1
|
Song R, He S, Cao Y, Lu Y, Peng Y, Zou H, Tong X, Ran D, Ma Y, Liu Z. Cadmium accelerates autophagy of osteocytes by inhibiting the PI3K/AKT/mTOR signaling pathway. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37148155 DOI: 10.1002/tox.23823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/18/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Cadmium (Cd) can damage bone cells and cause osteoporosis. Osteocytes are the most numerous bone cells and also important target cells for Cd-induced osteotoxic damage. Autophagy plays important role in the progression of osteoporosis. However, osteocyte autophagy in Cd-induced bone injury is not well characterized. Thus, we established a Cd-induced bone injury model in BALB/c mice and a cellular damage model in MLO-Y4 cells. Aqueous Cd exposure for 16 months showed an increase in plasma alkaline phosphatase (ALP) activity and increase in urine calcium (Ca) and phosphorus (P) concentrations in vivo. Moreover, expression level of autophagy-related microtubule-associated protein 1A/1B-light chain 3 II (LC3II) and autophagy-related 5 (ATG5) proteins were induced, and the expression of sequestosome-1 (p62) was reduced, along with Cd-induced trabecular bone damage. In addition, Cd inhibited the phosphorylation of mammalian target of rapamycin (mTOR), protein kinase B (AKT), and phosphatidylinositol 3-kinase (PI3K). In vitro, 80 μM Cd concentrations exposure upregulated LC3II protein expression, and downregulated of p62 protein expression. Similarly, we found that treatment with 80 μM Cd resulted in a reduction in the phosphorylation levels of mTOR, AKT, and PI3K. Further experiments revealed that addition of rapamycin, an autophagy inducer, enhanced autophagy and alleviated the Cd-induced damage to MLO-Y4 cells. The findings of our study reveal for the first time that Cd causes damage to both bone and osteocytes, as well as induces autophagy in osteocytes and inhibits PI3K/AKT/mTOR signaling, which could be a protective mechanism against Cd-induced bone injury.
Collapse
Affiliation(s)
- Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
- Guangling College, Yangzhou University, Yangzhou, People's Republic of China
| | - Shuangjiang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Ying Cao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yicheng Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yunwen Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Xishuai Tong
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, People's Republic of China
| |
Collapse
|
2
|
The role of calcium, Akt and ERK signaling in cadmium-induced hair cell death. Mol Cell Neurosci 2023; 124:103815. [PMID: 36634791 DOI: 10.1016/j.mcn.2023.103815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Exposure to heavy metals has been shown to cause damage to a variety of different tissues and cell types including hair cells, the sensory cells of our inner ears responsible for hearing and balance. Elevated levels of one such metal, cadmium, have been associated with hearing loss and shown to cause hair cell death in multiple experimental models. While the mechanisms of cadmium-induced cell death have been extensively studied in other cell types they remain relatively unknown in hair cells. We have found that calcium signaling, which is known to play a role in cadmium-induced cell death in other cell types through calmodulin and CaMKII activation as well as IP3 receptor and mitochondrial calcium uniporter mediated calcium flow, does not appear to play a significant role in cadmium-induced hair cell death. While calmodulin inhibition can partially protect hair cells this may be due to impacts on mechanotransduction activity. Removal of extracellular calcium, and inhibiting CaMKII, the IP3 receptor and the mitochondrial calcium uniporter all failed to protect against cadmium-induced hair cell death. We also found cadmium treatment increased pAkt levels in hair cells and pERK levels in supporting cells. This activation may be protective as inhibiting these pathways enhances cadmium-induced hair cell death rather than protecting cells. Thus cadmium-induced hair cell death appears distinct from cadmium-induced cell death in other cell types where calcium, Akt and ERK signaling all promote cell death.
Collapse
|
3
|
Ying Z, Xie X, Li Y, Bao Y, Ye G, Chen X, Zhang W, Gu YG. A novel cadmium detoxification pathway in Tri-spine horseshoe crab (Tachypleus tridentatus): A 430-million-years-ago organism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114585. [PMID: 36724710 DOI: 10.1016/j.ecoenv.2023.114585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Marine and intertidal heavy metal pollution has been a major concern in recent years. Tachypleus tridentatus has existed on earth for more than 430 million years. It has suffered a sharp decline in population numbers caused by environmental pollution and anthropogenic disturbance for almost 40 years. However, the effects of heavy metal pollution on juvenile T. tridentatus have not been reported. Here we show the mechanism of cadmium (Cd) detoxification in juvenile T. tridentatus using integrated antioxidant indexes and transcriptomic and metabolomic analysis. High Cd2+ concentration caused oxidative stress in juvenile T. tridentatus. The hazards increase with increasing Cd2+ concentration in juvenile T. tridentatus. Transcriptomics and metabolomics analyses concluded that high Cd2+ concentration resulted in the imbalance of glycerophospholipid metabolism in juvenile T. tridentatus to detoxify Cd. Our results offer a rationale for protective measures and further studies of heavy metal stress in T. tridentatus.
Collapse
Affiliation(s)
- Ziwei Ying
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Xiaoyong Xie
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China.
| | - Yinkang Li
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Yuyuan Bao
- Guangdong Center for Marine Development Research, Guangzhou 510322, China
| | - Guoling Ye
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Xiaohai Chen
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Wanling Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| | - Yang-Guang Gu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou 510300, China; College of Fisheries Science and Life Science of Shanghai Ocean University, Shanghai 201306, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; Sanya Tropical Fisheries Research Institute, Sanya 570203, China
| |
Collapse
|
4
|
Zhang J, Zhang Y, Qi X, Cui Y, Chen X, Lin H. TRAF2/ASK1/JNK Signaling Pathway Is Involved in the Lung Apoptosis of Swine Induced by Cadmium Exposure. Biol Trace Elem Res 2022; 200:2758-2766. [PMID: 34365572 DOI: 10.1007/s12011-021-02860-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Cadmium (Cd), a toxic heavy metal, exists widely in the environment, which can enter organisms through a variety of ways and cause damage to various organs and tissues. However, the mechanism of lung toxicity in swine after Cd exposure is still unclear. To explore the molecular mechanism of swine lung damage caused by Cd exposure, we established the model of Cd exposure, and Cd chloride (20 mg/kg CdCl2) was added to the diet of swine for continuous exposure for 40 days. TUNEL staining showed that the apoptosis of swine lung increased significantly after Cd exposure. Meanwhile, the results of qRT-PCR showed that Cd induced oxidative stress and inhibited the expression of antioxidant enzymes including CAT, GCLM, GST, SOD, and GSH-px in lung tissue. Cd exposure activated mitochondrial apoptosis pathway via the TRAF2/ASK1/JNK signaling pathway. In brief, we considered that Cd exposure causes oxidative stress in lung and induces lung cell apoptosis through the TRAF2/ASK1/JNK pathway and increases the expression of HSPs to resist the toxicity of Cd. Our research enriches the theoretical basis of Cd toxicity and provides reference for comparative medicine.
