1
|
Skorupa A, Klimek M, Ciszek M, Pakuło S, Cichoń T, Cichoń B, Boguszewicz Ł, Witek A, Sokół M. Metabolomic Analysis of Histological Composition Variability of High-Grade Serous Ovarian Cancer Using 1H HR MAS NMR Spectroscopy. Int J Mol Sci 2024; 25:10903. [PMID: 39456684 PMCID: PMC11507550 DOI: 10.3390/ijms252010903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
In this work, the HR MAS NMR (high-resolution magic-angle spinning nuclear magnetic resonance) spectroscopy technique was combined with standard histological examinations to investigate the metabolic features of high-grade serous ovarian cancer (HGSOC) with a special focus on the relation between a metabolic profile and a cancer cell fraction. The studied group consisted of 44 patients with HGSOC and 18 patients with benign ovarian tumors. Normal ovarian tissue was also excised from 13 control patients. The metabolic profiles of 138 tissue specimens were acquired on a Bruker Avance III 400 MHz spectrometer. The NMR spectra of the HGSOC samples could be discriminated from those acquired from the non-transformed tissue and were shown to depend on tumor purity. The most important features that differentiate the samples with a high fraction of cancer cells from the samples containing mainly fibrotic stroma are the increased intensities in the spectral regions corresponding to phosphocholine/glycerophosphocholine, phosphoethanolamine/serine, threonine, uridine nucleotides and/or uridine diphosphate (UDP) nucleotide sugars. Higher levels of glutamine, glutamate, acetate, lysine, alanine, leucine and isoleucine were detected in the desmoplastic stroma within the HGSOC lesions compared to the stroma of benign tumors. The HR MAS NMR analysis of the metabolic composition of the epithelial and stromal compartments within HGSOC contributes to a better understanding of the disease's biology.
Collapse
Affiliation(s)
- Agnieszka Skorupa
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| | - Mateusz Klimek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Mateusz Ciszek
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| | - Sławomir Pakuło
- Tumor Pathology Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Tomasz Cichoń
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Bartosz Cichoń
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Łukasz Boguszewicz
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| | - Andrzej Witek
- Department of Gynecology, Obstetrics and Oncological Gynecology, Faculty of Medicine in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; (M.K.); (T.C.); (B.C.); (A.W.)
| | - Maria Sokół
- Department of Medical Physics, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (Ł.B.); (M.S.)
| |
Collapse
|
2
|
Hsu CY, Faisal A, Jumaa SS, Gilmanova NS, Ubaid M, Athab AH, Mirzaei R, Karampoor S. Exploring the impact of circRNAs on cancer glycolysis: Insights into tumor progression and therapeutic strategies. Noncoding RNA Res 2024; 9:970-994. [PMID: 38770106 PMCID: PMC11103225 DOI: 10.1016/j.ncrna.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/18/2024] [Accepted: 05/04/2024] [Indexed: 05/22/2024] Open
Abstract
Cancer cells exhibit altered metabolic pathways, prominently featuring enhanced glycolytic activity to sustain their rapid growth and proliferation. Dysregulation of glycolysis is a well-established hallmark of cancer and contributes to tumor progression and resistance to therapy. Increased glycolysis supplies the energy necessary for increased proliferation and creates an acidic milieu, which in turn encourages tumor cells' infiltration, metastasis, and chemoresistance. Circular RNAs (circRNAs) have emerged as pivotal players in diverse biological processes, including cancer development and metabolic reprogramming. The interplay between circRNAs and glycolysis is explored, illuminating how circRNAs regulate key glycolysis-associated genes and enzymes, thereby influencing tumor metabolic profiles. In this overview, we highlight the mechanisms by which circRNAs regulate glycolytic enzymes and modulate glycolysis. In addition, we discuss the clinical implications of dysregulated circRNAs in cancer glycolysis, including their potential use as diagnostic and prognostic biomarkers. All in all, in this overview, we provide the most recent findings on how circRNAs operate at the molecular level to control glycolysis in various types of cancer, including hepatocellular carcinoma (HCC), prostate cancer (PCa), colorectal cancer (CRC), cervical cancer (CC), glioma, non-small cell lung cancer (NSCLC), breast cancer, and gastric cancer (GC). In conclusion, this review provides a comprehensive overview of the significance of circRNAs in cancer glycolysis, shedding light on their intricate roles in tumor development and presenting innovative therapeutic avenues.
Collapse
Affiliation(s)
- Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Thunderbird School of Global Management, Arizona State University Tempe Campus, Phoenix, Arizona, 85004, USA
| | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | - Sally Salih Jumaa
- College of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
| | - Nataliya Sergeevna Gilmanova
- Department of Prosthetic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Russia, Moscow
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Aya H. Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Rasoul Mirzaei
- Venom & Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sajad Karampoor
- Gastrointestinal & Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Kimura TDC, Scarini JF, Lavareze L, Kowalski LP, Coutinho-Camillo CM, Krepischi ACV, Egal ESA, Altemani A, Mariano FV. MicroRNA copy number alterations in the malignant transformation of pleomorphic adenoma to carcinoma ex pleomorphic adenoma. Head Neck 2024; 46:985-1000. [PMID: 38482546 DOI: 10.1002/hed.27717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE This study used array comparative genomic hybridization to assess copy number alterations (CNAs) involving miRNA genes in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA), residual PA, and carcinoma ex pleomorphic adenoma (CXPA). MATERIALS AND METHODS We analyzed 13 PA, 4 RPA, 29 CXPA, and 14 residual PA using Nexus Copy Number Discovery software. The miRNAs genes affected by CNAs were evaluated based on their expression patterns and subjected to pathway enrichment analysis. RESULTS Across the groups, we found 216 CNAs affecting 2261 miRNA genes, with 117 in PA, 59 in RPA, 846 in residual PA, and 2555 in CXPA. The chromosome 8 showed higher involvement in altered miRNAs in PAs and CXPA patients. Six miRNA genes were shared among all groups. Additionally, miR-21, miR-455-3p, miR-140, miR-320a, miR-383, miR-598, and miR-486 were prominent CNAs found and is implicated in carcinogenesis of several malignant tumors. These miRNAs regulate critical signaling pathways such as aerobic glycolysis, fatty acid biosynthesis, and cancer-related pathways. CONCLUSION This study was the first to explore CNAs in miRNA-encoding genes in the PA-CXPA sequence. The findings suggest the involvement of numerous miRNA genes in CXPA development and progression by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Xiang Y, Xu Z, Qian R, Wu D, Lin L, Shen J, Zhu P, Chen F, Liu C. Scutellarin Protects against Myocardial Ischemia-reperfusion Injury by Enhancing Aerobic Glycolysis through miR-34c-5p/ALDOA Axis. Int J Appl Basic Med Res 2024; 14:85-93. [PMID: 38912363 PMCID: PMC11189264 DOI: 10.4103/ijabmr.ijabmr_415_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/10/2024] [Accepted: 02/22/2024] [Indexed: 06/25/2024] Open
Abstract
Background Aerobic glycolysis has recently demonstrated promising potential in mitigating the effects of ischemia-reperfusion (IR) injury. Scutellarin (Scu) possesses various cardioprotective properties that warrant investigation. To mimic IR injury in vitro, this study employed hypoxia/reoxygenation (H/R) injury. Methods and Results First, we conducted an assessment of the protective properties of Scu against HR in H9c2 cells, encompassing inflammation damage, apoptosis injury, and oxidative stress. Then, we verified the effects of Scu on the Warburg effect in H9c2 cells during HR injury. The findings indicated that Scu augmented aerobic glycolysis by upregulating p-PKM2/PKM2 levels. Following, we built a panel of six long noncoding RNAs and seventeen microRNAs that were reported to mediate the Warburg effect. Based on the results, miR-34c-5p was selected for further experiments. Then, we observed Scu could mitigate the HR-induced elevation of miR-34c-5p. Upregulation of miR-34c-5p could weaken the beneficial impacts of Scu in cellular viability, inflammatory damage, oxidative stress, and the facilitation of the Warburg effect. Subsequently, our investigation revealed a decrease in both ALDOA mRNA and protein levels following HR injury, which could be restored by Scu administration. Downregulation of ALDOA or Mimic of miR-34c-5p could reduce these effects induced by Scu. Conclusions Scu provides cardioprotective effects against IR injury by upregulating the Warburg effect via miR-34c-5p/ALDOA.
Collapse
Affiliation(s)
- Yijia Xiang
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Zhongjiao Xu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Renyi Qian
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Daying Wu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Li Lin
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Jiayi Shen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Pengchong Zhu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Fenghui Chen
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| | - Chong Liu
- Department of Cardiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, China
| |
Collapse
|
5
|
Wang H, Bai C, Dang X, Wang H. MiR-383 sensitizes osteosarcoma cells to bortezomib treatment via down-regulating PSMB5. Mol Biol Rep 2024; 51:170. [PMID: 38252234 DOI: 10.1007/s11033-023-08964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/17/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Proteasome inhibition is a promising strategy for cancer therapy. Bortezomib, which primarily targets the chymotrypsin-like activity of PSMB5, has demonstrated efficacy in various tumors. However, there is variable sensitivity to bortezomib, which could be attributed, in part, to variations in the expression of proteasome subunits. METHODS AND RESULTS In this study, we investigated whether miR-383 affects the expression of proteasome subunits in osteosarcoma (OS) cells, and if so, whether OS cells display differential sensitivity to bortezomib concerning miR-383 expression. We detected a decreased miR-383 expression in OS cells and tissues. Then we found a negative correlation between the cytotoxicity of bortezomib and the expression level of the proteasome 20S core particle subunit β5 (PSMB5). Intriguingly, we identified PSMB5 as a direct target of miR-383. Increased expression of miR-383 resulted in decreased PSMB5 expression and increased sensitivity to bortezomib in OS cells. CONCLUSIONS In summary, our findings present the initial comprehensive analysis of the function of miR-383 in OS. The outcomes indicate that miR-383 may augment the anticancer effect of bortezomib through PSMB5 repression, offering a novel therapeutic approach in OS and a fresh pathway for proteasome regulation.
Collapse
Affiliation(s)
- Haifan Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Chuanyi Bai
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xiaoqian Dang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Haoyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
6
|
Li C, Liu FY, Shen Y, Tian Y, Han FJ. Research progress on the mechanism of glycolysis in ovarian cancer. Front Immunol 2023; 14:1284853. [PMID: 38090580 PMCID: PMC10715264 DOI: 10.3389/fimmu.2023.1284853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Glycolysis is the preferred energy metabolism pathway in cancer cells even when the oxygen content is sufficient. Through glycolysis, cancer cells convert glucose into pyruvic acid and then lactate to rapidly produce energy and promote cancer progression. Changes in glycolysis activity play a crucial role in the biosynthesis and energy requirements of cancer cells needed to maintain growth and metastasis. This review focuses on ovarian cancer and the significance of key rate-limiting enzymes (hexokinase, phosphofructokinase, and pyruvate kinase, related signaling pathways (PI3K-AKT, Wnt, MAPK, AMPK), transcription regulators (HIF-1a), and non-coding RNA in the glycolytic pathway. Understanding the relationship between glycolysis and these different mechanisms may provide new opportunities for the future treatment of ovarian cancer.
