1
|
Zhong D, Wahaab A, Zheng J, Zhang J, Ma Z, Wei J. Development of Colloidal Gold-Based Immunochromatographic Strips for Rapid Detection and Surveillance of Japanese Encephalitis Virus in Dogs across Shanghai, China. Viruses 2024; 16:258. [PMID: 38400034 PMCID: PMC10892515 DOI: 10.3390/v16020258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Japanese encephalitis virus (JEV) causes acute encephalitis in humans and is of major public health concern in most Asian regions. Dogs are suitable sentinels for assessing the risk of JEV infection in humans. A neutralization test (NT) or an enzyme-linked immunosorbent assay (ELISA) is used for the serological detection of JEV in dogs; however, these tests have several limitations, and, thus, a more convenient and reliable alternative test is needed. In this study, a colloidal gold immunochromatographic strip (ICS), using a purified recombinant EDIII protein, was established for the serological survey of JEV infection in dogs. The results show that the ICSs could specifically detect JEV antibodies within 10 min without cross-reactions with antibodies against other canine viruses. The test strips could detect anti-JEV in serum with dilution up to 640 times, showing high sensitivity. The coincidence rate with the NT test was higher than 96.6%. Among 586 serum samples from dogs in Shanghai examined using the ICS test, 179 (29.98%) were found to be positive for JEV antibodies, and the high seropositivity of JEV in dogs in China was significantly correlated with the season and living environment. In summary, we developed an accurate and economical ICS for the rapid detection of anti-JEV in dog serum samples with great potential for the surveillance of JEV in dogs.
Collapse
Affiliation(s)
- Dengke Zhong
- Shanghai Vocational College of Agriculture and Forestry, Shanghai 201600, China;
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
- Department of Entomology, Center for Infectious Disease Dynamics and The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16801, USA
| | - Jiayang Zheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (A.W.); (J.Z.); (J.Z.); (Z.M.)
| |
Collapse
|
2
|
Morris RS, Bingham PC. Japanese encephalitis virus: epidemiology and risk-based surveillance approaches for New Zealand. N Z Vet J 2023; 71:283-294. [PMID: 37621178 DOI: 10.1080/00480169.2023.2248054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/06/2023] [Indexed: 08/26/2023]
Abstract
The introduction and subsequent rapid spread of Japanese encephalitis virus genotype IV across all Australian mainland states and the Northern Territory since late 2021 has increased the risk of an incursion of this mosquito-transmitted zoonotic virus disease into New Zealand, with serious implications for both animal and human health. The potential modes of entry are through introduction of infected mosquitoes as hitchhikers on ships or aircraft, windborne transfer of mosquitoes, or arrival of infected reservoir bird species. A competent vector mosquito, Culex quinquefasciatus, is endemic in New Zealand and other mosquito species may also become involved. If infection becomes established in New Zealand, the scale of transmission may be considerably less than has occurred in Australia because climatic and epidemiological factors are not so favourable. Early evidence of an incursion could come from detection of clinical disease in horses or pigs, or from human cases. Targeted surveillance to confirm or refute indications of an incursion could be undertaken by antibody detection in a number of species. Dogs have been shown to be a particularly valuable sentinel species due to their cohabitation with people and high seroconversion rate. Other novel methods of surveillance could include reverse transcriptase PCR (RT-PCR) on oronasal secretions of pigs. Should evidence of the disease be detected, prompt action would be required to vaccinate at-risk human populations and clarify the epidemiological situation with respect to mammalian hosts and mosquito vector species, including whether a new mosquito species had arrived in the country.Abbreviations: AHL: Animal Health Laboratory; JE: Japanese encephalitis disease; JEV: Japanese encephalitis virus; RT-PCR: Reverse transcriptase PCR.
