1
|
Hwang JH, Lee KN, Kim SM, Kim H, Park SH, Kim DW, Cho G, Lee YH, Lee JS, Park JH. Enhanced Effects of ISA 207 Adjuvant via Intradermal Route in Foot-and-Mouth Disease Vaccine for Pigs. Vaccines (Basel) 2024; 12:963. [PMID: 39339996 PMCID: PMC11435775 DOI: 10.3390/vaccines12090963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
In South Korea, a mandatory nation-wide foot-and-mouth disease (FMD) vaccination policy is in place. However, a major side effect of the current method of intramuscular (IM) administration of oil-adjuvanted FMD vaccines is the formation of granulomas in the muscles of pigs. To address this issue, we assessed the possible application of intradermal (ID) vaccination. Initially, we compared the serological immune response in specific pathogen-free pigs inoculated with FMD vaccines formulated with eight different adjuvants, administered twice at the neck site using a syringe with a needle via the ID route. Among the formulations (water-in-oil-in-water (W/O/W), oil-in-water (O/W), and polymer nanomaterials), ISA 207 of W/O/W was the most effective in inducing immunogenicity followed by ISA 201 of W/O/W. ISA 207 was further tested in formulations of different antigen doses (12 or 1.2 μg) delivered via both IM and ID routes. All four treatments successfully protected the pigs against FMD virus challenges. To assess the feasibility of the field application of the vaccines with ISA 207, we conducted ID vaccination of conventional pigs using a needle-free device, resulting in the detection of significant levels of neutralizing antibodies. ISA 207 was shown to be superior to ISA 201 in inducing immunogenicity via the ID route. In conclusion, ISA 207 could be a suitable adjuvant for ID vaccination in terms of vaccine efficacy for FMD, allowing for alternate use of ID vaccination and subsequent reduction in the incidences of granuloma formation in the field.
Collapse
Affiliation(s)
- Ji-Hyeon Hwang
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
- Veterinary College, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Kwang-Nyeong Lee
- Avian Influenza Research & Diagnostic Division, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| | - Su-Mi Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| | - Hyejin Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| | - Sung-Han Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| | - Dong-Wan Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| | - Giyoun Cho
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| | - Yoon-Hee Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| | - Jong-Soo Lee
- Veterinary College, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8, Gimcheon 39660, Republic of Korea
| |
Collapse
|
2
|
Cho G, Kim H, Kim DW, Hwang SY, Hwang JH, Chae YR, Lee YH, Jeong OM, Park JW, Park SH, Park JH. Establishment of the Foot-and-Mouth Disease Virus Type Asia1 Expressing the HiBiT Protein: A Useful Tool for a NanoBiT Split Luciferase Assay. Viruses 2024; 16:1002. [PMID: 39066165 PMCID: PMC11281472 DOI: 10.3390/v16071002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious virus that affects cloven-hoofed animals and causes severe economic losses in the livestock industry. Given that this high-risk pathogen has to be handled in a biosafety level (BSL)-3 facility for safety reasons and the limited availability of BSL-3 laboratories, experiments on FMDV call for more attention. Therefore, we aimed to develop an FMDV experimental model that can be handled in BSL-2 laboratories. The NanoBiT luciferase (Nano-luc) assay is a well-known assay for studying protein-protein interactions. To apply the NanoBiT split luciferase assay to the diagnosis and evaluation of FMD, we developed an inactivated HiBiT-tagged Asia1 Shamir FMDV (AS-HiBiT), a recombinant Asia1 shamir FMDV with HiBiT attached to the VP1 region of Asia1 shamir FMDV. In addition, we established LgBiT-expressing LF-BK cell lines, termed LgBit-LF-BK cells. It was confirmed that inactivated AS-HiBiT infected LgBiT-LF-BK cells and produced a luminescence signal by binding to the intracellular LgBiT of LgBiT-LF-BK cells. In addition, the luminescence signal became stronger as the number of LgBiT-LF-BK cells increased or the concentration of inactivated AS-HiBiT increased. Moreover, we confirmed that inactivated AS-HiBiT can detect seroconversion in sera positive for FMDV-neutralizing antibodies. This NanoBiT split luciferase assay system can be used for the diagnosis and evaluation of FMD and expanded to FMD-like virus models to facilitate the evaluation of FMDV vaccines and antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Sung-Han Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (G.C.); (H.K.); (D.-W.K.); (S.Y.H.); (J.-H.H.); (Y.R.C.); (Y.-H.L.); (O.-M.J.); (J.-W.P.)