Collapse
Affiliation(s)
- Chan Li
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Fang-Yuan Liu
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Ying Shen
- Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| | - Yuan Tian
- Zhejiang University of Chinese Medicine, Hangzhou, Zhejiang, China
| | - Feng-Juan Han
- The First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine (TCM), Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Poyyakkara A, Raji GR, Padmaja KP, Ramachandran V, Changmai U, Edatt L, Punathil R, Kumar VBS. Integrin β4 induced epithelial-to-mesenchymal transition involves miR-383 mediated regulation of GATA6 levels. Mol Biol Rep 2023; 50:8623-8637. [PMID: 37656269 DOI: 10.1007/s11033-023-08682-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/16/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND The process of transdifferentiating epithelial cells to mesenchymal-like cells (EMT) involves cells gradually taking on an invasive and migratory phenotype. Many cell adhesion molecules are crucial for the management of EMT, integrin β4 (ITGB4) being one among them. Although signaling downstream of ITGB4 has been reported to cause changes in the expression of several miRNAs, little is known about the role of such miRNAs in the process of EMT. METHODS AND RESULTS The cytoplasmic domain of ITGB4 (ITGB4CD) was ectopically expressed in HeLa cells to induce ITGB4 signaling, and expression analysis of mesenchymal markers indicated the induction of EMT. β-catenin and AKT signaling pathways were found to be activated downstream of ITGB4 signaling, as evidenced by the TOPFlash assay and the levels of phosphorylated AKT, respectively. Based on in silico and qRT-PCR analysis, miR-383 was selected for functional validation studies. miR-383 and Sponge were ectopically expressed in HeLa, thereafter, western blot and qRT-PCR analysis revealed that miR-383 regulates GATA binding protein 6 (GATA6) post-transcriptionally. The ectopic expression of shRNA targeting GATA6 caused the reversal of EMT and β catenin activation downstream of ITGB4 signaling. Cell migration assays revealed significantly high cell migration upon ectopic expression ITGB4CD, which was reversed upon ectopic co-expression of miR-383 or GATA6 shRNA. Besides, ITGB4CD promoted EMT in in ovo xenograft model, which was reversed by ectopic expression of miR-383 or GATA6 shRNA. CONCLUSION The induction of EMT downstream of ITGB4 involves a signaling axis encompassing AKT/miR-383/GATA6/β-catenin.
Collapse
Affiliation(s)
- Aswini Poyyakkara
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Grace R Raji
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - K P Padmaja
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- CRP-10, Cancer Research, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, 695014, India
| | - Vishnu Ramachandran
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Udeshna Changmai
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
| | - Lincy Edatt
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27516, USA
| | - Rabina Punathil
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India
- Department of Zoology, School of Basic Sciences, SRM University, Sikkim, 737102, India
| | - V B Sameer Kumar
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
- Department of Genomic Science, Central University of Kerala, Tejaswini Hills, Periye, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
8
|
Xie X, Zhu Y, Cheng H, Li H, Zhang Y, Wang R, Li W, Wu F. BPA exposure enhances the metastatic aggression of ovarian cancer through the ERα/AKT/mTOR/HIF-1α signaling axis. Food Chem Toxicol 2023; 176:113792. [PMID: 37080528 DOI: 10.1016/j.fct.2023.113792] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023]
Abstract
Long-term exposure to bisphenol A (BPA) in humans may promote ovarian cancer development. In present study, the mechanisms by which BPA mediates the aggression metastatic behavior of ovarian cancer were investigated in vitro/in vivo. The results showed that BPA (10 μM) significantly promoted the proliferation, migration and invasion of human ovarian cancer cells (ES-2 and OVCAR-3 cells); moreover, it promoted ES-2 and OVCAR-3 cell glucose uptake, lactic acid release and intracellular ATP synthesis. After administration of 5 μg/kg/day BPA, tumor volume was increased compared with that in control group. KEGG and GO enrichment analyses showed that the genes from ES-2 cell in 10 μM BPA-treated group were enriched mainly in central carbon metabolism and PI3K-AKT signaling pathway. Then, qRT‒PCR and western blotting results showed that BPA (10 μM) increased the mRNA and protein expression levels of glycolysis-related genes and mTOR, p-AKT HIF-1α and ERα in vitro/vivo; whereas this effect was reduced after treatment with the ERα inhibitor methyl-piperidino-pyrazole. Furthermore, coimmunoprecipitation and mass spectrometry showed that BPA promoted the direct interaction of ERα with lactate dehydrogenase A. These results show that BPA directly promoted the proliferation, migration and invasion of ovarian cancer cells through the ERα/AKT/mTOR/HIF-1α signaling axis to enhance glycolysis.
Collapse
Affiliation(s)
- Xin Xie
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Yan Zhu
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Huimin Cheng
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Haili Li
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Yadi Zhang
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Rong Wang
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China
| | - Wenyong Li
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China.
| | - Fengrui Wu
- Province Key Laboratory of Environmental Hormone and Reproduction, Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, 100 Qinghe West Road, Fuyang, Anhui, 236041, PR China.
| |
Collapse
|
9
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
10
|
Du L, Dou K, Zhang D, Xia H, Liang N, Wang N, Sun J, Bai R. MiR-19a-3p Promotes Aerobic Glycolysis in Ovarian Cancer Cells via IGFBP3/PI3K/AKT Pathway. Folia Biol (Praha) 2023; 69:163-172. [PMID: 38583177 DOI: 10.14712/fb2023069050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Aerobic glycolysis is a prominent feature of cancer. Here, we reported that miR-19a-3p promotes aerobic glycolysis in ovarian cancer cells SKVO3 and ES-2 by increased production of ATP, lactic acid, extracellular acidification (ECAR), and increased expression of PKM2, LDHA, GLUT1 and GLUT3. Further study showed that over-expression of IGFBP3, the target of miR-19a-3p, decreases aerobic glycolysis in ovarian cancer cells, while knockdown of IGFBP3 expression increases aerobic glycolysis. The rescue assay suggested that miR-19a-3p promotes aerobic glycolysis in ovarian cancer cells through targeting IGFBP3. Moreover, over-expression of miR-19a-3p or silencing of IGFBP3 expression promoted activation of AKT, which is important for aerobic glycolysis in cancer cells, indicating that miR-19a-3p promotes aerobic glycolysis in ovarian cancer cells through the IGFBP3/PI3K/AKT pathway. This suggests that miR-19a-3p and IGFBP3 may serve as potential treatment targets of ovarian cancer.
Collapse
Affiliation(s)
- Lijun Du
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Kaikai Dou
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Dan Zhang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Huidong Xia
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Nianhai Liang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ningping Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Jianmin Sun
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Ru Bai
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
11
|
Tang Y, Gu S, Zhu L, Wu Y, Zhang W, Zhao C. LDHA: The Obstacle to T cell responses against tumor. Front Oncol 2022; 12:1036477. [PMID: 36518315 PMCID: PMC9742379 DOI: 10.3389/fonc.2022.1036477] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 11/16/2023] Open
Abstract
Immunotherapy has become a successful therapeutic strategy in certain solid tumors and hematological malignancies. However, this efficacy of immunotherapy is impeded by limited success rates. Cellular metabolic reprogramming determines the functionality and viability in both cancer cells and immune cells. Extensive research has unraveled that the limited success of immunotherapy is related to immune evasive metabolic reprogramming in tumor cells and immune cells. As an enzyme that catalyzes the final step of glycolysis, lactate dehydrogenase A (LDHA) has become a major focus of research. Here, we have addressed the structure, localization, and biological features of LDHA. Furthermore, we have discussed the various aspects of epigenetic regulation of LDHA expression, such as histone modification, DNA methylation, N6-methyladenosine (m6A) RNA methylation, and transcriptional control by noncoding RNA. With a focus on the extrinsic (tumor cells) and intrinsic (T cells) functions of LDHA in T-cell responses against tumors, in this article, we have reviewed the current status of LDHA inhibitors and their combination with T cell-mediated immunotherapies and postulated different strategies for future therapeutic regimens.
Collapse
Affiliation(s)
- Yu Tang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shuangshuang Gu
- Shanghai Institute of Rheumatology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Liqun Zhu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yujiao Wu
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wei Zhang
- Department of Gastroenterology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, Jiangsu, China
| |
Collapse
|
12
|
He G, Liu X, Liu L. microRNA-26b inhibits growth and cellular invasion of ovarian cancer cells by targeting estrogen receptor α. 3 Biotech 2022; 12:168. [PMID: 35845114 PMCID: PMC9276861 DOI: 10.1007/s13205-022-03222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/17/2022] [Indexed: 11/24/2022] Open
Abstract
The current study set out to elucidate the mechanism of miR-26b in OC cell proliferation and EMT via suppression of ERα. Initial findings illustrated that miR-26b was poorly expressed in OC tissues and cells. On the other hand, over-expression of miR-26b exerted a diminishing effect on SKOV3 cell proliferation, migration, invasion and EMT, whereas silencing of miR-26b conferred an enhancing effect on CAOV3 cell proliferation, migration, invasion and EMT. Subsequently, with help from the TargetScan database, a dual-luciferase reporter gene assay was carried out to verify the targeting relation between miR-26b and ERα, which revealed that miR-26b could negatively modulate ERα. Furthermore, the in vivo experimentation illustrated that over-expression of miR-26b led to down-regulation of ERα and suppression OC tumor growth and EMT. Meanwhile, silencing of ERα inhibited OC cell proliferation, migration, invasion and EMT. In conclusion, our findings indicated that miR-26b inhibited OC cell proliferation and EMT via negative-modulation of ERα. This investigation may offer potential strategy for OC treatment. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03222-2.
Collapse
|
13
|
The Profile of MicroRNA Expression and Potential Role in the Regulation of Drug-Resistant Genes in Doxorubicin and Topotecan Resistant Ovarian Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23105846. [PMID: 35628654 PMCID: PMC9144982 DOI: 10.3390/ijms23105846] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/09/2022] Open
Abstract
Epithelial ovarian cancer has the highest mortality among all gynecological malignancies. The main reasons for high mortality are late diagnosis and development of resistance to chemotherapy. Resistance to chemotherapeutic drugs can result from altered expression of drug-resistance genes regulated by miRNA. The main goal of our study was to detect differences in miRNA expression levels in two doxorubicin (DOX)- and two topotecan (TOP)-resistant variants of the A2780 drug-sensitive ovarian cancer cell line by miRNA microarray. The next aim was to recognize miRNAs as factors responsible for the regulation of drug-resistance genes. We observed altered expression of 28 miRNA that may be related to drug resistance. The upregulation of miR-125b-5p and miR-935 and downregulation of miR-218-5p was observed in both DOX-resistant cell lines. In both TOP-resistant cell lines, we noted the overexpression of miR-99a-5p, miR-100-5p, miR-125b-5p, and miR-125b-2-3p and decreased expression of miR-551b-3p, miR-551b-5p, and miR-383-5p. Analysis of the targets suggested that expression of important drug-resistant genes such as the collagen type I alpha 2 chain (COL1A2), protein Tyrosine Phosphatase Receptor Type K (PTPRK), receptor tyrosine kinase—EPHA7, Roundabout Guidance Receptor 2 (ROBO2), myristoylated alanine-rich C-kinase substrate (MARCK), and the ATP-binding cassette subfamily G member 2 (ABCG2) can be regulated by miRNA.