Collapse
Affiliation(s)
- Jinxi Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Yuan Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaoming Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Harbin, People's Republic of China.
| |
Collapse
|
5
|
Wang J, Deng W, Zou T, Bai B, Chang AK, Ying X. Cadmium-induced oxidative stress in Meretrix meretrix gills leads to mitochondria-mediated apoptosis. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:2011-2023. [PMID: 34529205 DOI: 10.1007/s10646-021-02465-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is one of the most important marine environmental pollutants that can cause oxidative damage and apoptosis in living organisms, and mitochondria are the key cell organelles affected by Cd toxicity. In this study, we investigated the effect of Cd on the mitochondria in the gill cells of the clam Meretrix meretrix and the underlying mechanism of mitochondria-mediated apoptosis following exposure to the metal. Exposure of the clams to artificial seawater containing 1.5, 3, 6 and 12 mg L-1 Cd2+ led to swollen mitochondria compared with the untreated clams. The mitochondria also became vacuolated at the higher Cd2+ concentrations. Biochemical assays showed that monoamine oxidase (MAO) activity and mitochondrial membrane potential (Δψm) increased at 1.5 mg L-1 Cd2+, but decreased at higher Cd2+ concentrations, while the activities of malate dehydrogenase (MDH) and cytochrome oxidase (CCO) and the scavenging capacities of anti-superoxide anion (ASA) and anti-hydroxy radical (AHR) all decreased with increasing Cd2+ concentrations. Significant increases in the levels of malondialdehyde (MDA) and H2O2 as well as in the activity levels of caspase-3, -8, and -9 were also observed in the Cd2+-treated clams. The results implied that Cd might induce apoptosis in M. meretrix via the mitochondrial caspase-dependent pathway.
Collapse
Affiliation(s)
- Jinhua Wang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Wanfei Deng
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Ting Zou
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Binbin Bai
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China
| | - Xueping Ying
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
ERK: A Double-Edged Sword in Cancer. ERK-Dependent Apoptosis as a Potential Therapeutic Strategy for Cancer. Cells 2021; 10:cells10102509. [PMID: 34685488 PMCID: PMC8533760 DOI: 10.3390/cells10102509] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The RAF/MEK/ERK signaling pathway regulates diverse cellular processes as exemplified by cell proliferation, differentiation, motility, and survival. Activation of ERK1/2 generally promotes cell proliferation, and its deregulated activity is a hallmark of many cancers. Therefore, components and regulators of the ERK pathway are considered potential therapeutic targets for cancer, and inhibitors of this pathway, including some MEK and BRAF inhibitors, are already being used in the clinic. Notably, ERK1/2 kinases also have pro-apoptotic functions under certain conditions and enhanced ERK1/2 signaling can cause tumor cell death. Although the repertoire of the compounds which mediate ERK activation and apoptosis is expanding, and various anti-cancer compounds induce ERK activation while exerting their anti-proliferative effects, the mechanisms underlying ERK1/2-mediated cell death are still vague. Recent studies highlight the importance of dual-specificity phosphatases (DUSPs) in determining the pro- versus anti-apoptotic function of ERK in cancer. In this review, we will summarize the recent major findings in understanding the role of ERK in apoptosis, focusing on the major compounds mediating ERK-dependent apoptosis. Studies that further define the molecular targets of these compounds relevant to cell death will be essential to harnessing these compounds for developing effective cancer treatments.
Collapse
|
7
|
McCall JL, Blair HC, Blethen KE, Hall C, Elliott M, Barnett JB. Prenatal cadmium exposure does not induce greater incidence or earlier onset of autoimmunity in the offspring. PLoS One 2021; 16:e0249442. [PMID: 34478449 PMCID: PMC8415597 DOI: 10.1371/journal.pone.0249442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
We previously demonstrated that exposure of adult mice to environmental levels of cadmium (Cd) alters immune cell development and function with increases in anti-streptococcal antibody levels, as well as decreases in splenic natural regulatory T cells (nTreg) in the adult female offspring. Based on these data, we hypothesized that prenatal Cd exposure could predispose an individual to developing autoimmunity as adults. To test this hypothesis, the effects of prenatal Cd on the development of autoimmune diabetes and arthritis were investigated. Non-obese diabetic (NOD) mice were exposed to Cd in a manner identical to our previous studies, and the onset of diabetes was assessed in the offspring. Our results showed a similar time-to-onset and severity of disease to historical data, and there were no statistical differences between Cd-exposed and control offspring. Numerous other immune parameters were measured and none of these parameters showed biologically-relevant differences between Cd-exposed and control animals. To test whether prenatal Cd-exposure affected development of autoimmune arthritis, we used SKG mice. While the levels of arthritis were similar between Cd-exposed and control offspring of both sexes, the pathology of arthritis determined by micro-computed tomography (μCT) between Cd-exposed and control animals, showed some statistically different values, especially in the female offspring. However, the differences were small and thus, the biological significance of these changes is open to speculation. Overall, based on the results from two autoimmune models, we conclude that prenatal exposure to Cd did not lead to a measurable propensity to develop autoimmune disease later in life.
Collapse
Affiliation(s)
- Jamie L. McCall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Harry C. Blair
- Department of Pathology, Pittsburgh VA Medical Center, Pittsburgh, PA, United States of America
- Department of Cell Biology, the and the University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Kathryn E. Blethen
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Casey Hall
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - Meenal Elliott
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
| | - John B. Barnett
- Department of Microbiology, Immunology & Cell Biology, West Virginia University School of Medicine, Morgantown, WV, United States of America
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
8
|
Ma Y, Ran D, Shi X, Zhao H, Liu Z. Cadmium toxicity: A role in bone cell function and teeth development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144646. [PMID: 33485206 DOI: 10.1016/j.scitotenv.2020.144646] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) is a widespread environmental contaminant that causes severe bone metabolism disease, such as osteoporosis, osteoarthritis, and osteomalacia. The present review aimed to explore the molecular mechanisms of Cd-induced bone injury starting from bone cell function and teeth development. Cd inhibits the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts, and directly causes BMSC apoptosis. In the case of osteoporosis, Cd mainly affects the activation of osteoclasts and promotes bone resorption. Cd-induces osteoblast injury and oxidative stress, which causes DNA damage, mitochondrial dysfunction, and endoplasmic reticulum stress, resulting in apoptosis. In addition, the development of osteoarthritis (OA) might be related to Cd-induced chondrocyte damage. The high expression of metallothionein (MT) might reduce Cd toxicity toward osteocytes. The toxicity of Cd toward teeth mainly focuses on enamel development and dental caries. Understanding the effect of Cd on bone cell function and teeth development could contribute to revealing the mechanisms of Cd-induced bone damage. This review explores Cd-induced bone disease from cellular and molecular levels, and provides new directions for removing this heavy metal from the environment.