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177, Hyeoksin 8-ro, Gimcheon-si 39660, Gyeongsangbuk-do, Republic of Korea; (G.C.); (H.K.); (D.-W.K.); (S.Y.H.); (J.-H.H.); (Y.R.C.); (Y.-H.L.); (O.-M.J.); (J.-W.P.)
| |
Collapse
|
3
|
Lee S, Mattoo SUS, Jeong CG, Kim SC, Nazki S, Lee G, Park YS, Park SY, Yang MS, Kim B, Lee SM, Kim WI. Intradermal Inoculation of Inactivated Foot-and-Mouth Disease Vaccine Induced Effective Immune Responses Comparable to Conventional Intramuscular Injection in Pigs. Vaccines (Basel) 2024; 12:190. [PMID: 38400173 PMCID: PMC10892606 DOI: 10.3390/vaccines12020190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
All pigs in the Republic of Korea are given the foot-and-mouth disease virus (FMDV) vaccine intramuscularly (IM) as part of the country's vaccination policy. However, the IM administration of the FMDV vaccine to pig results in residual vaccine components in the muscle and undesirable changes in muscle and soft tissues, causing economic losses in swine production. In this study, we evaluated whether intradermal (ID) vaccination could be proposed as an alternative to IM administration. ID vaccination (0.2 mL on each side of the neck muscle) and IM vaccination (2 mL on each side of the neck muscle) were performed twice, separated by 14 days, using a commercial FMD vaccine in specific-pathogen-free pigs. We observed growth performance, gross and microscopic lesions at the inoculation site, FMDV-specific antibodies, and neutralizing antibodies for 35 days after vaccination. Side effects on the skin grossly appeared following ID administration, but most were reduced within two weeks. All ID-vaccinated pigs showed inflammatory lesions limited to the dermis, but IM-vaccinated pigs had abnormal undesirable changes and pus in the muscle. ID-vaccinated pigs performed comparably to IM-vaccinated pigs in terms of growth, FMD virus-specific antibodies, protection capability against FMDV, and T-cell induction. This study demonstrated that the ID inoculation of the inactivated FMD vaccine induced immune responses comparable to an IM injection at 1/10 of the inoculation dose and that the inoculation lesion was limited to the dermis, effectively protecting against the formation of abnormal undesirable changes in muscle and soft tissues.
Collapse
Affiliation(s)
- Simin Lee
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea; (S.L.); (C.-G.J.); (S.-C.K.); (S.N.)
| | - Sameer ul Salam Mattoo
- Division of Biotechnology, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea;
| | - Chang-Gi Jeong
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea; (S.L.); (C.-G.J.); (S.-C.K.); (S.N.)
| | - Seung-Chai Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea; (S.L.); (C.-G.J.); (S.-C.K.); (S.N.)
| | - Salik Nazki
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea; (S.L.); (C.-G.J.); (S.-C.K.); (S.N.)