Collapse
|
14
|
Zhang C, Liu N. Noncoding RNAs in the Glycolysis of Ovarian Cancer. Front Pharmacol 2022; 13:855488. [PMID: 35431949 PMCID: PMC9005897 DOI: 10.3389/fphar.2022.855488] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 01/11/2023] Open
Abstract
Energy metabolism reprogramming is the characteristic feature of tumors. The tumorigenesis, metastasis, and drug resistance of ovarian cancer (OC) is dependent on energy metabolism. Even under adequate oxygen conditions, OC cells tend to convert glucose to lactate, and glycolysis can rapidly produce ATP to meet their metabolic energy needs. Non-coding RNAs (ncRNAs) interact directly with DNA, RNA, and proteins to function as an essential regulatory in gene expression and tumor pathology. Studies have shown that ncRNAs regulate the process of glycolysis by interacting with the predominant glycolysis enzyme and cellular signaling pathway, participating in tumorigenesis and progression. This review summarizes the mechanism of ncRNAs regulation in glycolysis in OC and investigates potential therapeutic targets.
Collapse
Affiliation(s)
- Chunmei Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ning Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
15
|
Wu H, Yan Y, Yuan J, Luo M, Wang Y. miR-4324 inhibits ovarian cancer progression by targeting FEN1. J Ovarian Res 2022; 15:32. [PMID: 35246224 PMCID: PMC8896303 DOI: 10.1186/s13048-022-00959-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 02/03/2022] [Indexed: 12/24/2022] Open
Abstract
Background Ovarian cancer is one of the most lethal malignancies, with a 1.9% mortality rate worldwide. The dysregulation of the FEN1 gene and miR-4324 has been associated with cancer progression. However, the relationship between miR-4324 and-FEN1 requires further investigation. Methods miR-4324 and FEN1 expressions in ovarian cancer tissues and cell lines were measured via RT-qPCR. The interaction between miR-4324 and FEN1 was assessed using luciferase and RNA pull-down assays. The effects of miR-4324 and FEN1 on cell proliferation, adhesion and apoptosis were determined by CCK-8, BrdU, colony formation, cell adhesion, Caspase-3 and western blot assays in ovarian cancer cell lines CaOV3 and OVCAR3, respectively. Results The results showed that miR-4324 expression was significantly decreased and FEN1 expression was enhanced in ovarian cancer tissues and cell lines. miR-4324 inhibitor promoted cell proliferation, adhesion and migration, and prevented apoptosis. Furthermore, the downregulation of FEN1 inhibited ovarian cancer cell growth and increased apoptosis. miR-4324 inhibited FEN1 expression and repressed ovarian cancer progression. Conclusion Our study found that miR-4324 inhibited FEN1 expression, suppressed cell growth, and increased apoptosis in ovarian cancer cells. Therefore, we identified miR-4324 and FEN1 as potential therapeutic targets for ovarian cancer treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-022-00959-5.
Collapse
Affiliation(s)
- Haixia Wu
- Department of Obstetrics and Gynecology, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, Guangdong, P. R. China
| | - Youliang Yan
- Department of Obstetrics and Gynecology, Pinghu Hospital, Health Science Center, Shenzhen University, Shenzhen, 518116, Guangdong, P. R. China
| | - Jialin Yuan
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Avenue, Changchun, 130000, Jilin, P. R. China
| | - Mengze Luo
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Avenue, Changchun, 130000, Jilin, P. R. China
| | - Yingjian Wang
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Avenue, Changchun, 130000, Jilin, P. R. China.
| |
Collapse
|
16
|
Yi Q, Xie W, Sun W, Sun W, Liao Y. A Concise Review of MicroRNA-383: Exploring the Insights of Its Function in Tumorigenesis. J Cancer 2022; 13:313-324. [PMID: 34976192 PMCID: PMC8692686 DOI: 10.7150/jca.64846] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that commonly have 18-22 nucleotides and play important roles in the regulation of gene expression via directly binding to the 3'-UTR of target mRNAs. Approximately 50% of human genes are regulated by miRNAs and they are involved in many human diseases, including various types of cancers. Recently, microRNA-383 (miR-383) has been identified as being aberrantly expressed in multiple cancers, such as malignant melanoma, colorectal cancer, hepatocellular cancer, and glioma. Increasing evidence suggests that miR-383 participates in tumorigenic events including proliferation, apoptosis, invasion, and metastasis as well as drug resistance. Although downstream targets including CCND1, LDHA, VEGF, and IGF are illustrated to be regulated by miR-383, its roles in carcinogenesis are still ambiguous and the underlying mechanisms are still unclear. Herein, we review the latest studies on miR-383 and summarize its functions in human cancers and other diseases. The goal of this review is to provide new strategies for targeted therapy and further investigations.
Collapse
Affiliation(s)
- Qian Yi
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China.,Laboratory of Anesthesia and Organ Protection, Southwest Medical University, Luzhou, Sichuan province 646099, P.R. China
| | - Wei Xie
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Wei Sun
- Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China.,Department of Orthopedics, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong 518035, P.R. China
| |
Collapse
|
17
|
Jafarzadeh A, Noori M, Sarrafzadeh S, Tamehri Zadeh SS, Nemati M, Chatrabnous N, Jafarzadeh S, Hamblin MR, Jafari Najaf Abadi MH, Mirzaei H. MicroRNA-383: A tumor suppressor miRNA in human cancer. Front Cell Dev Biol 2022; 10:955486. [PMID: 36313570 PMCID: PMC9608775 DOI: 10.3389/fcell.2022.955486] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/23/2022] [Indexed: 02/05/2023] Open
Abstract
Downregulated expression of anti-tumor miR-383 has been found in many kinds of cancer. MiR-383 family members can directly target the 3'-untranslated region (3'-UTR) of the mRNA of some pro-tumor genes to attenuate several cancer-related processes, including cell proliferation, invasion, migration, angiogenesis, immunosuppression, epithelial-mesenchymal transition, glycolysis, chemoresistance, and the development of cancer stem cells, whilst promoting apoptosis. Functionally, miR-383 operates as a tumor inhibitor miRNA in many types of cancer, including breast cancer, hepatocellular carcinoma, gastric cancer, pancreatic cancer, colorectal cancer, esophageal cancer, lung cancer, head and neck cancer, glioma, medulloblastoma, melanoma, prostate cancer, cervical cancer, oral squamous cell carcinoma, thyroid cancer, and B-cell lymphoma. Both pro-tumor and anti-tumor effects have been attributed to miR-383 in ovarian cancer. However, only the pro-tumor effects of miR-383 were reported in cholangiocarcinoma. The restoration of miR-383 expression could be considered a possible treatment for cancer. This review discusses the anti-tumor effects of miR-383 in human cancers, emphasizing their downstream target genes and potential treatment approaches.
Collapse
Affiliation(s)
- Abdollah Jafarzadeh
- Department of Immunology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Majid Noori
- Golestan Hospital Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Sarrafzadeh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Maryam Nemati
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Hematology and Laboratory Sciences, School of Para-Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nazanin Chatrabnous
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Jafarzadeh
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Johannesburg, South Africa
| | - Mohammad Hassan Jafari Najaf Abadi
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
- *Correspondence: Abdollah Jafarzadeh, ; Mohammad Hassan Jafari Najaf Abadi, ; Hamed Mirzaei,
| |
Collapse
|
18
|
MicroRNA-383-5p Regulates Oxidative Stress in Mice with Acute Myocardial Infarction through the AMPK Signaling Pathway via PFKM. DISEASE MARKERS 2021; 2021:8587535. [PMID: 34917202 PMCID: PMC8670976 DOI: 10.1155/2021/8587535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 01/16/2023]
Abstract
Objective The purpose of this study is to explore the regulating role of microRNA-383-5p (miR-383-5p) in oxidative stress after acute myocardial infarction (AMI) through AMPK pathway via phosphofructokinase muscle-type (PFKM). Methods We established the AMI model, and the model mice were injected with miR-383-5p agomir to study the effect of miR-383-5p in AMPK signaling pathways. The target gene for miR-383-5p was reported to be PFKM, so we hypothesized that overexpression of miR-383-5p inhibits activation of the AMPK signaling pathway. Results In this research, we found that overexpression of miR-383-5p decreases myocardial oxidative stress, myocardial apoptosis, the expression level of PFKM malondialdehyde (MDA), and reactive oxygen species (ROS) in the myocardial tissues after AMI, and finally, AMI-induced cardiac systolic and diastolic function could be improved. Conclusion This study demonstrated that miR-383-5p could reduce the oxidative stress after AMI through AMPK signaling pathway by targeting PFKM.
Collapse
|
19
|
Dastmalchi N, Azarbarzin S, Safaralizadeh R, Khojasteh SMB, Shadbad MA, Amini M, Baghbanzadeh A, Asl ER, Baghbani E, Lotfinejad P, Baradaran B. The combined therapy of miR-383-5p restoration and paclitaxel for treating MDA-MB-231 breast cancer. Med Oncol 2021; 39:9. [PMID: 34761351 DOI: 10.1007/s12032-021-01606-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
The deregulation of microRNAs (miRs) has been identified in tumor development. Indeed, the restoration of tumor-suppressive miRs has been associated with inhibited tumor development in various cancers. Herein, we aimed to evaluate the impact of combined miR-383-5p restoration, as a tumor-suppressive miR, with taxol therapy in suppressing MDA-MB-231 breast cancer development. MDA-MB-231 cell line was restored with miR-383-5p and treated with paclitaxel both in combined and separate manners. The MTT experiment was carried out to measure the cytotoxicity of the therapeutic approaches on the tumoral cells. Besides, flow cytometry was conducted to assess apoptosis and cell cycle status following the treatments. Furthermore, the expression levels of critical factors contributed to tumor proliferation, migration, apoptosis were investigated via the qRT-PCR and western blotting techniques. The outcomes pointed out that the miR-383-5p might substantially enhance the chemosensitivity of MDA-MB-231 to taxol. Besides, miR-383-5p restoration and the combined therapy of miR-383-5p restoration with paclitaxel could remarkably increase apoptosis, decrease cell viability, arrest the cell cycle, inhibit clonogenicity, suppress tumor migration, suppress the PI3K/Akt signaling pathway, and down-regulate PD-L1 expression of BC cells. The restoration of miR-383-5p can enhance the chemosensitivity of MDA-MB-231 cells to taxol. Despite the anti-tumoral effects of miR-383-5p restoration on MDA-MB-231 breast cancer development, the combined therapy of miR-383-5p restoration with paclitaxel can be more effective in repressing MDA-MB-231 breast cancer development.