Collapse
Affiliation(s)
- R S Morris
- MorVet Ltd., Masterton, New Zealand
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - P C Bingham
- Diagnostic and Surveillance Services Directorate, Operations Branch, Ministry for Primary Industries, Wallaceville, New Zealand
| |
Collapse
|
3
|
Hu X, Feng S, Shi K, Shi Y, Yin Y, Long F, Wei X, Li Z. Development of a quadruplex real-time quantitative RT-PCR for detection and differentiation of PHEV, PRV, CSFV, and JEV. Front Vet Sci 2023; 10:1276505. [PMID: 38026635 PMCID: PMC10643766 DOI: 10.3389/fvets.2023.1276505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), classical swine fever virus (CSFV), and Japanese encephalitis virus (JEV) cause similar neurological symptoms in the infected pigs, and their differential diagnosis depends on laboratory testing. Four pairs of specific primers and probes were designed targeting the PHEV N gene, PRV gB gene, CSFV 5' untranslated region (5'UTR), and JEV NS1 gene, respectively, and a quadruplex real-time quantitative RT-PCR (qRT-PCR) was developed to detect and differentiate PHEV, PRV, CSFV, and JEV. The assay showed high sensitivity, with the limit of detection (LOD) of 1.5 × 101 copies/μL for each pathogen. The assay specifically detected only PHEV, PRV, CSFV, and JEV, without cross-reaction with other swine viruses. The coefficients of variation (CVs) of the intra-assay and the inter-assay were less than 1.84%, with great repeatability. A total of 1,977 clinical samples, including tissue samples, and whole blood samples collected from Guangxi province in China, were tested by the developed quadruplex qRT-PCR, and the positivity rates of PHEV, PRV, CSFV, and JEV were 1.57% (31/1,977), 0.35% (7/1,977), 1.06% (21/1,977), and 0.10% (2/1,977), respectively. These 1,977 samples were also tested by the previously reported qRT-PCR assays, and the coincidence rates of these methods were more than 99.90%. The developed assay is demonstrated to be rapid, sensitive, and accurate for detection and differentiation of PHEV, PRV, CSFV, and JEV.
Collapse
Affiliation(s)
- Xin Hu
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Xiankai Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning, China
| | - Zongqiang Li
- College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Qin L, Rao T, Li X, Chen H, Qian P. DnaJA2 interacts with Japanese encephalitis virus NS3 via its C-terminal to promote viral infection. Virus Res 2023; 336:199210. [PMID: 37633595 PMCID: PMC10485146 DOI: 10.1016/j.virusres.2023.199210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Numerous studies have documented that the interaction of viral and cellular proteins is essential in the viral life cycle. In our previous study, to screen cellular proteins that take part in the life cycle of JEV, cellular proteins that interacted with JEV NS3 were identified by Co-immunoprecipitation coupled with mass spectrometry analysis (Co-IP-MS), the results showed that ILF2, DnaJA1, DnaJA2, CKB, TUFM, and PABPC1 that putatively interact with NS3. Another candidate protein, DnaJA2, which interacted with JEV NS3 protein, was selected for further study. Overexpression of DnaJA2 increased JEV infection. Conversely, the knockdown of DnaJA2 suppressed JEV infection. Furthermore, DnaJA2 interacted with NS5 besides NS3 and colocalized with viral dsRNA. Additionally, the level of viral NS3 protein expression was higher in cells overexpressing DnaJA2 than in cells with empty vector expression, whereas DnaJA2 knockdown resulted in NS3 protein degradation, which was subsequently restored by MG132 treatment. Further analysis revealed that the C-terminal of DnaJA2 was a critical domain for interaction with NS3 and promoted JEV infection. Collectively, our study identified DnaJA2 as an essential host factor required for JEV infection, potentially representing a novel therapeutic target for the development of antiviral therapies against JEV.
Collapse
Affiliation(s)
- Liuxing Qin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Tingting Rao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture, Wuhan 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, PR China.