- Pandemic Sciences Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Gyehan Lee
- Miraclescope Inc., 700 Pangyo-ro, Seongnam 13516, Republic of Korea;
| | - Yong-Soo Park
- Department of Livestock, Korea National University of Agriculture and Fisheries, Jeonju 54874, Republic of Korea;
| | - Sun Young Park
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon 39660, Republic of Korea;
| | - Myeon-Sik Yang
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan-eup, Yesan 32439, Republic of Korea;
| | - Bumseok Kim
- Biosafety Research Institute and Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea;
| | - Sang-Myeong Lee
- College of Veterinary Medicine, Chungbuk National University, 1 Chungdae-ro, Chungju 28644, Republic of Korea
| | - Won-Il Kim
- College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan 54596, Republic of Korea; (S.L.); (C.-G.J.); (S.-C.K.); (S.N.)
| |
Collapse
|
4
|
Kim DW, Cho G, Kim H, Lee G, Lim TG, Kwak HY, Park JH, Park SH. Immunogenicity and Protection against Foot-and-Mouth Disease Virus in Swine Intradermally Vaccinated with a Bivalent Vaccine of Foot-and-Mouth Disease Virus Type O and A. Vaccines (Basel) 2023; 11:vaccines11040815. [PMID: 37112726 PMCID: PMC10142530 DOI: 10.3390/vaccines11040815] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Following the worst outbreak of foot-and-mouth disease (FMD), a highly contagious disease in cloven-hoofed animals caused by the FMD virus, from November 2010-April 2011, the Korean government enforced a mandatory vaccination policy. A bivalent (FMD type O and A; O + A) vaccine has been recently implemented. Although the FMD outbreak was suppressed by vaccination, the intramuscular (IM) injection presents side effects. Therefore, improving FMD vaccine quality is necessary. Here, we investigated the side effects and immune efficacy of the O + A bivalent vaccine using two different routes of administration: intradermal (ID) and IM. To compare the immune efficacy of the two inoculation routes, virus neutralization titers and structural protein (antigen) levels were measured. The protective efficacy of ID vaccines was confirmed using two viruses (FMDV O/AS/SKR/2019 and A/GP/SKR/2018) isolated in the Republic of Korea. Serological analysis revealed that both animals administered by ID and IM injections exhibited equal immune efficacy. A virus challenge test in the target animal (swine) revealed no (or extremely low) clinical symptoms. Swine in the ID injected group exhibited no side effects. In conclusion, we suggest that the ID route of vaccination is an effective alternative to the existing IM route, which is associated with more frequent side effects.
Collapse
Affiliation(s)
- Dong-Wan Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| | - Giyoun Cho
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| | - Hyejin Kim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| | - Gyeongmin Lee
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| | - Tae-Gwan Lim
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| | - Ho-Young Kwak
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| | - Jong-Hyeon Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| | - Sung-Han Park
- Center for Foot-and-Mouth Disease Vaccine Research, Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gyeongsangbuk-do, Gimcheon-si 39660, Republic of Korea
| |
Collapse
|
5
|
Skin-Based Vaccination: A Systematic Mapping Review of the Types of Vaccines and Methods Used and Immunity and Protection Elicited in Pigs. Vaccines (Basel) 2023; 11:vaccines11020450. [PMID: 36851328 PMCID: PMC9962282 DOI: 10.3390/vaccines11020450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The advantages of skin-based vaccination include induction of strong immunity, dose-sparing, and ease of administration. Several technologies for skin-based immunisation in humans are being developed to maximise these key advantages. This route is more conventionally used in veterinary medicine. Skin-based vaccination of pigs is of high relevance due to their anatomical, physiological, and immunological similarities to humans, as well as being a source of zoonotic diseases and their livestock value. We conducted a systematic mapping review, focusing on vaccine-induced immunity and safety after the skin immunisation of pigs. Veterinary vaccines, specifically anti-viral vaccines, predominated in the literature. The safe and potent skin administration to pigs of adjuvanted vaccines, particularly emulsions, are frequently documented. Multiple methods of skin immunisation exist; however, there is a lack of consistent terminology and accurate descriptions of the route and device. Antibody responses, compared to other immune correlates, are most frequently reported. There is a lack of research on the underlying mechanisms of action and breadth of responses. Nevertheless, encouraging results, both in safety and immunogenicity, were observed after skin vaccination that were often comparable to or superior the intramuscular route. Further research in this area will underlie the development of enhanced skin vaccine strategies for pigs, other animals and humans.