Collapse
Affiliation(s)
- Narges Dastmalchi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 5166616471, Tabriz, Iran
| | - Shirin Azarbarzin
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 5166616471, Tabriz, Iran
| | - Reza Safaralizadeh
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, 5166616471, Tabriz, Iran.
| | | | - Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran
| | - Mohammad Amini
- Immunology Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran
| | - Elmira Roshani Asl
- Immunology Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran.,Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran
| | - Parisa Lotfinejad
- Immunology Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, 5166/15731, Tabriz, Iran.
| |
Collapse
|
20
|
Jin Y, Wang Z, He D, Zhu Y, Chen X, Cao K. Identification of novel subtypes based on ssGSEA in immune-related prognostic signature for tongue squamous cell carcinoma. Cancer Med 2021; 10:8693-8707. [PMID: 34668665 PMCID: PMC8633230 DOI: 10.1002/cam4.4341] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) is characterized by aggressive invasion and poor prognosis. Currently, immune checkpoint inhibitors may prolong overall survival compared with conventional treatments. However, PD1/PDL1 remain inapplicable in predicting the prognosis of TSCC; thus, it is urgent to explore the genetic characteristics of TSCC. Materials and methods We utilized single‐sample gene set enrichment analysis (ssGSEA) to classify TSCC patients from the TCGA database into clusters with different immune cell infiltrations. ESTIMATE (immune‐related scores) and CIBERSORT (immune cell distribution) analyses were used to evaluate the immune landscape among clusters. GO, KEGG, and GSEA analyses were performed to analyze the different underlying molecular mechanisms in the clusters. Based on the immune characteristics, we applied the LASSO Cox regression to select hub genes and construct a prognostic risk model. Finally, we established an interactive network among these hub genes by using Cytoscape, and a pan‐cancer analysis to further verify and decipher the innate function of these genes. Results Using ssGSEA, we constructed three functional clusters with different overall survival and immune‐cell infiltration. ESTIMATE and CIBERSORT analyses revealed the different distributions of immune cells (T cells, B cells, and macrophages) with diverse immune‐related scores (ESTIMATE, immune, stromal, and tumor purity scores). Moreover, pathways including those of the interferon‐gamma response, hypoxia, and glycolysis of the different subtypes were investigated to elucidate their involvement in mediating the heterogeneous immune characteristics. Subsequently, after LASSO Cox regression, a signature of 15 immune‐related genes was established that is more prognostically effective than the TNM stage. Furthermore, three hub genes—PGK1, GPI, and RPE—were selected using Cytoscape evaluation and verified by immunohistochemistry. PGK1, the foremost regulator, was a comprehensively profiled pan‐cancer, and a PGK1‐based interactive network was established. Conclusion Our results suggest that immune‐related genes and clusters in TSCC have the potential to guide individualized treatments.
Collapse
Affiliation(s)
- Yi Jin
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China.,Department of Radiation Oncology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.,Key Laboratory of Translational Radiation Oncology, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xingyu Chen
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Curcumin Antagonizes Glucose Fluctuation-Induced Renal Injury by Inhibiting Aerobic Glycolysis via the miR-489/LDHA Pathway. Mediators Inflamm 2021; 2021:6104529. [PMID: 34456629 PMCID: PMC8387199 DOI: 10.1155/2021/6104529] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/09/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
It has been considered that glucose fluctuation (GF) plays a role in renal injury and is related to diabetic nephropathy (DN) development. But the mechanism is still unclear. Aerobic glycolysis has become a topical issue in DN in recent years. There is an internal connection between GF, aerobic glycolysis, and DN. Curcumin (Cur) is a principal curcuminoid of turmeric and possesses specific protective properties in kidney functions. Cur also participates in the regulation of aerobic glycolysis switch. In this study, we first measured the levels of aerobic glycolysis and evaluated Cur's inhibitory ability in a cell model of HEK-293 under the condition of oscillating high glucose. The results indicated that GF exacerbated inflammation injury, oxidative stress, and apoptosis in HEK-293 cell, while Cur alleviated this cytotoxicity induced by GF. We found that GF increased aerobic glycolysis in HEK-293 cells and Cur presented a dose-dependent weakening effect to this exacerbation. Next, we built a panel of 17 miRNAs and 8 lncRNAs that were previously reported to mediate the Warburg effect. Our RT-qPCR results indicated that GF reduced the miR-489 content in the HEK-293 cell model and Cur could prevent this downregulation. Then, we planned to explore the character of miR-489 in Cur-triggered attenuation of the Warburg effect under GF condition. Our findings presented that Cur prevented GF-triggered aerobic glycolysis by upregulating miR-489 in HEK-293 cells. Next, we choose the miR-489/LDHA axis for further investigation. We confirmed that Cur prevented GF-triggered aerobic glycolysis via the miR-489/LDHA axis in HEK-293 cells. In conclusion, this study presented that Cur prevented GF-triggered renal injury by restraining aerobic glycolysis via the miR-489/LDHA axis in the HEK-293 cell model.
Collapse
|
22
|
Shao Y, Li F, Liu H. Circ-DONSON Facilitates the Malignant Progression of Gastric Cancer Depending on the Regulation of miR-149-5p/LDHA Axis. Biochem Genet 2021; 60:640-655. [PMID: 34409524 DOI: 10.1007/s10528-021-10120-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022]
Abstract
Earlier studies have shown that circular RNA (circRNA) expression is closely related to the malignant progression of cancer, but the role of circ-DONSON in gastric cancer (GC) has not been fully elucidated. The expression of circ-DONSON, miR-149-5p and lactate dehydrogenase A (LDHA) was measured via qRT-PCR. CCK8 assay was used to assess cell viability, and colony formation assay was performed to detect the number of colonies and the radiosensitivity of cells. Besides, flow cytometry, transwell assay and tube formation assay were employed to determine cell apoptosis, migration, invasion and angiogenesis. Western blot analysis was used to assess the protein expression. The interaction between miR-149-5p and circ-DONSON or LDHA was confirmed by dual-luciferase reporter assay. The influence of circ-DONSON on GC tumor growth in vivo was explored through constructing mice xenograft models. Our results suggested that circ-DONSON was highly expressed in GC tissues and cells. Loss-functional assay results confirmed that silenced circ-DONSON could inhibit the proliferation, metastasis and angiogenesis, while enhance the apoptosis and radiosensitivity of GC cells. In terms of mechanism, circ-DONSON could sponge miR-149-5p, which could target LDHA in GC. MiR-149-5p inhibitor or LDHA overexpression could reverse the suppression effect of circ-DONSON knockdown on GC progression. Additionally, our results also suggested that circ-DONSON silencing could restrain the tumor growth of GC in vivo. These results demonstrated that circ-DONSON could facilitate GC progression by increasing LDHA expression via sponging miR-149-5p, indicating that circ-DONSON might be a novel biomarker for GC treatment.
Collapse
Affiliation(s)
- Yingying Shao
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China.,Emergency Department, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou City, 317000, Zhejiang, China
| | - Fangshun Li
- Department of Gastroenterology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, No.150 Ximen Street, Linhai, Taizhou City, 317000, Zhejiang Province, China
| | - Hanlin Liu
- Department of anorectal and gastrointestinal surgery, Taizhou Municipal Hospital, Taizhou City, 317000, Zhejiang, China.
| |
Collapse
|
23
|
Shu J, Xiao L, Yan S, Fan B, Zou X, Yang J. Mechanism of MicroRNA-375 Promoter Methylation in Promoting Ovarian Cancer Cell Malignancy. Technol Cancer Res Treat 2021; 20:1533033820980115. [PMID: 33928819 PMCID: PMC8113360 DOI: 10.1177/1533033820980115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective: Ovarian cancer (OC) ranks one of the most prevalent fatal tumors of female genital organs. Aberrant promoter methylation triggers changes of microRNA (miR)-375 in OC. Our study aimed to evaluate the mechanism of methylated miR-375 promoter region in OC cell malignancy and to seek the possible treatment for OC. Methods: miR-375 promoter methylation level in OC tissues and cells was detected. miR-375 expression in OC tissues and cell lines was compared with that in demethylated cells. Role of miR-375 in OC progression was measured. Dual-luciferase reporter gene assay was utilized to verify the targeting relationship between miR-375 and Yes-associated protein 1 (YAP1). Then, Wnt/β-catenin pathway-related protein expression was tested. Moreover, xenograft transplantation was applied to confirm the in vitro experiments. Results: Highly methylated miR-375 was seen in OC tissues and cell lines, while its expression was decreased as the promoter methylation increased. Demethylation in OC cells brought miR-375 back to normal level, with obviously declined cell invasion, migration and viability and improved apoptosis. Additionally, miR-375 targeted YAP1 to regulate the Wnt/β-catenin pathway protein expression. Overexpressed YAP1 reversed the protein expression, promoted cell invasion, migration and viability while reduced cell apoptosis. Overexpressed miR-375 in vivo inhibited OC progression. Conclusion: Our study demonstrated that demethylated miR-375 inhibited OC growth by targeting YAP1 and downregulating the Wnt/β-catenin pathway. This investigation may offer novel insight for OC treatment.
Collapse
Affiliation(s)
- Junjun Shu
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Ling Xiao
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Sanhua Yan
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Boqun Fan
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xia Zou
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Jun Yang
- Obstetrics and Gynecology Department, The Third Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
24
|
Taefehshokr S, Taefehshokr N, Hemmat N, Hajazimian S, Isazadeh A, Dadebighlu P, Baradaran B. The pivotal role of MicroRNAs in glucose metabolism in cancer. Pathol Res Pract 2020; 217:153314. [PMID: 33341548 DOI: 10.1016/j.prp.2020.153314] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/17/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Cancer cells are able to undergo aerobic glycolysis and metabolize glucose to lactate instead of oxidative phosphorylation, which is known as Warburg effect. Accumulating evidence has revealed that microRNAs regulate cancer cell metabolism, which manifest a higher rate of glucose metabolism. Various signaling pathways along with glycolytic enzymes are responsible for the emergence of glycolytic dependence. MicroRNAs are a class of non-coding RNAs that are not translated into proteins but regulate target gene expression or in other words function pre-translationally and post-transcriptionally. MicroRNAs have been shown to be involved in various biological processes, including glucose metabolism via targeting major transcription factors, enzymes, oncogenes or tumor suppressors alongside the oncogenic signaling pathways. In this review, we describe the regulatory role of microRNAs of cancer cell glucose metabolism, including in the glucose uptake, glycolysis, tricarboxylic acid cycle and several signaling pathways and further suggest that microRNA-based therapeutics can be used to inhibit the process of glucose metabolism reprogramming in cancer cells and thus suppressing cancer progression.
Collapse
Affiliation(s)
- Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, Ontario, Canada
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Dadebighlu
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Jia KG, Feng G, Tong YS, Tao GZ, Xu L. miR-206 regulates non-small-cell lung cancer cell aerobic glycolysis by targeting hexokinase 2. J Biochem 2020; 167:365-370. [PMID: 31742336 DOI: 10.1093/jb/mvz099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/10/2019] [Indexed: 12/29/2022] Open
Abstract
Aerobic glycolysis was closely associated with the malignant transformation and prognosis of tumours. miR-206 was found to be downregulated in several cancers. However, whether miR-206 functions in non-small-cell lung cancers (NSCLCs) via the process of aerobic glycolysis remains poorly characterized. Quantitative real-time PCR was performed to detect miR-206 level in NSCLC cells and tissues. The effect of miR-206 on hexokinase 2 (HK2) expression was examined through miR-206 overexpression or miR-206 knockdown. CCK-8 assay and colony formation assay were carried out to explore the role of miR-206 on cell proliferation and colony formation, respectively. The relationship between miR-206 and HK2 was measured by dual-luciferase reporter assay. Glucose consumption, lactate production assay and ATP generation were performed in NSCLC cells following miR-206 and HK2 overexpression. We found that miR-206 was downregulated in NSCLC tissues and cells. miR-206 overexpression downregulated the expression of HK2 via targeting HK2 3'UTR in NSCLC cells. In addition, miR-206 decreased the cell viability and colony formation in NSCLC cells. Furthermore, miR-206 reduced glucose uptake, lactate production and ATP generation in NSCLC cells via HK2 repression. In conclusion, these findings suggested that miR-206 regulated NSCLC cell aerobic glycolysis by targeting HK2.