| |
Collapse
|
5
|
Dong N, Zhang X, Zhang H, Zheng J, Qiu Y, Li Z, Li B, Liu K, Shao D, Ma Z, Wei J. Genotype Change in Circulating JEV Strains in Fujian Province, China. Viruses 2023; 15:1822. [PMID: 37766229 PMCID: PMC10536422 DOI: 10.3390/v15091822] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Japanese encephalitis (JE), found in pigs, is a serious mosquito-borne zoonotic infectious disease caused by the Japanese encephalitis virus (JEV). JEV is maintained in an enzootic cycle between mosquitoes and amplifying vertebrate hosts, mainly pigs and wading birds. It is transmitted to humans through the bite of an infected mosquito, allowing the pathogen to spread and cause disease epidemics. However, there is little research on JEV genotype variation in mosquitoes and pigs in Fujian province. Previous studies have shown that the main epidemic strain of JEV in Fujian Province is genotype III. In this study, a survey of mosquito species diversity in pig farms and molecular evolutionary analyses of JEV were conducted in Fujian, China, in the summer of 2019. A total of 19,177 mosquitoes were collected at four sites by UV trap. Four genera were identified, of which the Culex tritaeniorhynchus was the most common mosquito species, accounting for 76.4% of the total (14,651/19,177). Anopheles sinensi (19.25%, 3691/19,177) was the second largest species. High mosquito infection rateswere an important factor in the outbreak. The captured mosquito samples were milled and screened with JEV-specific primers. Five viruses were isolated, FJ1901, FJ1902, FJ1903, FJ1904, and FJ1905. Genetic affinity was determined by analyzing the envelope (E) gene variants. The results showed that they are JEV gene type I and most closely related to the strains SH-53 and SD0810. In this study, it was found through genetic evolution analysis that the main epidemic strain of JE in pig farms changed from gene type III to gene type I. Compared with the SH-53 and SD0810 strains, we found no change in key sites related to antigenic activity and neurovirulence of JEV in Fujian JEV and pig mosquito strains, respectively. The results of the study provide basic data for analyzing the genotypic shift of JEV in Fujian Province and support the prevention and control of JEV.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (N.D.); (X.Z.); (H.Z.); (J.Z.); (Y.Q.); (Z.L.); (B.L.); (K.L.); (D.S.)
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai 200241, China; (N.D.); (X.Z.); (H.Z.); (J.Z.); (Y.Q.); (Z.L.); (B.L.); (K.L.); (D.S.)
| |
Collapse
|
6
|
Tang Q, Deng Z, Tan S, Song G, Zhang H, Ge L. Prevalence and Genetic Characteristics of Japanese Encephalitis Virus among Mosquitoes and Pigs in Hunan Province, China from 2019 to 2021. J Microbiol Biotechnol 2022; 32:1120-1125. [PMID: 36116917 PMCID: PMC9628968 DOI: 10.4014/jmb.2207.07068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022]
Abstract
Japanese encephalitis virus (JEV), the causative agent of Japanese encephalitis (JE), is an importantly zoonotic, vector-borne virus widely prevalent in Asia. Although JE has been well controlled in China, its prevalence remains a huge threat to the pig industry as well as human health. Herein, we report on our molecular and serological investigations of JEV among pigs from different regions in Hunan Province of China from 2019 to 2021. Collectively, 19.27% (583/3026, 95% Confidential Interval (CI) 17.86-20.68) of sampled pigs were positive for JEV IgG antibody as revealed by indirect enzyme-linked immunosorbent assay, and the seroprevalence of JEV among pigs was significantly associated with the development stage and breeding scale (p < 0.01). Meanwhile, 10.99% (42/382, 95% CI 7.86-14.13) of tissue samples of pigs with suspected clinical symptoms of JE and 23.44% (15/64, 95% CI 13.06-33.82) of mosquito batches were JEV-positive via reverse polymerase chain reaction. In addition, the complete E gene sequences of 14 JEV strains identified in this study were amplified and sequenced. Phylogenetic analysis showed that all 14 JEV strains belonged to genotype I-b and displayed a distinct genetic relationship to the present JEV vaccine strain (SA14-14-2). In conclusion, our results revealed not only the severe prevalence of JEV in Hunan Province, but also that JEV I-b might be the predominant genotype in Hunan Province, suggesting therefore that effective measures for JE control are urgently needed.