Collapse
|
6
|
Çokçalışkan C, Tuncer-Göktuna P, Sareyyüpoğlu B, Türkoğlu T, Yıldız M, Deveci MNF, Aras-Uzun E, Arslan A, Kürkçü A, Uzunlu E, Asar E. Booster administration can make a difference in the antibody response to intradermal foot-and-mouth disease vaccination in cattle. Arch Virol 2022; 167:405-413. [PMID: 35034176 DOI: 10.1007/s00705-021-05273-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/01/2021] [Indexed: 11/02/2022]
Abstract
Foot-and-mouth disease (FMD) is a highly contagious and economically important viral disease of cloven-hoofed animals. Routine vaccination is one of the preferred methods of protection against this disease in endemic countries. For protective immunity against FMD, repeated immunizations with frequent administration are required. Intradermal immunization has many advantages over intramuscular administration of vaccines. In this study, a commercial tetravalent FMD vaccine adjuvanted with Montanide ISA 206 was administered to cattle via the intramuscular (2 mL [n = 10] and 0.5 mL [n = 9]) and intradermal (0.5 mL [n = 11]) routes. Booster doses were administered 28 days later using the same vaccine and routes. Serum samples were collected on days 0, 7, 14, and 28 post-vaccination (pv) and at 30 and 60 days post-booster. Homologous and heterologous virus neutralization tests and liquid-phase blocking and isotype ELISAs were used to measure the antibody response. The results showed that intradermal administration of quarter doses of the vaccine provides an equal or better virus neutralization antibody response than intramuscular administration of the same dose of vaccine after booster administration in cattle. This means that four times more cattle can be immunized with the same amount of vaccine using the intradermal route without compromising immunity.
Collapse
Affiliation(s)
- Can Çokçalışkan
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey.
| | - Pelin Tuncer-Göktuna
- Republic of Turkey, Ministry of Agriculture and Forestry, Pendik Veterinary Control Institute, Istanbul, Turkey
| | - Beyhan Sareyyüpoğlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Tunçer Türkoğlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Muhammet Yıldız
- Directorate-General for State Farms, Republic of Turkey, Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - M Nuri Fırat Deveci
- Directorate-General for State Farms, Republic of Turkey, Ministry of Food, Agriculture and Livestock, Ankara, Turkey
| | - Eylem Aras-Uzun
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Abdullah Arslan
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Ayça Kürkçü
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Ergün Uzunlu
- Republic of Turkey, Ministry of Agriculture and Forestry, Institute of Foot and Mouth Disease (Şap), Şap Enstitüsü Dumlupınar Bulvarı, No:35 Söğütözü Çankaya, Ankara, Turkey
| | - Erdoğan Asar
- Republic of Turkey, Turkish Statistical Institute, Ankara, Turkey
| |
Collapse
|
7
|
Martelli P, Saleri R, Andrani M, Cavalli V, De Angelis E, Ferrari L, Borghetti P. Immune B cell responsiveness to single-dose intradermal vaccination against Mycoplasma hyopneumoniae. Res Vet Sci 2021; 141:66-75. [PMID: 34688042 DOI: 10.1016/j.rvsc.2021.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 10/20/2022]
Abstract
Mycoplasma hyopneumoniae is a major pathogen affecting pig herds and vaccination is the most utilized approach, despite providing partial protection. Age at vaccination, the delivery route, and vaccination protocol can influence vaccine efficacy. The influence of age and the presence of maternally-derived antibodies at vaccination on single-dose needle-less intradermal (ID) administration of an inactivated bacterin-based vaccine (Porcilis® M Hyo ID Once) were assessed in conventional pigs under field conditions. The induction of IgA+ and IgG+ B cell responses and the expression of the activation markers TLR2, TLR7, CCR9, and CCR10 were determined in PBMC. Vaccination at 4 weeks efficiently elicited an anamnestic antibody response associated with TLR2 and TLR7 upregulation. Although animals vaccinated at 1 week did not show seroconversion and a recall response upon infection, the responsiveness of Mycoplasma-recalled IgA+ B cells suggests the activation of mucosal immune cells after vaccination and infection. Vaccination at 1 week induced TLR2, TLR7, and CCR9 upregulation, suggesting the potential for systemic and local activation of immune cell trafficking between blood and target tissues. Vaccination at 4 weeks induced a CCR10 increase, suggesting that recalled IgA+ and IgG+ B cells can display an activated status upon infection. The antibody response after Mycoplasma infection in 4-week-old ID-vaccinated pigs was associated with TLR2 and CCR10 increases, confirming the potential use of this vaccination schedule for the safe and efficient delivery of single-dose M. hyopneumoniae vaccines. ID vaccination, especially at 4 weeks, was associated with a great degree of protection against enzootic pneumonia (EP)-like lung lesions.