Collapse
Affiliation(s)
- Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xueni Shi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
9
|
Mei W, Song D, Wu Z, Yang L, Wang P, Zhang R, Zhu X. Resveratrol protects MC3T3-E1 cells against cadmium-induced suppression of osteogenic differentiation by modulating the ERK1/2 and JNK pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 214:112080. [PMID: 33677380 DOI: 10.1016/j.ecoenv.2021.112080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Resveratrol (RES) is a natural polyphenolic compound with a broad range of physiological and pharmacological properties. Previous studies have shown that RES also plays an important role in protecting and promoting early bone metabolism and differentiation. The accumulation of cadmium (Cd), one of the world's most poisonous substances, can inhibit skeletal growth and bone maturation, thus causing osteoporosis. However, whether RES can prevent the Cd-induced inhibition of osteogenic differentiation remains unknown. In this study, we found that RES promoted the early maturity of osteoblastic MC3T3-E1 cells, as demonstrated by the significantly increased mRNA and protein expression of a range of differentiation markers, including alkaline phosphatase (ALP), collagen 1 (COL1), bone morphogenetic protein-2 (BMP-2), and runt-related transcription factor 2 (RUNX2). In contrast, we found that cadmium chloride (CdCl2) inhibited the viability and osteogenic maturity of MC3T3-E1 cells. We also demonstrated that RES pretreatment for 30 min provided significant protection against Cd-induced apoptosis and attenuated the inhibition of osteogenic differentiation induced by Cd by modulating ERK1/2 and JNK signaling. In conclusion, our results indicate that RES is a potential femoral protectant that not only enhance the viability and early differentiation of osteoblasts, but also protect osteoblasts from cadmium damage.
Collapse
Affiliation(s)
- Wenhui Mei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Dan Song
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Zhidi Wu
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Li Yang
- Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Panpan Wang
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China
| | - Ronghua Zhang
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China; Department of Chinese Medicine, College of Pharmacy of Jinan University, Guangzhou, Guangdong 510630, PR China.
| | - Xiaofeng Zhu
- Department of Chinese Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, PR China; School of Traditional Chinese Medicine, Jinan University, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
10
|
Chen J, Lai W, Deng Y, Liu M, Dong M, Liu Z, Wang T, Li X, Zhao Z, Yin X, Yang J, Yu R, Liu L. MicroRNA-363-3p promotes apoptosis in response to cadmium-induced renal injury by down-regulating phosphoinositide 3-kinase expression. Toxicol Lett 2021; 345:12-23. [PMID: 33857584 DOI: 10.1016/j.toxlet.2021.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 12/09/2022]
Abstract
We previously determined that specific microRNAs (miRNAs) are involved in renal pathophysiological occurrences induced by cadmium (Cd) in rats. This study expands our studies on miRNAs, determining their role in Cd-induced nephrotoxicity in occupational workers. We performed miRNA microarray analyses of blood and urine samples from patients diagnosed as occupational chronic Cd poisoning (OCCP) with abnormally elevated concentrations of urinary beta-2-microglobulin (U-β2-MG), an indicator of tubular proteinuria. We also performed in vitro bioinformatics-based investigations of apoptosis-related genes targeted by miRNAs involved in the biological response to Cd exposure. We tested five differentially expressed miRNAs and determined a significant increase of sera miR-363-3p. Also, we determined that miR-363-3p increase is associated with phosphoinositide 3-kinase (PI3K) down-regulation and the suppressed proliferation and enhanced apoptosis of renal tubule epithelial cells. The obtained results suggest miR-363-3p involvement in the pathophysiology of Cd-induced renal injury in humans and maybe considered for possible interventional therapeutic strategies for Cd-associated kidney damage.
Collapse
Affiliation(s)
- Jiabin Chen
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Weina Lai
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China; Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Yaotang Deng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Min Liu
- Dongguan Maternal and Child Healthcare Hospital, Dongguan, 523700, Guangdong, China
| | - Ming Dong
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhidong Liu
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Ting Wang
- Huizhou Hospital for Occupational Disease Prevention and Treatment, Huizhou, 516008, Guangdong, China
| | - Xiang Li
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Zhiqiang Zhao
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Xiao Yin
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China
| | - Jinmei Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, Guangdong, China
| | - Rian Yu
- Department of Occupational and Environmental Health, School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, Guangdong, China
| | - Lili Liu
- Guangdong Provincial Key Laboratory of Occupational Disease Prevention and Treatment, Guangdong Province Hospital for Occupational Disease Prevention and Treatment, Guangzhou, 510310, Guangdong, China.
| |
Collapse
|
11
|
Huang S, Howington MB, Dobry CJ, Evans CR, Leiser SF. Flavin-Containing Monooxygenases Are Conserved Regulators of Stress Resistance and Metabolism. Front Cell Dev Biol 2021; 9:630188. [PMID: 33644069 PMCID: PMC7907451 DOI: 10.3389/fcell.2021.630188] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/15/2021] [Indexed: 01/14/2023] Open
Abstract
Flavin-Containing Monooxygenases are conserved xenobiotic-detoxifying enzymes. Recent studies have revealed endogenous functions of FMOs in regulating longevity in Caenorhabditis elegans and in regulating aspects of metabolism in mice. To explore the cellular mechanisms of FMO's endogenous function, here we demonstrate that all five functional mammalian FMOs may play similar endogenous roles to improve resistance to a wide range of toxic stresses in both kidney and liver cells. We further find that stress-activated c-Jun N-terminal kinase activity is enhanced in FMO-overexpressing cells, which may lead to increased survival under stress. Furthermore, FMO expression modulates cellular metabolic activity as measured by mitochondrial respiration, glycolysis, and metabolomics analyses. FMO expression augments mitochondrial respiration and significantly changes central carbon metabolism, including amino acid and energy metabolism pathways. Together, our findings demonstrate an important endogenous role for the FMO family in regulation of cellular stress resistance and major cellular metabolic activities including central carbon metabolism.
Collapse
Affiliation(s)
- Shijiao Huang
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Marshall B. Howington
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, United States
| | - Craig J. Dobry
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
| | - Charles R. Evans
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Scott F. Leiser
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Zhao X, Li X, Wang S, Yang Z, Liu H, Xu S. Cadmium exposure induces mitochondrial pathway apoptosis in swine myocardium through xenobiotic receptors-mediated CYP450s activation. J Inorg Biochem 2021; 217:111361. [PMID: 33581611 DOI: 10.1016/j.jinorgbio.2021.111361] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) pollution has become an important public and environmental health issue. Xenobiotic receptors (XRs, aryl hydrocarbon receptor, AHR; constitutive androstane receptor, CAR; pregnane X receptor, PXR) modulate downstream cytochrome P450 enzymes (CYP450s) expression to metabolize xenobiotics and environmental contaminants. However, the underlying mechanisms of cardiotoxicity induced by Cd(II) in swine and the roles of XRs and CYP450s remain poorly understood. In this study, the cardiotoxicity of Cd(II) was investigated by establishing a Cd(II)-exposed swine model (CdCl2, 20 mg Cd/Kg diet). Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay and transmission electron microscope were used to observe the apoptosis. Antioxidant capacity was evaluated by free radicals contents and antioxidant enzymes activities. RT-PCR and western blot were used to measure the expression of XRs, CYP450s and apoptosis-related genes. Our results revealed that Cd(II) exposure activated the XRs and increased the CYP450s expression, contributing to the production of reactive oxygen species (ROS). Cd(II) exposure restrained the antioxidant capacity, causing oxidative stress. Moreover, mitogen-activated protein kinase (MAPK) pathway including c-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38) was activated, triggering the mitochondrial apoptotic pathway. In brief, we concluded that Cd(II) caused mitochondrial pathway apoptosis in swine myocardium via the oxidative stress-MAPK pathway, and XRs-mediated CYP450s expression might participate in this process through promoting the ROS.