Collapse
Affiliation(s)
- Qiwu Tang
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, P.R. China
| | - Zaofu Deng
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, P.R. China
| | - Shengguo Tan
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, P.R. China
| | - Guo Song
- Animal Husbandry and Fishery Bureau of Ningyuan, Yongzhou 425000, P.R. China
| | - Hai Zhang
- Animal Epidemic Prevention Station of Xiangxi Autonomous Prefecture, Xiangxi 416000, P.R. China
| | - Lingrui Ge
- Hunan Biological and Electromechanical Polytechnic, Changsha 410128, P.R. China,Corresponding author Fax: +0731-84637019 E-mail:
| |
Collapse
|
7
|
Zhang Y, Li Y, Guan Z, Yang Y, Zhang J, Sun Q, Li B, Qiu Y, Liu K, Shao D, Ma Z, Wei J, Li P. Rapid Differential Detection of Japanese Encephalitis Virus and Getah Virus in Pigs or Mosquitos by a Duplex TaqMan Real-Time RT-PCR Assay. Front Vet Sci 2022; 9:839443. [PMID: 35464361 PMCID: PMC9023051 DOI: 10.3389/fvets.2022.839443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 11/20/2022] Open
Abstract
Both JEV (Japanese encephalitis virus) and GETV (Getah virus) pose huge threats to the safety of animals and public health. Pigs and mosquitoes play a primary role in JEV and GETV transmission. However, there is no way to quickly distinguish between JEV and GETV. In this study, we established a one-step duplex TaqMan RT-qPCR for rapid identification and detection of JEV and GETV. Primers and probes located in the NS1 gene of JEV and the E2 gene of GETV that could specifically distinguish JEV from GETV were selected for duplex TaqMan RT-qPCR. In duplex real-time RT-qPCR detection, the correlation coefficients (R2) of the two viruses were higher than 0.999. The RT-qPCR assay demonstrated high sensitivity, extreme specificity, and excellent repeatability. Detection of JEV and GETV in field mosquito and pig samples was 100 times and 10 times more sensitive than using traditional PCR, respectively. In addition, the new test took less time and could be completed in under an hour. Clinical sample testing revealed the prevalence of JEV and GETV in mosquitoes and pig herds in China. This complete duplex TaqMan RT-qPCR assay provided a fast, efficient, specific, and sensitive tool for the detection and differentiation of JEV and GETV.
Collapse
Affiliation(s)
- Yan Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuhao Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhixin Guan
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yang Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qing Sun
- College of Animal Science, Yangtze University, Jingzhou, China
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Peng Li
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Zhu J, Chen Z, Dai Z, Zhou X, Wang H, Li X, Zhao A, Yang S. Molecular Cloning of Alternative Splicing Variants of the Porcine PML Gene and Its Expression Patterns During Japanese Encephalitis Virus Infection. Front Vet Sci 2021; 8:757978. [PMID: 34888375 PMCID: PMC8649775 DOI: 10.3389/fvets.2021.757978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/21/2021] [Indexed: 12/01/2022] Open
Abstract
Promyelocytic leukemia (PML) protein is a crucial component of PML-nuclear bodies (PML-NBs). PML and PML-NBs are involved in the regulation of various cellular functions, including the antiviral immune response. The human PML gene can generate several different isoforms through alternative splicing. However, little is known about the porcine PML alternative splicing isoforms and their expression profiles during Japanese encephalitis virus (JEV) infection. In the present study, we cloned seven mature transcripts of porcine PML, all of which contained the same N-terminal sequence but differed in the C-terminal sequences due to alternative splicing. These seven transcripts encoded five proteins all of which had the RBCC motif and sumoylation sites. Amino acid sequence homology analysis showed that porcine PML-1 had relatively high levels of identity with human, cattle, and goat homologs (76.21, 77.17, and 77.05%, respectively), and low identity with the mouse homolog (61.78%). Immunofluorescence analysis showed that the typical PML-NBs could be observed after overexpression of the five PML isoforms in PK15 cells. Quantitative reverse transcription PCR (RT-qPCR) analysis showed significant upregulation of PML isoforms and PML-NB-associated genes (Daxx and SP100) at 36 and 48 h post-infection (hpi). Western blotting analysis indicated that the PML isoforms were upregulated during the late stage of infection. Moreover, the number of PML-NBs was increased after JEV infection. These results suggest that porcine PML isoforms may play essential roles in JEV infection.
