and is under clinical evaluation for treating otherwise unresectable tumors. These PEF therapies rely mainly on the electric field distributions and do not require changes in tissue temperature for their effectiveness. However, in immediate vicinity of the electrodes the treatment may results in cell kill due to thermal damage because of the inhomogeneous electric field distribution and high current density during the electroporation-based therapies. Therefore, the main objective of this numerical study is to evaluate the influence of pulse number and electrical conductivity in the predicted cell kill zone due to irreversible electroporation and thermal damage. Specifically, we simulated a typical IRE protocol that employs ninety 100-µs PEFs. Our results confirm that it is possible to achieve predominant cell kill due to electroporation if the PEF parameters are chosen carefully. However, if either the pulse number and/or the tissue conductivity are too high, there is also potential to achieve cell kill due to thermal damage in the immediate vicinity of the electrodes. Therefore, it is critical for physicians to be mindful of placement of electrodes with respect to critical tissue structures and treatment parameters in order to maintain the non-thermal benefits of electroporation and prevent unnecessary damage to surrounding healthy tissue, critical vascular structures, and/or adjacent organs.
Collapse
Affiliation(s)
- Paulo A. Garcia
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Rafael V. Davalos
- Bioelectromechanical Systems Laboratory, Virginia Tech – Wake Forest University, Blacksburg, Virginia, United States of America
| | - Damijan Miklavcic
- University of Ljubljana, Faculty of Electrical Engineering, Ljubljana, Slovenia
| |
Collapse
|