Collapse
Affiliation(s)
- Xia Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiaojing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Shengchen Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zijiang Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Honggui Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
13
|
Ou L, Wang H, Wu Z, Wang P, Yang L, Li X, Sun K, Zhu X, Zhang R. Effects of cadmium on osteoblast cell line: Exportin 1 accumulation, p-JNK activation, DNA damage and cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111668. [PMID: 33396178 DOI: 10.1016/j.ecoenv.2020.111668] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 05/11/2023]
Abstract
Cadmium is an environmental metal pollutant that has been a focus of research in recent years, which is reported to cause bone disease; however, its skeletal toxicity and the mechanism involved are not yet fully known. Therefore, this study used MC3T3-E1 subclone 14 cells to determine the mechanism of cadmium toxicity on bone. Cadmium chloride (Cd) significantly reduced cell viability in a concentration-dependent manner. Exposure to Cd inhibited osteoblast-related proteins (Runx2, Col-1, STC2) and decreased alkaline phosphatase (ALP) activity. Cd caused Exportin-1 accumulation and induced DNA damage. Cd significantly down-regulated caspase 9 and induced cleaved-PARP, cleaved-caspase 3 protein level. Treatment with JNK inhibitor, SP600125, suppressed cadmium-induced elevation in the ratio of phosphorylation of JNK to JNK. Inhibition of caspase with pan-caspase inhibitor, Z-VAD-FMK, prevented MC3T3-E1 subclone 14 cells from cadmium-induced reduction of Runx2, STC2, caspase 9, and accumulation of cleaved PARP and cleaved caspase 3. Cd-induced cell survival enhanced by SP600125 but rescued by Z-VAD-FMK or KPT-335. These results suggest that cadmium cytotoxicity on bone involved exportin 1 accumulation, phosphorylation of JNK, induction of DNA damage and pro-apoptosis, which was induced by activation of caspase-dependent pathways.
Collapse
Affiliation(s)
- Ling Ou
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China; The second Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | | | - Zhidi Wu
- Jinan University, Guangzhou, China
| | - Panpan Wang
- Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Li Yang
- Jinan University, Guangzhou, China
| | | | | | - Xiaofeng Zhu
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Ronghua Zhang
- Jinan University, Guangzhou, China; Department of traditional Chinese medicine, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Cadmium induces apoptosis via generating reactive oxygen species to activate mitochondrial p53 pathway in primary rat osteoblasts. Toxicology 2020; 446:152611. [PMID: 33031904 DOI: 10.1016/j.tox.2020.152611] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Cadmium (Cd), a heavy metal produced by various industries, contaminates the environment and seriously damages the skeletal system of humans and animals. Recent studies have reported that Cd can affect the viability of cells, including osteoblasts, both in vivo and in vitro. However, the mechanism of Cd-induced apoptosis remains unclear. In the present study, primary rat osteoblasts were used to investigate the Cd-induced apoptotic mechanism. We found that treatment with 2 and 5 μM Cd for 12 h decreased osteoblast viability and increased apoptosis. Furthermore, Cd increased the generation of reactive oxygen species (ROS), and, thus, DNA damage measured via p-H2AX. The level of the nuclear transcription factor p53 was significantly increased, which upregulated the expression of PUMA, Noxa, Bax, and mitochondrial cytochrome c, downregulated the expression of Bcl-2, and increased the level of cleaved caspase-3. However, pretreatment with the ROS scavenger N-acetyl-l-cysteine (NAC) or the p53 transcription specific inhibitor PFT-α suppressed Cd-induced apoptosis. Our results indicate that Cd can induce apoptosis in osteoblasts by increasing the generation of ROS and activating the mitochondrial p53 signaling pathway, and this mechanism requires the transcriptional activation of p53.
Collapse
|
15
|
Ran D, Ma Y, Liu W, Luo T, Zheng J, Wang D, Song R, Zhao H, Zou H, Gu J, Yuan Y, Bian J, Liu Z. TGF-β-activated kinase 1 (TAK1) mediates cadmium-induced autophagy in osteoblasts via the AMPK / mTORC1 / ULK1 pathway. Toxicology 2020; 442:152538. [PMID: 32693121 DOI: 10.1016/j.tox.2020.152538] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/23/2020] [Accepted: 07/13/2020] [Indexed: 01/28/2023]
Abstract
Cadmium (Cd) is one of worldwide environmental pollutants that causes bone homeostasis, which depends on the resorption of bones by osteoclasts and formation of bones by the osteoblasts (OB). However, the Cd toxicity on OB and its mechanism are unclear. Autophagy is an evolutionarily conserved degradation process in which domestic intracellular components are selectively digested for the recycling of nutrients and energy. This process is indispensable for cell homeostasis maintenance and stress responses. Dysregulation at the level of autophagic activity consequently disturbs the balance between bone formation and bone resorption and mediates the onset and progression of multiple bone diseases, including osteoporosis. TAK1 has been recently emerged as an activator of AMPK and hence an autophagy inducer. AMPK is a key molecule that induces autophagy and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by mTORC1. In this study, we found that Cd treatment caused the formation of autophagosomes, LC3-II lipidation and p62 downregulation, and the increased autophagic flux, indicating that Cd treatment induced autophagy in OBs. Cd treatment induced TAK1 activation mediated AMPK phosphorylation, which promoted autophagy via phosphorylation of ULK1 at S317. Meanwhile, Cd treatment dramatically decreased mTORC1, S6K1, 4E-BP1, S6, ULK1S555 and ULK1S757 phosphorylation, suggesting that mTORC1 activity was inhibited and inactive mTORC1 prevents ULK1 activation by phosphorylating ULK1 at SerS555 and Ser757. Our data strongly suggest that TAK1 mediates AMPK activation, which activates ULK1 by phosphorylating ULK1S317 and suppressing mTORC1-mediated ULK1S555 and ULK1S757 phosphorylation. Our study has revealed a signaling mechanism for TAK1 in Cd-induced autophagy in OBs.