Collapse
Affiliation(s)
- Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Roberta Saleri
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Melania Andrani
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Valeria Cavalli
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio, 10, Parma 43126, Italy.
| |
Collapse
|
8
|
Choe S, Park GN, Song S, Shin J, Le VP, Nguyen VG, Kim KS, Kim HK, Hyun BH, An DJ. Efficacy of Needle-Less Intradermal Vaccination against Porcine Epidemic Diarrhea Virus. Pathogens 2021; 10:pathogens10091115. [PMID: 34578148 PMCID: PMC8471454 DOI: 10.3390/pathogens10091115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022] Open
Abstract
To prevent diarrhea in suckling piglets infected by porcine epidemic diarrhea virus (PEDV), porcine epidemic diarrhea (PED) vaccines are administered mainly through intramuscular (IM) or oral routes. We found that growing pigs vaccinated with an inactivated PEDV vaccine via the intradermal (ID) route had higher neutralizing antibody titers and cytokine (IFN-γ, IL-4, and IL-10) levels than non-vaccinated pigs. In addition, suckling piglets acquired lactogenic immunity from pregnant sows inoculated with an ID PED vaccine. We evaluated the efficacy of vaccination via this route, along with subsequent protection against virulent PEDV. At six days post-challenge, the survival rate of suckling piglets exposed to virulent PEDV was 70% for the ID group and 0% for the mock group (no vaccine). At necropsy, villi length in the duodenum and ileum of piglets with lactogenic immunity provided by ID-vaccinated sows proved to be significant (p < 0.05) when compared with those in piglets from mock group sows. Thus, vaccination using an inactivated PED vaccine via the ID route provides partial protection against infection by virulent PEDV.
Collapse
Affiliation(s)
- SeEun Choe
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (S.S.); (J.S.); (K.-S.K.); (B.-H.H.)
| | - Gyu-Nam Park
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (S.S.); (J.S.); (K.-S.K.); (B.-H.H.)
| | - Sok Song
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (S.S.); (J.S.); (K.-S.K.); (B.-H.H.)
| | - Jihye Shin
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (S.S.); (J.S.); (K.-S.K.); (B.-H.H.)
| | - Van Phan Le
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.P.L.); (V.G.N.)
| | - Van Giap Nguyen
- Department of Veterinary Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi 100000, Vietnam; (V.P.L.); (V.G.N.)
| | - Ki-Sun Kim
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (S.S.); (J.S.); (K.-S.K.); (B.-H.H.)
| | - Hye Kwon Kim
- Department of Microbiology, College of Natural Sciences, Chungbuk National University, Cheongju 28644, Korea;
| | - Bang-Hun Hyun
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (S.S.); (J.S.); (K.-S.K.); (B.-H.H.)
| | - Dong-Jun An
- Virus Disease Division, Animal and Plant Quarantine Agency, Gimchen, Gyeongbuk-do 39660, Korea; (S.C.); (G.-N.P.); (S.S.); (J.S.); (K.-S.K.); (B.-H.H.)
- Correspondence: ; Tel.: +82-54-912-0795
| |
Collapse
|