Collapse
Affiliation(s)
- Jingjing Zhu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Zhenyu Chen
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Zhenglie Dai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Adetunji SA, Smolensky D, Mitzel DN, Owens JL, Chitko-McKown CG, Cernicchiaro N, Noronha LE. In Vitro Infection Dynamics of Japanese Encephalitis Virus in Established Porcine Cell Lines. Pathogens 2021; 10:pathogens10111468. [PMID: 34832623 PMCID: PMC8618157 DOI: 10.3390/pathogens10111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Japanese encephalitis virus (JEV) is a zoonotic mosquito-borne pathogen that regularly causes severe neurological disease in humans in Southeast Asia and the Western Pacific region. Pigs are one of the main amplifying hosts of JEV and play a central role in the virus transmission cycle. The objective of this study was to identify in vitro cell systems to investigate early effects of JEV infection including viral replication and host cell death. Here, we demonstrate the susceptibility of several porcine cell lines to the attenuated genotype III JEV strain SA14-14-2. Monolayers of porcine nasal turbinate (PT-K75), kidney (SK-RST), testis (ST), and monocyte-derived macrophage (CΔ2+) cells were infected with SA14-14-2 for up to five days at a multiplicity of infection (MOI) of 0.1. The hamster kidney cell line BHK-21, previously shown to be susceptible to SA14-14-2, was used as a positive control. Culture supernatants and cells were collected between 0 and 120 h post infection (hpi), and monolayers were observed for cytopathic effect (CPE) using brightfield microscopy. The number of infectious virus particles was quantified by plaque assay and cell viability was determined using trypan blue staining. An indirect immunofluorescence assay was used to detect the presence of JEV NS1 antigens in cells infected at 1 MOI. All four porcine cell lines demonstrated susceptibility to SA14-14-2 and produced infectious virus by 12 hpi. Virus titers peaked at 48 hpi in CΔ2+, BHK-21, and SK-RST cells, at 72 hpi in PT-K75, and at 120 hpi in ST cells. CPE was visible in infected CΔ2+ and BHK-21 cells, but not the other three cell lines. The proportion of viable cells, as measured by trypan blue exclusion, declined after 24 hpi in BHK-21 and 48 hpi in CΔ2+ cells, but did not substantially decline in SK-RST, PT-K75 or ST cells. At 48 hpi, JEV NS1 was detected in all infected cell lines by fluorescence microscopy. These findings demonstrate several porcine cell lines which have the potential to serve as useful research tools for investigating JEV infection dynamics and host cell mechanisms in a natural amplifying host species, such as pigs, in vitro.
Collapse
Affiliation(s)
- Shakirat A. Adetunji
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.A.A.); (N.C.)
| | - Dmitriy Smolensky
- Center for Grain and Animal Health Research, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA;
| | - Dana N. Mitzel
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.N.M.); (J.L.O.)
| | - Jeana L. Owens
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.N.M.); (J.L.O.)
| | - Carol G. Chitko-McKown
- Roman L. Hruska U.S. Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture, Clay Center, NE 68933, USA;
| | - Natalia Cernicchiaro
- Center for Outcomes Research and Epidemiology, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA; (S.A.A.); (N.C.)
| | - Leela E. Noronha
- National Bio and Agro-Defense Facility, Agricultural Research Service, United States Department of Agriculture, Manhattan, KS 66502, USA; (D.N.M.); (J.L.O.)