Collapse
Affiliation(s)
- Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Yonggang Ma
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Tongwang Luo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Jiaming Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Dedong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Ruilong Song
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, PR China.
| |
Collapse
|
16
|
Al-Ghafari A, Elmorsy E, Fikry E, Alrowaili M, Carter WG. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS One 2019; 14:e0225341. [PMID: 31756223 PMCID: PMC6874340 DOI: 10.1371/journal.pone.0225341] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/01/2019] [Indexed: 01/09/2023] Open
Abstract
The heavy metals (HMs) lead and cadmium are persistent environmental pollutants capable of inducing ill-health in exposed individuals. One of the primary sites of accumulation and potential damage from HMs is bone, and we therefore examined the acute effects of lead and cadmium on human bone osteoblasts in vitro over a concentration range of 0.1 μM to 1mM, and for 3, 6, 12, 24, and 48 hour exposures. Incubation of osteoblasts with either lead or cadmium reduced cell viability in a concentrations and exposure durations dependent manner, as measured using MTT and LDH assays. Cytotoxicity was significant from 0.1 μM concentrations after 48 hour exposures. Both HMs damaged cellular bioenergetics with reductions of ATP production, mitochondrial complex activities, and aerobic respiration. There was a concomitant elevation of reactive oxygen species, with induction of redox stress measured as increased lipid peroxidation, and depleted cellular redox defense systems via reduced superoxide dismutase and catalase activity and cellular glutathione levels. Both HMs induced nuclear activation of Nrf2, presumably to increase transcription of antioxidant responsive genes to combat oxidative stress. Incubation of osteoblasts with HMs also compromised the secretion of procollagen type 1, osteocalcin, and alkaline phosphatase. Pre-incubation of osteoblasts with reduced glutathione prior to challenge with HMs lessened the cytotoxicity of the HMs, indicative that antioxidants may be a beneficial treatment adjunct in cases of acute lead or cadmium poisoning.
Collapse
Affiliation(s)
- Ayat Al-Ghafari
- Biochemistry Department, Faculty of Science, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Ekramy Elmorsy
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt.,Department of Pathology, Faculty of Medicine, Northern Border University, Arar; Saudi Arabia.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| | - Emad Fikry
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt
| | - Majed Alrowaili
- Department of Surgery, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| | - Wayne G Carter
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, United Kingdom
| |
Collapse
|
17
|
Yang SH, He JB, Yu LH, Li L, Long M, Liu MD, Li P. Protective role of curcumin in cadmium-induced testicular injury in mice by attenuating oxidative stress via Nrf2/ARE pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34575-34583. [PMID: 31650475 DOI: 10.1007/s11356-019-06587-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
The aim of the present study was to investigate whether curcumin (CUR) can ameliorate cadmium-induced reproductive toxicity and its mechanism. A total of 48 male mice were equally divided into 4 groups: control, CdCl2 (2 mg/kg, intraperitoneally inject) curcumin (50 mg/kg, intraperitoneally inject), co-treatment with curcumin (50 mg/kg), and CdCl2 (2 mg/kg) for 10 days. The results demonstrated that CdCl2 reduces sperm motility, decreases the sperm density and serum testosterone content, and significantly improves the rate of sperm deformity. CdCl2 increased the level of testicular total superoxide dismutase (T-SOD), glutathione peroxidase (GSH-Px) activity, and glutathione (GSH), and CdCl2 declined the level of malondialdehyde (MDA). However, the semen quality of the mice in the curcumin intervention group was improved. Moreover, the testosterone content and antioxidant capacity were increased. In the Cd group mice, the expression of testicular Nrf2, as well as the mRNA and protein expressions of the downstream target molecules, glutathione peroxidase (GSH-Px), and γ-glutamylcysteine synthetase (γ-GCS) of Nrf2 declined, while the above genetic expressions elevated significantly in the curcumin intervention group. Our results suggested that curcumin could protect against Cd-induced testicular injury via activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Li-Hui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Ming-Da Liu
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
18
|
Celis-Plá PSM, Rodríguez-Rojas F, Méndez L, Moenne F, Muñoz PT, Lobos MG, Díaz P, Sánchez-Lizaso JL, Brown MT, Moenne A, Sáez CA. MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Influence on Metal Exclusion/Extrusion Mechanisms and Photosynthesis. Int J Mol Sci 2019; 20:E4547. [PMID: 31540294 PMCID: PMC6769437 DOI: 10.3390/ijms20184547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.
Collapse
Affiliation(s)
- Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Lorena Méndez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Pamela T Muñoz
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
- Doctorado en Ciencias del Mar y Biología Aplicada, Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - M Gabriela Lobos
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - Patricia Díaz
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - José Luis Sánchez-Lizaso
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile.
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
| |
Collapse
|
19
|
Abstract
Among the many anthropogenic chemicals that end up in the aquatic ecosystem, heavy metals, in particular cadmium, are hazardous compounds that have been shown to affect developmental, reproductive, hepatic, hematological, and immunological functions in teleost fish. There is also evidence that cadmium disturbs bone formation and skeletal development, but data is scarce. In this work, zebrafish was used to further characterize the anti-osteogenic/osteotoxic effects of cadmium and gain insights into underlying mechanisms. Upon exposure to cadmium, a reduction of the opercular bone growth was observed in 6-days post-fertilization (dpf) larvae and an increase in the incidence of skeletal deformities was evidenced in 20-dpf post-larvae. The extent and stiffness of newly formed bone was also affected in adult zebrafish exposed to cadmium while regenerating their caudal fin. A pathway reporter assay revealed a possible role of the MTF-1 and cAMP/PKA signaling pathways in mechanisms of cadmium osteotoxicity, while the expression of genes involved in osteoblast differentiation and matrix production was strongly reduced in cadmium-exposed post-larvae. This work not only confirmed cadmium anti-osteogenic activity and identified targeted pathways and genes, but it also suggested that cadmium may affect biomechanical properties of bone.
Collapse
|
20
|
Yang SH, Li P, Yu LH, Li L, Long M, Liu MD, He JB. Sulforaphane Protect Against Cadmium-Induced Oxidative Damage in mouse Leydigs Cells by Activating Nrf2/ARE Signaling Pathway. Int J Mol Sci 2019; 20:ijms20030630. [PMID: 30717178 PMCID: PMC6387384 DOI: 10.3390/ijms20030630] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/26/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Cadmium (Cd) is harmful for humans and animals, especially for the reproductive system. However, the mechanism of its toxicity has not been elucidated, and how to alleviate its toxicity is very important. This study aimed to explore the role and mechanism of action of sulforaphane (SFN) in protecting mouse Leydigs (TM3) cells from cadmium (Cd)-induced damage. The half-maximal inhibitory concentration (IC50) of Cd and the safe doses of SFN were determined using a methyl thiazolyl tetrazolium (MTT) assay. The testosterone secretion from TM3 cells was measured using the enzyme-linked immunosorbent assay. The intracellular oxidative stress was evaluated using corresponding kits. The cell apoptosis was detected using flow cytometry. The mRNA expression of genes associated with NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling was detected using reverse transcription–polymerase chain reaction, including Nrf2, heme oxygenase I (HO-1), glutathione peroxidase (GSH-Px), NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), and γ-glutamylcysteine synthetase (γ-GCS). The protein expression of Nrf2, GSH-Px, HO-1, γ-GCS, and NQO1 was detected using Western blot analysis. The results showed that the IC50 of Cd to TM3 cells was 51.4 µmol/L. SFN reduced the release of lactate dehydrogenase from Cd-exposed cells. Cd + SFN 2.5 treatment significantly elevated testosterone concentration compared with the Cd group (p < 0.05). SFN significantly increased total superoxide dismutase (T-SOD) and GSH-Px activity and GSH content in Cd-treated cells (p < 0.05; p < 0.01), inhibited the production of malondialdehyde or reactive oxygen species caused by Cd (p < 0.05; p < 0.01), and reduced the apoptotic rate of Cd-induced TM3 cells (p < 0.01). SFN upregulated the mRNA expression of Nrf2, GSH-Px, HO-1, NQO1, and γ-GCS in Cd-treated cells, indicating the protective effect of SFN against Cd-induced oxidative stress or cell apoptosis by activating the Nrf2/ARE signaling pathway.