Collapse
Affiliation(s)
- Ke-Gang Jia
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 First Ring Road, Qingyang district, Sichuan 610072, China
| | - Gang Feng
- Department of Thoracic Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 First Ring Road, Qingyang district, Sichuan 610072, China
| | - Yu-Suo Tong
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin district, Huaian 223300, China
| | - Guang-Zhou Tao
- Department of Radiation Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, 1 Huanghe West Road, Huaiyin district, Huaian 223300, China
| | - Lian Xu
- Department of Rehabilitation, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, 32 First Ring Road, Qingyang district, Sichuan 610072, China
| |
Collapse
|
26
|
Regulation of Glycolysis by Non-coding RNAs in Cancer: Switching on the Warburg Effect. MOLECULAR THERAPY-ONCOLYTICS 2020; 19:218-239. [PMID: 33251334 PMCID: PMC7666327 DOI: 10.1016/j.omto.2020.10.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The “Warburg effect” describes the reprogramming of glucose metabolism away from oxidative phosphorylation toward aerobic glycolysis, and it is one of the hallmarks of cancer cells. Several factors can be involved in this process, but in this review, the roles of non-coding RNAs (ncRNAs) are highlighted in several types of human cancer. ncRNAs, including microRNAs, long non-coding RNAs, and circular RNAs, can all affect metabolic enzymes and transcription factors to promote glycolysis and modulate glucose metabolism to enhance the progression of tumors. In particular, the 5′-AMP-activated protein kinase (AMPK) and the phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathways are associated with alterations in ncRNAs. A better understanding of the roles of ncRNAs in the Warburg effect could ultimately lead to new therapeutic approaches for suppressing cancer.
Collapse
|
27
|
Varghese E, Samuel SM, Líšková A, Samec M, Kubatka P, Büsselberg D. Targeting Glucose Metabolism to Overcome Resistance to Anticancer Chemotherapy in Breast Cancer. Cancers (Basel) 2020; 12:E2252. [PMID: 32806533 PMCID: PMC7464784 DOI: 10.3390/cancers12082252] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/10/2023] Open
Abstract
Breast cancer (BC) is the most prevalent cancer in women. BC is heterogeneous, with distinct phenotypical and morphological characteristics. These are based on their gene expression profiles, which divide BC into different subtypes, among which the triple-negative breast cancer (TNBC) subtype is the most aggressive one. The growing interest in tumor metabolism emphasizes the role of altered glucose metabolism in driving cancer progression, response to cancer treatment, and its distinct role in therapy resistance. Alterations in glucose metabolism are characterized by increased uptake of glucose, hyperactivated glycolysis, decreased oxidative phosphorylation (OXPHOS) component, and the accumulation of lactate. These deviations are attributed to the upregulation of key glycolytic enzymes and transporters of the glucose metabolic pathway. Key glycolytic enzymes such as hexokinase, lactate dehydrogenase, and enolase are upregulated, thereby conferring resistance towards drugs such as cisplatin, paclitaxel, tamoxifen, and doxorubicin. Besides, drug efflux and detoxification are two energy-dependent mechanisms contributing to resistance. The emergence of resistance to chemotherapy can occur at an early or later stage of the treatment, thus limiting the success and outcome of the therapy. Therefore, understanding the aberrant glucose metabolism in tumors and its link in conferring therapy resistance is essential. Using combinatory treatment with metabolic inhibitors, for example, 2-deoxy-D-glucose (2-DG) and metformin, showed promising results in countering therapy resistance. Newer drug designs such as drugs conjugated to sugars or peptides that utilize the enhanced expression of tumor cell glucose transporters offer selective and efficient drug delivery to cancer cells with less toxicity to healthy cells. Last but not least, naturally occurring compounds of plants defined as phytochemicals manifest a promising approach for the eradication of cancer cells via suppression of essential enzymes or other compartments associated with glycolysis. Their benefits for human health open new opportunities in therapeutic intervention, either alone or in combination with chemotherapeutic drugs. Importantly, phytochemicals as efficacious instruments of anticancer therapy can suppress events leading to chemoresistance of cancer cells. Here, we review the current knowledge of altered glucose metabolism in contributing to resistance to classical anticancer drugs in BC treatment and various ways to target the aberrant metabolism that will serve as a promising strategy for chemosensitizing tumors and overcoming resistance in BC.
Collapse
Affiliation(s)
- Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| | - Alena Líšková
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Marek Samec
- Department of Obstetrics and Gynecology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia; (A.L.); (M.S.)
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (E.V.); (S.M.S.)
| |
Collapse
|
28
|
Li Y, Zang H, Zhang X, Huang G. circ_0136666 Facilitates the Progression of Colorectal Cancer via miR-383/CREB1 Axis. Cancer Manag Res 2020; 12:6795-6806. [PMID: 32821160 PMCID: PMC7424319 DOI: 10.2147/cmar.s251952] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/09/2020] [Indexed: 12/23/2022] Open
Abstract
Background The changes in dietary patterns cause an increased incidence of colorectal cancer (CRC) globally. We aimed to explore the mechanism behind circular RNA circ_0136666 in the progression of CRC. Materials and Methods The expression of circ_0136666, miR-383 and cAMP response element binding protein 1 (CREB1) was detected by real-time quantitative polymerase chain reaction (RT-qPCR). Cell proliferation, apoptosis and glycolysis were measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry and glucose or lactate detection kit, respectively. The combination between miR-383 and circ_0136666 or CREB1 in 293T cells was predicted by Circular RNA Interactome or Starbase software and confirmed by dual-luciferase reporter assay. Western blot assay was performed to detect the abundance of CREB1, hexokinase 2 (HK2) and lactate dehydrogenase A (LDHA) in CRC cells. Murine xenograft model was established to verify the function of circ_0136666 in vivo. Results circ_0136666 was aberrantly up-regulated in CRC tissues and cells, and it promoted the proliferation and glycolysis and inhibited the apoptosis of CRC cells. circ_0136666 accelerated the progression of CRC through directly targeting and down-regulating miR-383. CREB1 could bind to miR-383 in 293T cells. The overexpression of CREB1 reversed the inhibitory effects of miR-383 accumulation on the proliferation and glycolysis and the promoting impact on the apoptosis of CRC cells. The enrichment of CREB1 was modulated by circ_0136666/miR-383 signaling in CRC cells. The glycolysis-related proteins (HK2 and LDHA) were modulated by circ_0136666/miR-383/CREB1 axis in CRC cells. circ_0136666 accelerated the growth of CRC tumors via circ_0136666/miR-383/CREB1 axis in vivo. Conclusion circ_0136666 deteriorated CRC through miR-383/CREB1 axis. circ_0136666/miR-383/CREB1 axis might be an underlying therapeutic target for CRC therapy.
Collapse
Affiliation(s)
- Yuhui Li
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Hongliang Zang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Xue Zhang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Guomin Huang
- Department of General Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| |
Collapse
|
29
|
Luan Y, Zhang W, Xie J, Mao J. CDKN2A inhibits cell proliferation and invasion in cervical cancer through LDHA-mediated AKT/mTOR pathway. Clin Transl Oncol 2020; 23:222-228. [DOI: 10.1007/s12094-020-02409-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/23/2020] [Indexed: 12/19/2022]
|
30
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
31
|
Wang H, Wu J, Guo W. SP1-Mediated Upregulation of lncRNA LINC01614 Functions a ceRNA for miR-383 to Facilitate Glioma Progression Through Regulation of ADAM12. Onco Targets Ther 2020; 13:4305-4318. [PMID: 32547064 PMCID: PMC7244248 DOI: 10.2147/ott.s242854] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) play an imperative role in tumorigenesis, but few lncRNAs have been functionally characterized in glioma. The aim of the present study was to identify the role of long non-coding RNA LINC01614 (LINC01614) in glioma development and explore the underlying mechanisms of LINC01614/miR-383/ADAM12 axis. Patients and Methods LncRNA expression in glioma specimens was measured by lncRNA microarray and qRT-PCR. The prognostic value of LINC01614 expression was statistically analyzed in 112 glioma patients. Loss-of-function experiments were conducted to investigate the biological functions of LINC01614 in vitro. Luciferase analyses, ChIP assays, and RNA pull-down were performed to determine the underlying LINC01614 mechanisms. Results We identified a novel glioma-related lncRNA LINC01614 by analyzing TCGA datasets. The distinct upregulation of LINC01614 was observed in both glioma specimens and cell lines using RT-PCR. We also observed that LINC01614 upregulation was induced by nuclear transcription factor SP1. Clinical assays revealed that high levels of LINC01614 were associated with KPS, WHO grade and shorter overall survival of glioma patients. Multivariate analysis further confirmed that LINC01614 was an independent prognostic marker for glioma patients. Besides, functional assays displayed that silence of LINC01614 knockdown distinctly inhibited cell growth, migration and invasion and promoted cell apoptosis in glioma cells. LINC01614 expression was enriched in the cytoplasm of glioma cells. Mechanistic investigation revealed that LINC01614 functioned as a competing endogenous RNA to upregulate a disintegrin and metalloproteinase 12 (ADAM12) by sponging miR-383. Conclusion Overall, these findings showed that SP1-induced upregulation of LINC01614 promoted glioma malignant progression via modulating the miR-383/ADAM12 axis, which may provide a promising therapy for glioma.