- Correspondence:
| |
Collapse
|
10
|
Zhou X, Yuan Q, Zhang C, Dai Z, Du C, Wang H, Li X, Yang S, Zhao A. Inhibition of Japanese encephalitis virus proliferation by long non-coding RNA SUSAJ1 in PK-15 cells. Virol J 2021; 18:29. [PMID: 33509198 PMCID: PMC7841041 DOI: 10.1186/s12985-021-01492-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Japanese encephalitis virus is a mosquito-borne neurotropic flavivirus that causes acute viral encephalitis in humans. Pigs are crucial amplifier host of JEV. Recently, increasing evidence has shown that long non-coding RNAs (lncRNAs) play important roles in virus infection. METHODS JEV proliferation was evaluated after overexpression or knockdown of lncRNA-SUSAJ1 using western blotting and reverse-transcription polymerase chain reaction (RT-PCR). C-C chemokine receptor type 1 (CCR1) was found to regulate the expression of lncRNA-SUSAJ1 by inhibitors screen. The expression of lncRNA-SUSAJ1 was detected using RT-PCR after overexpression or knockdown of transcription factor SP1. In addition, the enrichments of transcription factor SP1 on the promoter of lncRNA-SUSAJ1 were analyzed by chromatin immunoprecipitation. RESULTS In this study, we demonstrated that swine lncRNA-SUSAJ1 could suppress JEV proliferation in PK-15 cells. We also found that CCR1 inhibited the expression of lncRNA-SUSAJ1 via the transcription factor SP1. In addition, knockdown of CCR1 could upregulated the expression of SP1 and lncRNA-SUSAJ1, resulting in resistance to JEV proliferation. CONCLUSIONS These findings illustrate the importance of lncRNAs in virus proliferation, and reveal how this virus regulates lncRNAs in host cells to promote its proliferation.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Qiongyu Yuan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Chen Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Zhenglie Dai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Chengtao Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Han Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Xiangchen Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China
| | - Songbai Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China.
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology . College of Veterinary Medicine, Zhejiang Agriculture and Forest University, 666 Wusu Road, Hangzhou, 311300, China.
| |
Collapse
|
11
|
Rapid and simultaneous detection of Japanese encephalitis virus by real-time nucleic acid sequence-based amplification. Microb Pathog 2021; 150:104724. [PMID: 33400988 DOI: 10.1016/j.micpath.2020.104724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022]
Abstract
Japaneses encephalitis (JE) is most common zoonoses caused by Japanese encephalitis virus (JEV) with a high mortality and disability rate. To take timely preventive and control measures, early and rapid detection of JE RNA is necessary. But due to characteristic brief and low viraemia, JE RNA detection remains challenging. In this study, a real-time nucleic acid sequence-based amplification (RT-NASBA) was developed for rapid and simultaneous detection of JEV. Four pairs of primer were designed using a multiple genome alignment of all JEV strains from GenBank. NASBA assay established and optimal reaction conditions were confirmed by using primers and probe on ns1 gene of JEV. The specificity and sensitivity of the assay were compared with RT-PCR by using serial RNA and virus cultivation dilutions. The results showed that JEV RT-NASBA assay was established, and robust signals could be observed in 10 min with high specificity. The limit of dectetion of RT-NASBA was 6 copies per reaction. The assay was thus 100 to 1, 000 times more sensitive than RT-PCR. The cross-reaction was performed with other porcine pathogens, and negative amplification results indicated the high specificity of this method. The novel JEV RT-NASBA assay could be used as an efficient molecular biology tool to diagnose JEV, which would facilitate the surveillance of reproductive failure disease in swine and would be beneficial for public health security.
Collapse
|
12
|
Liu Z, Zhang Y, Tong MX, Zhang Y, Xiang J, Gao Q, Wang S, Sun S, Jiang B, Bi P. Nonlinear and Threshold Effect of Meteorological Factors on Japanese Encephalitis Transmission in Southwestern China. Am J Trop Med Hyg 2020; 103:2442-2449. [PMID: 33124540 DOI: 10.4269/ajtmh.20-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although previous studies have reported that meteorological factors might affect the risk of Japanese encephalitis (JE), the relationship between meteorological factors and JE remains unclear. This study aimed to evaluate the relationship between meteorological factors and JE and identify the threshold temperature. Daily meteorological data and JE surveillance data in Dazhou, Sichuan, were collected for the study period from 2005 to 2012 (restricting to May-October because of the seasonal distribution of JE). A distributed lag nonlinear model was used to analyze the lagged and cumulative effect of daily average temperature and daily rainfall on JE transmission. A total of 622 JE cases were reported over the study period. We found JE was positively associated with daily average temperature and daily rainfall with a 25-day lag and 30-day lag, respectively. The threshold value of the daily average temperature is 20°C. Each 5°C increase over the threshold would lead to a 13% (95% CI: 1-17.3%) increase in JE. Using 0 mm as the reference, a daily rainfall of 100 mm would lead to a 132% (95% CI: 73-311%) increase in the risk of JE. Japanese encephalitis is climate-sensitive; meteorological factors should be taken into account for the future prevention and control measure making, especially in a warm and rainy weather condition.