Collapse
Affiliation(s)
- Shu-Hua Yang
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang 110866, China.
| | - Peng Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Li-Hui Yu
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Lin Li
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Miao Long
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| | - Ming-Da Liu
- College of Land and Environmental Sciences, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jian-Bin He
- Key Laboratory of Zoonosis of Liaoning Province, College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
21
|
Monteiro C, Ferreira de Oliveira JMP, Pinho F, Bastos V, Oliveira H, Peixoto F, Santos C. Biochemical and transcriptional analyses of cadmium-induced mitochondrial dysfunction and oxidative stress in human osteoblasts. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2018; 81:705-717. [PMID: 29913117 DOI: 10.1080/15287394.2018.1485122] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cadmium (Cd) accumulation is known to occur predominantly in kidney and liver; however, low-level long-term exposure to Cd may also result in bone damage. Few studies have addressed Cd-induced toxicity in osteoblasts, particularly upon cell mitochondrial energy processing and putative associations with oxidative stress in bone. To assess the influence of Cd treatment on mitochondrial function and oxidative status in osteoblast cells, human MG-63 cells were treated with Cd (up to 65 μM) for 24 or 48 h. Intracellular reactive oxygen species (ROS), lipid and protein oxidation and antioxidant defense mechanisms such as total antioxidant activity (TAA) and gene expression of antioxidant enzymes were analyzed. In addition, Cd-induced effects on mitochondrial function were assessed by analyzing the activity of enzymes involved in mitochondrial respiration, membrane potential (ΔΨm), mitochondrial morphology and adenylate energy charge. Treatment with Cd increased oxidative stress, concomitantly with lipid and protein oxidation. Real-time polymerase chain reaction (qRT-PCR) analyses of antioxidant genes catalase (CAT), glutathione peroxidase 1 (GPX1), glutathione S-reductase (GSR), and superoxide dismutase (SOD1 and SOD2) exhibited a trend toward decrease in transcripts in Cd-stressed cells, particularly a downregulation of GSR. Longer treatment with Cd (48 h) resulted in energy charge states significantly below those commonly observed in living cells. Mitochondrial function was affected by ΔΨm reduction. Inhibition of mitochondrial respiratory chain enzymes and citrate synthase also occurred following Cd treatment. In conclusion, Cd induced mitochondrial dysfunction which appeared to be associated with oxidative stress in human osteoblasts.
Collapse
Affiliation(s)
- Cristina Monteiro
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - José Miguel P Ferreira de Oliveira
- b LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy , University of Porto , Porto , Portugal
| | - Francisco Pinho
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - Verónica Bastos
- c Department of Biology & LAQV/REQUIMTE , Faculty of Sciences of University of Porto , Porto , Portugal
| | - Helena Oliveira
- a Department of Biology & CESAM , University of Aveiro, Campus Universitário , Aveiro , Portugal
| | - Francisco Peixoto
- d Biology and Environment Department , Chemistry Research Center, University of Trás-os-Montes & Alto Douro , Portugal
| | - Conceição Santos
- c Department of Biology & LAQV/REQUIMTE , Faculty of Sciences of University of Porto , Porto , Portugal
| |
Collapse
|
22
|
Liu W, Xu C, Ran D, Wang Y, Zhao H, Gu J, Liu X, Bian J, Yuan Y, Liu Z. CaMKⅡ mediates cadmium induced apoptosis in rat primary osteoblasts through MAPK activation and endoplasmic reticulum stress. Toxicology 2018; 406-407:70-80. [PMID: 29883672 DOI: 10.1016/j.tox.2018.06.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/04/2018] [Indexed: 11/29/2022]
Abstract
Ca2+ is an important ion in various intracellular metabolic pathways. Endoplasmic reticulum (ER) is a major intracellular calcium store and ER calcium homeostasis plays a key part in the regulation of apoptosis. We have previously shown that Cadmium (Cd) induces apoptosis in osteoblasts (OBs), accompany by increased cytoplasmic calcium. As the role of calcium in OBs apoptosis induced by Cd has not been clarified we investigated the effects of Cd exposure in rat OBs on intracellular Ca2+, CaMKII phosphorylation, and the pathways implicated in inducing apoptosis. The results showed that cadmium(Cd) induced elevation of intracellular Ca2+ ([Ca2+]i) in OBs by the release of Ca2+ from ER and the inflow of Ca2+ from the extracellular matrix. Cd induced [Ca2+]i elevation and phosphorylation of CaMKII which might be involved in activation of MAPKs and participated in Cd-induced mitochondrial apoptosis through the alteration of the ratio of Bax/Bcl-2 expression. Meanwhile, CaMKII phosphorylation activated unfolded protein response (UPR) during cadmium treatment and could enable the ER apoptosis pathway through the activation of caspase-12. These results indicated that CaMKII plays an important role in Cd induced ER apoptosis and MAPK activation. Our data provide new insights into the mechanisms underlying apoptosis in OBs following Cd exposure. This provides a theoretical basis for future investigations into the clinical therapeutic application of CaMKⅡ inhibitors in osteoporosis induced by Cd exposure.
Collapse
Affiliation(s)
- Wei Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China.
| | - Chao Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Di Ran
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Yi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Hongyan Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Jianhong Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Xuezhong Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Jianchun Bian
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China
| | - Yan Yuan
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China.