Collapse
Affiliation(s)
- Hao Wang
- Department of Neurosurgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| | - Jiang Wu
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Wei Guo
- Department of Neurosurgery, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
32
|
Zhang Z, Xu L, He L, Wang J, Shi X, Li Z, Shi S, Hou K, Teng Y, Qu X. MiR-891a-5p as a prognostic marker and therapeutic target for hormone receptor-positive breast cancer. J Cancer 2020; 11:3771-3782. [PMID: 32328182 PMCID: PMC7171503 DOI: 10.7150/jca.40750] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 03/27/2020] [Indexed: 12/15/2022] Open
Abstract
Background: Breast cancer is one of the most frequent malignant tumors worldwide, with 1.67 million newly-diagnosed cases and 522,000 deaths each year. Therefore, seeking the novel biomarkers and therapeutic targets that contribute to postoperative recurrence and metastasis in patients with breast cancer is emerging and facilitates the development of innovative therapeutics. Methods: Retrieving the dataset of patients with hormone receptor (HR)-positive breast cancers from Gene Expression Omnibus (GEO) and collecting the data from the patients with HR-positive breast cancers enrolled in the First Affiliated Hospital of China Medical University are so as to identify the miRNAs associated with metastasis and distant metastasis-free survival (DMFS). Then MTT and Transwell migration assays were used to validate the effect of miRNAs on cell proliferation and migration of estrogen receptor-positive breast cancer T47D and MCF7 cells in vitro, respectively. Results: From GSE59829 dataset, the miRNA expression levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly downregulated while the levels of miR-128-3p, miR-661 and miR-296-3p were significantly upregulated in breast cancers from patients with metastasis as compared to the matched non-metastatic group. Moreover, low expression levels of miR-891a-5p, miR-383-5p and miR-1295a or high expression levels of miR-128-3p, miR-661 and miR-296-3p were respectively associated with low DMFS in patients with breast cancer. Our clinical cohort study supported that the levels of miR-891a-5p, miR-383-5p and miR-1295a were significantly lower in breast cancers from the metastasis group when compared with non-metastatic group. However, there is no significant difference with regard to the levels of miR-128-3p, miR-661 and miR-296-3p in breast cancer between these two groups. Moreover, low expression levels of miR-891a-5p and miR-383-5p but not miR-1295a in breast cancer were significantly associated with low DMFS in patients, implying that the expression of miR-891a-5p and miR-383-5p were the potential prognosis markers for metastatic human breast cancers. Further investigation disclosed that miR-891a-5p but not miR-383-5p restrained both proliferation and migration of T47D and MCF7 cells. In silico analysis of miRNAs target gene through online computational algorithms revealed that A Disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) is the downstream target for miR-891a-5p. Further study confirmed that miR-891a-5p impeded ADAM10 expression by directly binding to its 3'UTR, leading to the inhibition of breast cancer cells proliferation and migration. Moreover, silencing ADAM10 inhibited T47D and MCF7 cells growth and migration. Conclusion: miR-891a-5p is the vital prognostic marker for HR-positive breast cancer. In addition, miR-891a-5p and miR-383-5p are the potential targets for HR-positive breast cancer therapeutics.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China.,Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Lu Xu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Lijie He
- Department of Medical Oncology, Liaoning Provincial People's Hospital, The People's Hospital of China Medical University, Shenyang 110016, China
| | - Jin Wang
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiaonan Shi
- Department of Medical Oncology, the First Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhi Li
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Sha Shi
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Kezuo Hou
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuee Teng
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Xiujuan Qu
- Department of Medical Oncology and Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
33
|
Gao J, Zhang Z, Su H, Zong L, Li Y. Long Noncoding RNA FGD5-AS1 Acts as a Competing Endogenous RNA on microRNA-383 to Enhance the Malignant Characteristics of Esophageal Squamous Cell Carcinoma by Increasing SP1 Expression. Cancer Manag Res 2020; 12:2265-2278. [PMID: 32273764 PMCID: PMC7105361 DOI: 10.2147/cmar.s236576] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/18/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose Previous studies have identified the important roles of a long noncoding RNA called FGD5 antisense RNA 1 (FGD5-AS1) in several types of human cancer. Nonetheless, to our knowledge, the expression and functions of FGD5-AS1 in esophageal squamous cell carcinoma (ESCC) have not been clarified. In this study, we aimed to determine the expression status of long noncoding RNA FGD5-AS1 in ESCC, determine its participation in ESCC progression, and uncover the underlying mechanisms. Methods ESCC tissue samples and paired normal adjacent tissues were collected to quantify FGD5-AS1 expression by reverse-transcription quantitative PCR. The effects of FGD5-AS1 on ESCC cell proliferation, apoptosis, migration, and invasion in vitro as well as tumor growth in vivo were studied using a Cell Counting Kit-8 assay, flow cytometry, Transwell migration and invasion assays, and an in vivo tumor xenograft experiment. Results FGD5-AS1 was found to be aberrantly upregulated in both ESCC tumors and cell lines compared to the control groups. Increased FGD5-AS1 expression manifested a close association with tumor size, TNM stage, and lymph node metastasis in patients with ESCC. Overall survival of patients with ESCC was shorter in the FGD5-AS1 high-expression group than in the FGD5-AS1 low-expression group. An FGD5-AS1 knockdown markedly attenuated ESCC cell proliferation, migration, and invasion and promoted apoptosis in vitro as well as slowed tumor growth in vivo. Mechanism investigation revealed that FGD5-AS1 can increase SP1 expression by sponging microRNA-383 (miR-383), thus functioning as a competing endogenous RNA. An miR-383 knockdown and recovery of SP1 expression attenuated the inhibition of the malignant characteristics of ESCC cells by the FGD5-AS1 knockdown. Conclusion Thus, FGD5-AS1 enhances the aggressive phenotype of ESCC cells in vitro and in vivo via the miR-383–SP1 axis, which may represent a novel target for ESCC therapy.
Collapse
Affiliation(s)
- Jia Gao
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| | - Ziteng Zhang
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Shandong 272000, People's Republic of China
| | - Hong Su
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| | - Ling Zong
- Department of Thoracic Surgery, Affiliated Hospital of Jining Medical University, Shandong 272000, People's Republic of China
| | - Yan Li
- Department of Thoracic Surgery, Heze Municipal Hospital, Heze, Shandong 274031, People's Republic of China
| |
Collapse
|
34
|
Karshovska E, Wei Y, Subramanian P, Mohibullah R, Geißler C, Baatsch I, Popal A, Corbalán Campos J, Exner N, Schober A. HIF-1α (Hypoxia-Inducible Factor-1α) Promotes Macrophage Necroptosis by Regulating miR-210 and miR-383. Arterioscler Thromb Vasc Biol 2020; 40:583-596. [PMID: 31996026 DOI: 10.1161/atvbaha.119.313290] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Inflammatory activation changes the mitochondrial function of macrophages from oxidative phosphorylation to reactive oxygen species production, which may promote necrotic core formation in atherosclerotic lesions. In hypoxic and cancer cells, HIF-1α (hypoxia-inducible factor) promotes oxygen-independent energy production by microRNAs. Therefore, we studied the role of HIF-1α in the regulation of macrophage energy metabolism in the context of atherosclerosis. Approach and Results: Myeloid cell-specific deletion of Hif1a reduced atherosclerosis and necrotic core formation by limiting macrophage necroptosis in apolipoprotein E-deficient mice. In inflammatory bone marrow-derived macrophages, deletion of Hif1a increased oxidative phosphorylation, ATP levels, and the expression of genes encoding mitochondrial proteins and reduced reactive oxygen species production and necroptosis. microRNA expression profiling showed that HIF-1α upregulates miR-210 and downregulates miR-383 levels in lesional macrophages and inflammatory bone marrow-derived macrophages. In contrast to miR-210, which inhibited oxidative phosphorylation and enhanced mitochondrial reactive oxygen species production, miR-383 increased ATP levels and inhibited necroptosis. The effect of miR-210 was due to targeting 2,4-dienoyl-CoA reductase, which is essential in the β oxidation of unsaturated fatty acids. miR-383 affected the DNA damage repair pathway in bone marrow-derived macrophages by targeting poly(ADP-ribose)-glycohydrolase (Parg), which reduced energy consumption and increased cell survival. Blocking the targeting of Parg by miR-383 prevented the protective effect of Hif1a deletion in macrophages on atherosclerosis and necrotic core formation in mice. CONCLUSIONS Our findings unveil a new mechanism by which activation of HIF-1α in inflammatory macrophages increases necroptosis through microRNA-mediated ATP depletion, thus increasing atherosclerosis by necrotic core formation.
Collapse
Affiliation(s)
- Ela Karshovska
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.).,DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Germany (E.K., Y.W., A.S.)
| | - Yuanyuan Wei
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.).,DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Germany (E.K., Y.W., A.S.)
| | - Pallavi Subramanian
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.)
| | - Rokia Mohibullah
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.)
| | - Claudia Geißler
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.)
| | - Isabelle Baatsch
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.)
| | - Aamoun Popal
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.)
| | - Judit Corbalán Campos
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.)
| | - Nicole Exner
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany (N.E.).,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany (N.E.)
| | - Andreas Schober
- From Institute for Cardiovascular Prevention, University Hospital, Ludwig-Maximilians-University, Munich, Germany (E.K., Y.W., P.S., R.M., C.G., I.B., A.P., J.C.C., A.S.).,DZHK, German Centre for Cardiovascular Research, partner site Munich Heart Alliance, Germany (E.K., Y.W., A.S.)
| |
Collapse
|
35
|
Hu B, Gong Z, Bi Z. Inhibition of miR-383 suppresses oxidative stress and improves endothelial function by increasing sirtuin 1. ACTA ACUST UNITED AC 2020; 53:e8616. [PMID: 31994599 PMCID: PMC6984384 DOI: 10.1590/1414-431x20198616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
Previous research has shown that suppression of miR-383 can prevent inflammation of the endothelium, as well as postpone the development of atherosclerosis. However, the role of miR-383 in endothelial cell apoptosis in diabetes remains unclear. The aim of this study was to investigate the function of miR-383 in high glucose-induced apoptosis and oxidative stress in endothelial cells. A series of experiments involving qualitative polymerase chain reaction, cell transfection, luciferase assay, assessment of cell death, detection of catalase and superoxide dismutase concentrations, detection of intracellular reactive oxygen species (ROS), and western blot analysis were performed in this study. We found that miR-383 expression was promoted, while NAD+-dependent deacetylase and sirtuin 1 (SIRT1) expressions were suppressed in the endothelium of the aorta in db/db mice as well as in human umbilical vein endothelial cells, which were treated with high glucose (HG). Increased expression of miR-383 decreased expression of SIRT1, while suppression of miR-383 promoted expression of SIRT1 in human umbilical vein endothelial cells (HUVECs). Furthermore, suppression of miR-383 following transfection with miR-383 suppressor repressed cell death and generation of ROS in HUVECs. SIRT1 knockdown by siRNA-SIRT1 reversed the suppressive effect of miR-383 inhibition on ROS production and cell apoptosis induced by HG treatment. Overall, the findings of our research suggested that suppression of miR-383 repressed oxidative stress and reinforced the activity of endothelial cells by upregulation of SIRT1 in db/db mice, and targeting miR-383 might be promising for effective treatment of diabetes.