Collapse
Affiliation(s)
- Zhidong Liu
- Department of Personnel, Qilu Hospital of Shandong University, Jinan, People's Republic of China
| | - Yiwen Zhang
- Cheeloo College of Medicine, Shandong University Climate Change and Health Center, Jinan, People's Republic of China.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | | | - Ying Zhang
- School of Public Health, China Studies Centre, The University of Sydney, Sydney, Australia
| | - Jianjun Xiang
- School of Public Health, Fujian Medical University, Fuzhou, People's Republic of China.,School of Public Health, The University of Adelaide, Adelaide, Australia
| | - Qi Gao
- Cheeloo College of Medicine, Shandong University Climate Change and Health Center, Jinan, People's Republic of China.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shuzi Wang
- Cheeloo College of Medicine, Shandong University Climate Change and Health Center, Jinan, People's Republic of China.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Shuyue Sun
- National Meteorological Center, China Meteorological Administration, Beijing, People's Republic of China
| | - Baofa Jiang
- Cheeloo College of Medicine, Shandong University Climate Change and Health Center, Jinan, People's Republic of China.,Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Peng Bi
- School of Public Health, The University of Adelaide, Adelaide, Australia
| |
Collapse
|
13
|
Hameed M, Liu K, Anwar MN, Wahaab A, Safdar A, Di D, Boruah P, Xu J, Wang X, Li B, Zhu H, Nawaz M, Shao D, Qiu Y, Wei J, Ma Z. The emerged genotype I of Japanese encephalitis virus shows an infectivity similar to genotype III in Culex pipiens mosquitoes from China. PLoS Negl Trop Dis 2019; 13:e0007716. [PMID: 31557156 PMCID: PMC6762057 DOI: 10.1371/journal.pntd.0007716] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Japanese Encephalitis virus (JEV) is a zoonotic flavivirus that represents the most significant etiology of childhood viral neurological infections throughout the Asia. During the last 20 years, JEV genotype dominance has shifted from genotype III (GIII) to genotype I (GI). To date, the exact mechanism of this displacement is still not known. Culex (Cx.) mosquitoes are the most common species in China and play an essential role in maintaining JEV enzootic transmission cycle. In this study, we used Cx. pipiens mosquitoes from China as an in vivo mosquito model to explore if mosquitoes played a potential role in JEV genotype shift. We exposed female Cx. pipiens mosquitoes orally to either GI or GIII JEV strains. Midgut, whole mosquitoes, secondary organs, and salivary glands of JEV-infected mosquitoes were collected at 7 and 14 days of post infection (dpi) and subjected to measure the infection rate, replication kinetics, dissemination rate and transmission potential of the infected JEV strains in Cx. pipiens mosquitoes by 50% tissue culture infective dose assay. We found that Cx. pipiens mosquito was competent vector for both GI and GIII JEV infection, with similar infection rates and growth kinetics. After the establishment of infection, Cx. pipiens mosquitoes disseminated both JEV genotypes to secondary organs at similar rates of dissemination. A few GI-infected mosquito salivary glands (16.2%) were positive for GI virus, whereas GIII virus was undetectable in GIII-infected mosquito salivary glands at 7 dpi. However, 29.4% (5/17) and 36.3% (8/22) were positive for GI- and GIII-infected mosquito salivary glands at 14 dpi, respectively, showing an increase in JEV positive rate. No statistical difference in the transmission rate between GI- and GIII-infected mosquitoes was detected. Our experiment data demonstrated that GI and GIII viruses have similar infectivity in Cx. pipiens mosquitoes, suggesting that Cx. pipiens mosquitoes from China may not play a critical role in JEV genotype shift. Although the current data were obtained solely from Cx. pipiens mosquitoes, it is likely that the conclusion drawn could be extrapolated to the role of mosquitoes in JEV genotype shift.