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Lee HS, Park T. Nuclear receptor and VEGF pathways for gene-blood lead interactions, on bone mineral density, in Korean smokers. PLoS One 2018; 13:e0193323. [PMID: 29518117 PMCID: PMC5843219 DOI: 10.1371/journal.pone.0193323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/08/2018] [Indexed: 11/19/2022] Open
Abstract
Osteoporosis has a complex etiology and is considered a multifactorial polygenic disease, in which genetic determinants are modulated by hormonal, lifestyle, environmental, and nutritional factors. Therefore, investigating these multiple factors, and the interactions between them, might lead to a better understanding of osteoporosis pathogenesis, and possible therapeutic interventions. The objective of this study was to identify the relationship between three blood metals (Pb, Cd, and Al), in smoking and nonsmoking patients' sera, and prevalence of osteoporosis. In particular, we focused on gene-environment interactions of metal exposure, including a dataset obtained through genome-wide association study (GWAS). Subsequently, we conducted a pathway-based analysis, using a GWAS dataset, to elucidate how metal exposure influences susceptibility to osteoporosis. In this study, we evaluated blood metal exposures for estimating the prevalence of osteoporosis in 443 participants (aged 53.24 ± 8.29), from the Republic of Korea. Those analyses revealed a negative association between lead blood levels and bone mineral density in current smokers (p trend <0.01). By further using GWAS-based pathway analysis, we found nuclear receptor (FDR<0.05) and VEGF pathways (FDR<0.05) to be significantly upregulated by blood lead burden, with regard to the prevalence of osteoporosis, in current smokers. These findings suggest that the intracellular pathways of angiogenesis and nuclear hormonal signaling can modulate interactions between lead exposure and genetic variation, with regard to susceptibility to diminished bone mineral density. Our findings may provide new leads for understanding the mechanisms underlying the development of osteoporosis, including possible interventions.
Collapse
Affiliation(s)
- Ho-Sun Lee
- Interdisciplinary Program in Bioinformatics and Department of Statistics, Seoul National University, Gwanak 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Daegu Institution, National Forensic Service, Hogukro, Waegwon-eup, Chilgok-gun, Gyeomgsamgbuk-do, Republic of Korea
| | - Taesung Park
- Interdisciplinary Program in Bioinformatics and Department of Statistics, Seoul National University, Gwanak 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
24
|
Gu J, Su S, Guo J, Zhu Y, Zhao M, Duan JA. Anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae against focal cerebral ischaemia via TLR4/MyD88/MAPK/NF-κB signalling pathway in MCAO rats. J Pharm Pharmacol 2017; 70:268-277. [DOI: 10.1111/jphp.12841] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 08/26/2017] [Indexed: 01/09/2023]
Abstract
Abstract
Objective
This study was performed to assess the anti-inflammatory and anti-apoptotic effects of the combination of Ligusticum chuanxiong and Radix Paeoniae (XS) on focal cerebral ischaemic stroke.
Methods
MCAO rats were used to evaluate the effect of XS on stroke. Cerebral water content was measured, and the levels of IFN-γ, IL-1β, IL-6 and IL-12 in serum and brain were assessed by ELISA kits. Protein expressions including p-p38, p-38, TLR-4, p-ERK, ERK, TLR-5, NF-κBp65, Myd88, Caspase-3 and Caspase-12 were examined by WB and IHC. Q-PCR was applied to examine IL-1β and IL-6 mRNA levels in the rat brain of each group.
Key findings
XS treatment remarkedly decreased the levels of IFN-γ, IL-1β, IL-6 and IL-12 in serum and brain tissues of MCAO rats. In the ischaemic brain, the expressions of TLR-4, TLR-5, p-p38, p-ERK, Myd88, NF-κBp65, Caspase-3 and Caspase-12 were increased significantly, while the treatment attenuated the activated expressions by MCAO. XS also downregulated Caspase-3 and Caspase-12 expressions. IL-1β and IL-6 mRNA levels in MCAO brain tissue were decreased by XS treatment.
Conclusions
XS could protect MCAO rats by anti-inflammation and anti-apoptosis through TLR4/MyD88/MAPK/NF-κB signalling pathway. Furthermore, the combination has a more meaningful improvement on focal cerebral ischaemic stroke.
Collapse
Affiliation(s)
- Junfei Gu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shulan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jianming Guo
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yue Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jin-ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Liu W, Ge M, Hu X, Lv A, Ma D, Huang X, Zhang R. The Effects of Agaricus blazei Murill Polysaccharides on Cadmium-Induced Apoptosis and the TLR4 Signaling Pathway of Peripheral Blood Lymphocytes in Chicken. Biol Trace Elem Res 2017; 180:153-163. [PMID: 28283953 DOI: 10.1007/s12011-017-0969-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 02/14/2017] [Indexed: 12/17/2022]
Abstract
In this study, we investigated the effects of Agaricus blazei Murill polysaccharides (ABP) on cadmium (Cd)-induced apoptosis and the TLR4 signaling pathway of chicken peripheral blood lymphocytes (PBLs). Seven-day-old healthy chickens were randomly divided into four groups, and each group contained 20 males. The cadmium-supplemented diet group (Cd group) was fed daily with full feed that contained 140 mg cadmium chloride (CdCl2)/kg and 0.2 mL saline. The A. blazei Murill polysaccharide diet group (ABP group) was fed daily with full feed with 0.2 mL ABP solution (30 mg/mL) by oral gavage. The cadmium-supplemented plus A. blazei Murill polysaccharide diet group (Cd + ABP group) was fed daily with full feed containing 140 mg CdCl2/kg and 0.2 mL ABP solution (30 mg/mL) by gavage. The control group was fed daily with full feed with 0.2 mL saline per day. We measured the apoptosis rate and messenger RNA (mRNA) levels of apoptosis genes (caspase-3, Bax, and Bcl-2), the mRNA levels of TLR4 and TLR4 signaling pathway-related factors (MyD88, TRIF, NF-κB, and IRF3), the TLR4 protein expression, and the concentrations of inflammatory cytokines (IL-1β, IL-6, and TNF-α) in chicken PBLs. The results showed that the PBL apoptosis rate was significantly increased, the mRNA levels of caspase-3 and Bax were significantly increased, while that of Bcl-2 was significantly reduced. The Bax/Bcl-2 ratio was significantly increased in the Cd group at 20, 40, and 60 days after treatment compared with that in the control group. After treatment with ABP, the above changes were clearly suppressed. At the same time, ABP reduced the concentrations of IL-1β, IL-6, and TNF-α induced by Cd. We also found that ABP inhibited the TLR4 mRNA level and protein expression and inhibited the mRNA levels of MyD88, TRIF, NF-κB, and IRF3. The results demonstrated that Cd could induce apoptosis, activate the TLR4 signaling pathway, and induce the expression of inflammatory cytokines in chicken PBLs, and that the administration of ABP clearly inhibited Cd-induced effects on chicken PBLs.