Collapse
Affiliation(s)
- Baoxiang Hu
- Cardiac Intensive Care Unit, Zibo Central Hospital, Zibo, Shandong, China
| | - Zushun Gong
- Cardiac Intensive Care Unit, Zibo Central Hospital, Zibo, Shandong, China
| | - Zhaohui Bi
- Cardiac Intensive Care Unit, Zibo Central Hospital, Zibo, Shandong, China
| |
Collapse
|
36
|
Chen S, Chen H, Yu C, Lu R, Song T, Wang X, Tang W, Gao Y. MiR-638 Repressed Vascular Smooth Muscle Cell Glycolysis by Targeting LDHA. Open Med (Wars) 2019; 14:663-672. [PMID: 31989041 PMCID: PMC6972283 DOI: 10.1515/med-2019-0077] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/11/2019] [Indexed: 01/10/2023] Open
Abstract
Background Abnormal proliferation and migration of vascular smooth muscle cells (VSMCs) accelerated vascular diseases progression, like atherosclerosis and restenosis. MicroRNAs were reported to participate in modulating diverse cellular processes. Here, we focused on exploring the role of miR-638 in VSMCs glycolysis and underlying mechanism. Methods Cell Counting Kit-8 (CCK-8) assay was used to measure cell viability. Western blot assay was conducted to determine the expression of cell proliferation markers proliferating cell nuclear antigen (PCNA) and Ki-67, as well as Lactate dehydrogenase A (LDHA). VSMCs migration and invasion were evaluated by Transwell assay. Luciferase reporter gene assay and RNA immunoprecipitation were performed to validate the target relationship between miR-638 and LDHA. LDHA and miR-638 expression were also determined. Glycolysis of VSMCs was tested by corresponding Kits. Results Platelet-derived growth factor-bb (PDGF-bb) promoted the VSMCs viability and down-regulated miR-638. Overexpression of miR-638 inhibited cell proliferation, migration and invasion of VSMCs. LDHA was identified as a target of miR-638, and counter-regulated by miR-638. Loss of miR-638 attenuated the suppressor effects on the proliferation, migration and invasion of VSMCs induced by LDHA down-regulation. MiR-638 inhibited the glycolysis of VSMCs by targeting LDHA. Conclusion MiR-638 is down-regulated by PDGF-bb treatment and suppressed the glycolysis of VSMCs via targeting LDHA.
Collapse
Affiliation(s)
- Shiyuan Chen
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
| | - Hu Chen
- Department of General Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
| | - Chaowen Yu
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
| | - Ran Lu
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
| | - Tao Song
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
| | - Xiaogao Wang
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
| | - Wenbo Tang
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
| | - Yong Gao
- Department of Vascular Surgery, the First Affiliated Hospital of Bengbu Medical College, Changhuai Road 287, 233003Bengbu City, China
- Tel: +86-133-0965-8851
| |
Collapse
|
37
|
Wang J, Lu L, Luo Z, Li W, Lu Y, Tang Q, Pu J. miR-383 inhibits cell growth and promotes cell apoptosis in hepatocellular carcinoma by targeting IL-17 via STAT3 signaling pathway. Biomed Pharmacother 2019; 120:109551. [DOI: 10.1016/j.biopha.2019.109551] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/09/2019] [Accepted: 10/09/2019] [Indexed: 12/28/2022] Open
|
38
|
Tu C, Chen W, Wang S, Tan W, Guo J, Shao C, Wang W. MicroRNA-383 inhibits doxorubicin resistance in hepatocellular carcinoma by targeting eukaryotic translation initiation factor 5A2. J Cell Mol Med 2019; 23:7190-7199. [PMID: 30801960 PMCID: PMC6815770 DOI: 10.1111/jcmm.14197] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Drug resistance occurs commonly in cancers, especially in hepatocellular carcinoma (HCC). Accumulating evidence has demonstrated that microRNAs (miRNAs) play a vital role in tumour chemoresistance. However, little is known about the role of miR-383 in HCC chemoresistance. In the present study, RT-PCR and western blotting were used to identify the expression profile of miR-383 and eukaryotic translation initiation factor 5A2 (EIF5A2). The bioinformatics website Targetscan was used to predict the target genes of miR-383. In vitro and in vivo loss- and gain-of-function studies were performed to reveal the effects and potential mechanism of the miR-383/EIF5A2 axis in chemoresistance of HCC cells. The expression level of miR-383 correlated negatively with doxorubicin (Dox) sensitivity. Overexpression of miR-383 promoted HCC cells to undergo Dox-induced cytotoxicity and apoptosis, whereas miR-383 knockdown had the opposite effects. EIF5A2 was predicted as a target gene of miR-383. EIF5A2 knockdown sensitized HCC cells to Dox. Moreover, miR-383 inhibition-mediated HCC Dox resistance could be reversed by silencing EIF5A2. Finally, we demonstrated that miR-383 inhibition could enhance Dox sensitivity by targeting EIF5A2 in vivo. The results indicated that miR-383 inhibited Dox resistance in HCC cells by targeting EIF5A2. Targeting the miR-383/EIF5A2 axis might help to alleviate the chemoresistance of HCC cells.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Proliferation
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Peptide Initiation Factors/genetics
- Peptide Initiation Factors/metabolism
- Prognosis
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
- Eukaryotic Translation Initiation Factor 5A
Collapse
Affiliation(s)
- Chaoyong Tu
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP.R. China
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Wei Chen
- Tongde Hospital of Zhejiang ProvinceCancer Institute of Integrated traditional Chinese and Western MedicineZhejiang Academy of Traditional Chinese MedicineHangzhouZhejiangChina
| | - Shuqian Wang
- Division of Breast Surgery, Department of SurgeryThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangP.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangP.R. China
| | - Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Jingqiang Guo
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Chuxiao Shao
- Department of Hepatobiliary and Pancreatic Surgery, Lishui HospitalZhejiang University School of Medicine, The Fifth Affiliated Hospital of Wenzhou Medical UniversityLishuiZhejiangP.R. China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic SurgeryThe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangP.R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangP.R. China
- Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, School of MedicineThe First Affiliated Hospital, Zhejiang UniversityHangzhouZhejiangP.R. China
- State Key Laboratory & Collaborative Innovation Center for Diagnosis and Treatment of Infectious DiseaseZhejiang UniversityHangzhouZhejiangP.R. China
| |
Collapse
|
39
|
Wei C, Gao JJ. Downregulated miR-383-5p contributes to the proliferation and migration of gastric cancer cells and is associated with poor prognosis. PeerJ 2019; 7:e7882. [PMID: 31637133 PMCID: PMC6798866 DOI: 10.7717/peerj.7882] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 09/12/2019] [Indexed: 12/24/2022] Open
Abstract
Aim The study aims to identify differentially expressed microRNAs (DEMs) in gastric cancer (GC) and explore the expression, prognosis and downstream regulation role of miR-383-5p in GC. Methods The GC miRNA-Seq and clinical information were downloaded from Firebrowse which stores integrated data sourced from The Cancer Genome Atlas database. The DEMs were identified with limma package in R software at the cut-off criteria of P < 0.05 and |log2 fold change| > 1.0 (|log2FC| > 1.0). The expression of miR-383-5p in GC cell lines and 54 paired GC tissues was measured by quantitative real-time polymerase chain reaction (qRT-PCR). The overall survival curve of miR-383-5p and the association between its expression and clinicopathological features were explored. Wound healing and cell counting kit-8 assays were performed to investigate the capacity of miR-383-5p in cell proliferation and migration. The downstream target genes were predicted by bioinformatics tools (miRDB, TargetScan and starBase). The consensus target genes were selected for gene functional enrichment analysis by FunRich v3.0 software. The luciferase reporter assay was performed to verify the potential targeting sites of miR-383-5p on lactate dehydrogenase A (LDHA). Results A total of 21 down-regulated miRNAs (including miR-383-5p) and 202 up-regulated miRNAs were identified by analyzing GC miRNA-Seq data. Survival analysis found that patients with low miR-383-5p expression had a shorter survival time (median survival time 21.1 months) than those with high expression (46.9 months). The results of qRT-PCR indicated that miR-383-5p was downregulated in GC cell lines and tissues, which was consistent with miRNA-Seq data. The expression of miR-383-5p was significantly associated with tumor size and differentiation grade. Besides, overexpression of miR-383-5p suppressed GC cells proliferation and migration. A total of 49 common target genes of miR-383-5p were obtained by bioinformatics tools and gene functional enrichment analysis showed that these predicted genes participated in PI3K, mTOR, c-MYC, TGF-beta receptor, VEGF/VEGFR and E-cadherin signaling pathways. The data showed that expression of miR-383-5p was negatively correlated with target LDHA (r = −0.203). Luciferase reporter assay suggested that LDHA was a target of miR-383-5p. Conclusion The present study concluded that miR-383-5p was downregulated and may act as a tumor suppressor in GC. Furthermore, its target genes were involved in important signaling pathways. It could be a prognostic biomarker and play a vital role in exploring the molecular mechanism of GC.
Collapse
Affiliation(s)
- Chao Wei
- Department of General Surgery, The No.967 Hospital of PLA Joint Logistics Support Force, Postgraduate Culture Base of Jinzhou Medical University, Dalian, China
| | - Jian-Jun Gao
- Department of General Surgery, The No.967 Hospital of PLA Joint Logistics Support Force, Jinzhou Medical University, Dalian, China
| |
Collapse
|
40
|
Role of mitochondria in rescuing glycolytically inhibited subpopulation of triple negative but not hormone-responsive breast cancer cells. Sci Rep 2019; 9:13748. [PMID: 31551501 PMCID: PMC6760198 DOI: 10.1038/s41598-019-50141-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/06/2019] [Indexed: 12/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) subtype is among the most aggressive cancers with the worst prognosis and least therapeutic targetability while being more likely to spread and recur. Cancer transformations profoundly alter cellular metabolism by increasing glucose consumption via glycolysis to support tumorigenesis. Here we confirm that relative to ER-positive cells (MCF7), TNBC cells (MBA-MD-231) rely more on glycolysis thus providing a rationale to target these cells with glycolytic inhibitors. Indeed, iodoacetate (IA), an effective GAPDH inhibitor, caused about 70% drop in MDA-MB-231 cell viability at 20 μM while 40 μM IA was needed to decrease MCF7 cell viability only by 30% within 4 hours of treatment. However, the triple negative cells showed strong ability to recover after 24 h whereas MCF7 cells were completely eliminated at concentrations <10 μM. To understand the mechanism of MDA-MB-231 cell survival, we studied metabolic modulations associated with acute and extended treatment with IA. The resilient TNBC cell population showed a significantly greater count of cells with active mitochondria, lower apoptotic markers, normal cell cycle regulations, moderately lowered ROS, but increased mRNA levels of p27 and PARP1; all compatible with enhanced cell survival. Our results highlight an interplay between PARP and mitochondrial oxidative phosphorylation in TNBC that comes into play in response to glycolytic disruption. In the light of these findings, we suggest that combined treatment with PARP and mitochondrial inhibitors may provide novel therapeutic strategy against TNBC.
Collapse
|
41
|
Zhu C, Huang Q, Zhu H. miR-383 Inhibited the Cell Cycle Progression of Gastric Cancer Cells via Targeting Cyclin E2. DNA Cell Biol 2019; 38:849-856. [PMID: 31170011 DOI: 10.1089/dna.2019.4624] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Increasing evidence has suggested the key roles of miRNAs in the initiation and progression of human cancers. miR-383 was downregulated and played a suppressive role in a variety of cancers; however, the function of miR-383 in gastric cancer remains unclear. In this study, we found that the expression of miR-383 was significantly reduced in gastric cancer tissues and correlated with the advanced progression of these cancer patients. Functional analysis showed that overexpression of miR-383 inhibited the proliferation and upregulated the apoptosis of gastric cancer cells. Furthermore, cyclin E2 was predicted as the target of miR-383 using the bioinformatics database. miR-383 bound the 3'-untranslated region of cyclin E2 and decreased the expression of cyclin E2 in gastric cancer cells. Upregulation of cyclin E2 was observed in gastric cancer tissues compared with the normal controls. Highly expressed cyclin E2 was inversely correlated with the level of miR-383 in gastric cancer tissues. Consistent with the decreased expression of cyclin E2 with miR-383, transfection of miR-383 induced cell cycle arrest at G1 phase in gastric cancer cells. Restoration of cyclin E2 significantly reversed the inhibitory effect of miR-183 on gastric cancer cell proliferation. Collectively, our results characterized the suppressive role of miR-383 in gastric cancer partially through targeting cyclin E2.