Collapse
Affiliation(s)
- Muddassar Hameed
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Muhammad Naveed Anwar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Abdul Wahaab
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Anum Safdar
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Prerona Boruah
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jinpeng Xu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Xin Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Huaimin Zhu
- Department of Pathogen biology, Second Military Medical University, Shanghai, PR China
| | - Mohsin Nawaz
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, PR China
| |
Collapse
|
14
|
Review of Emerging Japanese Encephalitis Virus: New Aspects and Concepts about Entry into the Brain and Inter-Cellular Spreading. Pathogens 2019; 8:pathogens8030111. [PMID: 31357540 PMCID: PMC6789543 DOI: 10.3390/pathogens8030111] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/17/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
Japanese encephalitis virus (JEV) is an emerging flavivirus of the Asia-Pacific region. More than two billion people live in endemic or epidemic areas and are at risk of infection. Recently, the first autochthonous human case was recorded in Africa, and infected birds have been found in Europe. JEV may spread even further to other continents. The first section of this review covers established and new information about the epidemiology of JEV. The subsequent sections focus on the impact of JEV on humans, including the natural course and immunity. Furthermore, new concepts are discussed about JEV’s entry into the brain. Finally, interactions of JEV and host cells are covered, as well as how JEV may spread in the body through latently infected immune cells and cell-to-cell transmission of virions or via other infectious material, including JEV genomic RNA.
Collapse
|
15
|
Differential replication efficiencies between Japanese encephalitis virus genotype I and III in avian cultured cells and young domestic ducklings. PLoS Negl Trop Dis 2018; 12:e0007046. [PMID: 30562354 PMCID: PMC6314627 DOI: 10.1371/journal.pntd.0007046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/02/2019] [Accepted: 12/02/2018] [Indexed: 12/28/2022] Open
Abstract
Japanese encephalitis virus (JEV) genotype dominance has shifted to genotype I (GI) from genotype III (GIII) in China as demonstrated by molecular epidemiological surveillance. In this study, we performed a serological survey in JEV-non-vaccinated pigs to confirm JEV genotype shift at the sero-epidemiological level. The average ratio of GI/GIII infection was 1.87, suggesting co-circulation of GI and GIII infections with GI infection being more prevalent in pigs in China. To gain an insight into the reasons for this JEV genotype shift, the replication kinetics of seven recently-isolated JEV isolates including three GI strains and four GIII strains were compared in mosquito C6/36 cells, chicken fibroblast cells (DF-1) and porcine iliac artery endothelial cells (PIEC). We observed that GI strains replicated more efficiently than GIII strains in DF-1 and PIEC cells, particularly in DF-1 cells with titers reaching 22.9–225.3 fold higher than GIII strains. This shows an enhanced replication efficiency of GI viruses in avian cells. To examine this enhanced replication efficiency in vivo, young domestic ducklings were used as the animal model and inoculated with GI and GIII strains at day 2 post-hatching. We observed that GI-inoculated ducklings developed higher viremia titers and displayed a comparatively longer viremic duration than GIII-inoculated ducklings. These results conform to the hypothesis of an enhanced replication efficiency for GI viruses in birds. There are 36 amino acid differences between GI and GIII viruses, some of which may be responsible for the enhanced replication efficiency of GI viruses in birds. Based on these findings, we speculated that the enhanced replication of GI viruses in birds would have resulted in higher exposure and therefore infection in mosquitoes, which could result in an increased transmission efficiency of GI viruses in the birds-mosquitoes-birds enzootic transmission cycle, thereby contributing to JEV genotype shift. Japanese encephalitis virus (JEV) causes encephalitis in humans and reproductive disorder in pigs. The enzootic transmission cycle of JEV is maintained in nature by several species of mosquitoes and vertebrates including birds and pigs. In recent years, JEV genotype I (GI) replaced genotype IIII (GIII) as the dominant genotype in Asian countries. Genotype shift has an impact on disease control, and understanding the reasons for this shift will offer valuable insight into avenues for future disease control. Therefore, we compared the replication efficiencies of GI and GIII viruses in vitro and in vivo. We observed that GI viruses show higher replication titers in avian cells and higher viremia levels in young domestic ducklings than GIII viruses, suggesting an enhanced replication efficiency of GI viruses in birds. Based on these findings, we speculated that the enhanced replication of GI viruses in birds could provide increased mosquito infection, leading to an increase in the birds-mosquitoes-birds transmission cycle, thereby contributing to JEV genotype shift.
Collapse
|