Collapse
Affiliation(s)
- Wenjing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ming Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xuequan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ai Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Dexing Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
26
|
Belani M, Shah P, Banker M, Gupta S. Dual effect of insulin resistance and cadmium on human granulosa cells - In vitro study. Toxicol Appl Pharmacol 2016; 313:119-130. [DOI: 10.1016/j.taap.2016.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/10/2016] [Accepted: 10/24/2016] [Indexed: 12/29/2022]
|
27
|
Zhang Y, Yu X, Sun S, Li Q, Xie Y, Li Q, Zhao Y, Pei J, Zhang W, Xue P, Zhou Z, Zhang Y. Cadmium modulates hematopoietic stem and progenitor cells and skews toward myelopoiesis in mice. Toxicol Appl Pharmacol 2016; 313:24-34. [PMID: 27771405 DOI: 10.1016/j.taap.2016.10.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/15/2016] [Accepted: 10/17/2016] [Indexed: 01/06/2023]
Abstract
The heavy metal cadmium (Cd) is known to modulate immunity and cause osteoporosis. However, how Cd influences on hematopoiesis remain largely unknown. Herein, we show that wild-type C57BL/6 (B6) mice exposed to Cd for 3months had expanded bone marrow (BM) populations of long-term hematopoietic stem cells (LT-HSCs), common myeloid progenitors (CMPs) and granulocyte-macrophage progenitors (GMPs), while having reduced populations of multipotent progenitors (MPPs) and common lymphoid progenitors (CLPs). A competitive mixed BM transplantation assay indicates that BM from Cd-treated mice had impaired LT-HSC ability to differentiate into mature cells. In accordance with increased myeloid progenitors and decreased lymphoid progenitors, the BM and spleens of Cd-treated mice had more monocytes and/or neutrophils and fewer B cells and T cells. Cd impaired the ability of the non-hematopoietic system to support LT-HSCs, in that lethally irradiated Cd-treated recipients transplanted with normal BM cells had reduced LT-HSCs after the hematopoietic system was fully reconstituted. This is consistent with reduced osteoblasts, a known critical component for HSC niche, observed in Cd-treated mice. Conversely, lethally irradiated control recipients transplanted with BM cells from Cd-treated mice had normal LT-HSC reconstitution. Furthermore, both control mice and Cd-treated mice that received Alendronate, a clinical drug used for treating osteoporosis, had BM increases of LT-HSCs. Thus, the results suggest Cd increase of LT-HSCs is due to effects on HSCs and not on osteoblasts, although, Cd causes osteoblast reduction and impaired niche function for maintaining HSCs. Furthermore, Cd skews HSCs toward myelopoiesis.
Collapse
Affiliation(s)
- Yandong Zhang
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Xinchun Yu
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Shuhui Sun
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Qian Li
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Yunli Xie
- Insititute of Brain Sciences, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Putuo District Center for Disease Control and Prevention, Shanghai 200062, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Jianfeng Pei
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Wenmin Zhang
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health, MOE, Fudan University, Shanghai 200032, China.
| |
Collapse
|
28
|
Ha TT, Burwell ST, Goodwin ML, Noeker JA, Heggland SJ. Pleiotropic roles of Ca +2/calmodulin-dependent pathways in regulating cadmium-induced toxicity in human osteoblast-like cell lines. Toxicol Lett 2016; 260:18-27. [PMID: 27558804 DOI: 10.1016/j.toxlet.2016.08.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/20/2016] [Accepted: 08/20/2016] [Indexed: 11/26/2022]
Abstract
The heavy metal cadmium is a widespread environmental contaminant that has gained public attention due to the global increase in cadmium-containing electronic waste. Human exposure to cadmium is linked to the pathogenesis of osteoporosis. We previously reported cadmium induces apoptosis and decreases alkaline phosphatase mRNA expression via extracellular signal-regulated protein kinase (ERK) activation in Saos-2 bone-forming osteoblasts. This study examines the mechanisms of cadmium-induced osteotoxicity by investigating roles of Ca+2/calmodulin-dependent protein kinase (CAMK) pathways. Saos-2 or MG-63 cells were treated for 24 or 48h with 5μM CdCl2 alone or in combination with calmodulin-dependent phosphodiesterase (PDE) inhibitor CGS-9343β; calmodulin-dependent kinase kinase (CAMKK) inhibitor STO-609; or calmodulin-dependent kinase II (CAMKII) inhibitor KN-93. CGS-9343β protected against cadmium-induced toxicity and attenuated ERK activation; STO-609 enhanced toxicity and exacerbated ERK activation, whereas KN-93 had no detectable effect on cadmium-induced toxicity. Furthermore, CGS-9343β co-treatment attenuated cadmium-induced apoptosis; but CGS-9343β did not recover cadmium-induced decrease in ALP activity. The major findings suggest the calmodulin-dependent PDE pathway facilitates cadmium-induced ERK activation leading to apoptosis, whereas the CAMKK pathway plays a protective role against cadmium-induced osteotoxicity via ERK signaling. This research distinguishes itself by identifying pleiotropic roles for CAMK pathways in mediating cadmium's toxicity in osteoblasts.
Collapse
Affiliation(s)
- Thao T Ha
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Shalimar T Burwell
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Matthew L Goodwin
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Jacob A Noeker
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA
| | - Sara J Heggland
- Department of Biology, The College of Idaho, 2112 Cleveland Blvd, Caldwell, ID 83605, USA.
| |
Collapse
|
29
|
Gong L, Wang Y, Tong S, Liu L, Niu L, Yuan Y, Bao Y. [Mechanism of Killing Effect of Thioridazine on Human Lung Cancer PC9 Cells]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2015; 18:727-33. [PMID: 26706948 PMCID: PMC6015188 DOI: 10.3779/j.issn.1009-3419.2015.12.03] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
背景与目的 硫利达嗪作为一种吩噻嗪类抗精神疾病药物,近期研究显示其在体外可抑制多种肿瘤细胞的增殖,但对肺癌的作用尚未见报道。本实验以PC9细胞株为研究对象,旨在观察硫利达嗪对其杀伤效应以及探讨其可能的作用机制。 方法 不同浓度的硫利达嗪作用PC9细胞后,四甲基偶氮唑蓝(methyl thiazolyltetrazolium, MTT)法检测细胞增殖率,流式细胞术检测细胞周期及细胞凋亡率,Western blot检测周期相关蛋白CyclinD1及凋亡相关蛋白Caspase-3、Caspase-8、Caspase-9、Bcl-2、Bax、Bcl-xl表达水平。 结果 硫利达嗪可显著抑制PC9细胞的增殖,其抑制作用呈时间和浓度依赖性。流式结果显示:随着硫利达嗪药物浓度的增高,细胞发生不同程度的G0/G1期阻滞,细胞凋亡率明显增高。各实验组与对照组比较,差异有统计学意义(P < 0.05)。Western blot结果显示:与对照组比较,实验组CyclinD1、Bcl-2、Bcl-xl表达水平明显下调(P < 0.01),Bax表达水平明显上调(P < 0.01),Caspase-3、Caspase-8、Caspase-9活性显著增加(P < 0.01)。 结论 硫利达嗪可显著抑制PC9细胞的增殖,其机制可能与其激活Caspase内外源性凋亡途径,下调CyclinD1、Bcl-2、Bcl-xl,上调Bax有关。
Collapse
Affiliation(s)
- Li Gong
- Department of Oncology, the Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yi Wang
- Department of Oncology, the Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Sihao Tong
- Department of Oncology, the Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Liu Liu
- Department of Oncology, the Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Ling Niu
- Department of Oncology, the Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| | - Yuan Yuan
- Central Laboratory of Hefei Binhu Hospital, Hefei 230061, China
| | - Yangyi Bao
- Department of Oncology, the Third Affiliated Hospital of Anhui Medical University, Hefei 230061, China
| |
Collapse
|