Collapse
Affiliation(s)
- Chenyu Zhu
- 1Gastrointestinal Surgery, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Hubei Province, China
| | - Qun Huang
- 2Operating Room, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Hubei Province, China
| | - Hongyu Zhu
- 3Gynecology Department, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Hubei Province, China
| |
Collapse
|
42
|
Orang AV, Petersen J, McKinnon RA, Michael MZ. Micromanaging aerobic respiration and glycolysis in cancer cells. Mol Metab 2019; 23:98-126. [PMID: 30837197 PMCID: PMC6479761 DOI: 10.1016/j.molmet.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cancer cells possess a common metabolic phenotype, rewiring their metabolic pathways from mitochondrial oxidative phosphorylation to aerobic glycolysis and anabolic circuits, to support the energetic and biosynthetic requirements of continuous proliferation and migration. While, over the past decade, molecular and cellular studies have clearly highlighted the association of oncogenes and tumor suppressors with cancer-associated glycolysis, more recent attention has focused on the role of microRNAs (miRNAs) in mediating this metabolic shift. Accumulating studies have connected aberrant expression of miRNAs with direct and indirect regulation of aerobic glycolysis and associated pathways. SCOPE OF REVIEW This review discusses the underlying mechanisms of metabolic reprogramming in cancer cells and provides arguments that the earlier paradigm of cancer glycolysis needs to be updated to a broader concept, which involves interconnecting biological pathways that include miRNA-mediated regulation of metabolism. For these reasons and in light of recent knowledge, we illustrate the relationships between metabolic pathways in cancer cells. We further summarize our current understanding of the interplay between miRNAs and these metabolic pathways. This review aims to highlight important metabolism-associated molecular components in the hunt for selective preventive and therapeutic treatments. MAJOR CONCLUSIONS Metabolism in cancer cells is influenced by driver mutations but is also regulated by posttranscriptional gene silencing. Understanding the nuanced regulation of gene expression in these cells and distinguishing rapid cellular responses from chronic adaptive mechanisms provides a basis for rational drug design and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ayla V Orang
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Janni Petersen
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Ross A McKinnon
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| | - Michael Z Michael
- Flinders Centre for Innovation in Cancer, Flinders University, Flinders Medical Centre, Adelaide, South Australia 5042, Australia.
| |
Collapse
|
43
|
Secretome profiling of heterotypic spheroids suggests a role of fibroblasts in HIF-1 pathway modulation and colorectal cancer photodynamic resistance. Cell Oncol (Dordr) 2019; 42:173-196. [PMID: 30756254 DOI: 10.1007/s13402-018-00418-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Previous analyses of the tumor microenvironment (TME) have resulted in a concept that tumor progression may depend on interactions between cancer cells and its surrounding stroma. An important aspect of these interactions is the ability of cancer cells to modulate stroma behavior, and vice versa, through the action of a variety of soluble mediators. Here, we aimed to identify soluble factors present in the TME of colorectal cancer cells that may affect relevant pathways through secretome profiling. METHODS To partially recapitulate the TME and its architecture, we co-cultured colorectal cancer cells (SW480, TC) with stromal fibroblasts (MRC-5, F) as 3D-spheroids. Subsequent characterization of both homotypic (TC) and heterotypic (TC + F) spheroid secretomes was performed using label-free liquid chromatography-mass spectrometry (LC-MS). RESULTS Through bioinformatic analysis using the NCI-Pathway Interaction Database (NCI-PID) we found that the HIF-1 signaling pathway was most highly enriched among the proteins whose secretion was enhanced in the heterotypic spheroids. Previously, we found that HIF-1 may be associated with resistance of colorectal cancer cells to photodynamic therapy (PDT), an antitumor therapy that combines photosensitizing agents, O2 and light to create a harmful photochemical reaction. Here, we found that the presence of fibroblasts considerably diminished the sensitivity of colorectal cancer cells to photodynamic activity. Although the biological significance of the HIF-1 pathway of secretomes was decreased after photosensitization, this decrease was partially reversed in heterotypic 3D-spheroids. HIF-1 pathway modulation by both PDT and stromal fibroblasts was confirmed through expression assessment of the HIF-target VEGF, as well as through HIF transcriptional activity assessment. CONCLUSION Collectively, our results delineate a potential mechanism by which stromal fibroblasts may enhance colorectal cancer cell survival and photodynamic treatment resistance via HIF-1 pathway modulation.
Collapse
|
44
|
Up-regulation of miR-383-5p suppresses proliferation and enhances chemosensitivity in ovarian cancer cells by targeting TRIM27. Biomed Pharmacother 2019; 109:595-601. [DOI: 10.1016/j.biopha.2018.10.148] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 11/21/2022] Open
|
45
|
Wan P, Chi X, Du Q, Luo J, Cui X, Dong K, Bing Y, Heres C, Geller DA. miR-383 promotes cholangiocarcinoma cell proliferation, migration, and invasion through targeting IRF1. J Cell Biochem 2018; 119:9720-9729. [PMID: 30145803 DOI: 10.1002/jcb.27286] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/28/2018] [Indexed: 12/16/2022]
Abstract
Interferon regulatory factor 1 (IRF1) has been found to serve as a tumor suppressor in cholangiocarcinoma, and enabled prediction of clinical progression and prognosis in our previous study. The objective of the current study is to screen and identify valuable microRNAs (miR), which target IRF1 to regulate cholangiocarcinoma cell proliferation, migration, and invasion. High expression of miR-383 was observed in cholangiocarcinoma tissues and cells. Meanwhile, we found the predicted binding site of miR-383 on the IRF1 3'-untranslated region (3'-UTR) according to the miR target database. The miR-383 expression was negatively related to IRF1 messeneger RNA (mRNA) and protein expression in cholangiocarcinoma tissue samples, and miR-383 negatively regulated IRF1 mRNA and protein expression in cholangiocarcinoma cells. Subsequently, we conducted a luciferase reporter assay to prove the predicted binding site miR-383 on IRF1 3'-UTR. Moreover, the results of the rescue study suggested that IRF1 was a functional target of miR-383 involved in regulating cholangiocarcinoma cell proliferation, migration, and invasion. Finally, we evaluated the clinical and prognostic significance of miR-383 in cholangiocarcinoma cases, and found that high expression of miR-383 was correlated with advanced tumor stage, large tumor size, present vascular invasion, and metastasis, and acted as an unfavorable independent prognostic factor. In conclusion, miR-383 serves as a tumor-suppressive miR to regulate cholangiocarcinoma cell proliferation, migration, and invasion via directly targeting IRF1.
Collapse
Affiliation(s)
- Peiqi Wan
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaojv Chi
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Qiang Du
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jing Luo
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, The Second Affiliated Hospital of Xiangya Medical University, Changsha, China
| | - Xiao Cui
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kun Dong
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of General Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yan Bing
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Surgery, The First Affiliated Hospital of Zhengzhou Medical University, Zhengzhou, China
| | - Caroline Heres
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Geller
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
46
|
MiR-323a-3p suppressed the glycolysis of osteosarcoma via targeting LDHA. Hum Cell 2018; 31:300-309. [DOI: 10.1007/s13577-018-0215-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 06/23/2018] [Indexed: 02/06/2023]
|
47
|
Hui L, Zhang J, Guo X. MiR-125b-5p suppressed the glycolysis of laryngeal squamous cell carcinoma by down-regulating hexokinase-2. Biomed Pharmacother 2018; 103:1194-1201. [PMID: 29864898 DOI: 10.1016/j.biopha.2018.04.098] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/13/2018] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is the most common form of laryngeal carcinoma with poor prognosis. Exploring novel factors involved in the progression of LSCC is quite necessary for understanding the mechanisms and designing therapeutic strategies for LSCC. In this study, we showed that miR-125b-5p was significantly down-regulated in LSCC tissues and cell lines. The decreased expression of miR-125b-5p was associated with the tumor differentiation, metastasis and high clinical stage of the LSCC patients. Overexpression of miR-125b-5p suppressed the proliferation and induced apoptosis of LSCC cells. Bioinformatics analysis predicted hexokinase-2 (HK2), an essential enzyme involved in the glycolysis of cancer cells, as one of the downstream targets of miR-125b-5p. Further molecular studies showed that highly expressed miR-125b-5p bound the 3'-UTR of HK2 and decreased both the mRNA and protein levels of HK2. Consistent with the function of HK2 in glycolytic metabolism, overexpression of miR-125b-5p significantly suppressed the glucose consumption and lactate production of LSCC cells. Notably, restoration the expression of HK2 attenuated the inhibitory effect of miR-125b-5p on the glycolysis of LSCC cells. The inverse correlation between the expression of miR-125b-5p and HK2 in LSCC tissues further supported the involvement of miR-125b-5p-HK2 axis in the progression of LSCC. Collectively, these finding suggested the miR-125b-5p-HK2 pathway as a novel mechanism in regulating the glycolysis and progression of LSCC.
Collapse
Affiliation(s)
- Lian Hui
- Department of Otolaryngology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, China.
| | - Jingru Zhang
- Department of Otolaryngology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, China
| | - Xing Guo
- Department of Otolaryngology, The First Hospital of China Medical University, No. 155 Nanjing Bei Street, Shenyang, 110001, China
| |
Collapse
|
48
|
Teng P, Jiao Y, Hao M, Tang X. microRNA-383 suppresses the PI3K-AKT-MTOR signaling pathway to inhibit development of cervical cancer via down-regulating PARP2. J Cell Biochem 2018; 119:5243-5252. [PMID: 29236322 DOI: 10.1002/jcb.26585] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/01/2017] [Indexed: 12/22/2022]
Abstract
This study aims to evaluate the effect of the regulatory relationship between microRNA-383 (miR-383) and PARP2 in the cell migration and invasion in human with cervical cancer (CC) via the PI3K-AKT-MTOR signaling pathway. Cancerous tissues and corresponding paracancerous tissues were collected from 115 patients with CC. The positive expression rate of PARP2 was detected by immunohistochemistry. HeLa cells with highest miR-383 expression were selected and assigned into the blank, negative control (NC), miR-383 mimic, miR-383 inhibitor, si-PARP2, and miR-383 inhibitor + si-PARP2 groups. qRT-PCR and Western blot were performed to evaluate the expression of miR-383, PI3K, AKT, mTOR, PARP2, and p70S6K. MTT assay were utilized to measure cell viability. Transwell assay were applied to evaluate cell invasion and metastasis. Dual luciferase reporter assay identified that PARP2 is a target gene of miR-383. Cancerous tissues manifested higher expression of PI3K, AKT, mTOR, PARP2, and p70S6K but lower miR-383 expression than paracancerous tissues. Compared with the blank and NC groups, the miR-383 mimic and si-PARP2 groups had decreased expression of PI3K, AKT, mTOR, PARP2, and p70S6K mRNA and protein. In the miR-383 mimic and si-PARP2 groups, the cell viability, migration, and invasion were descended, in comparison to the blank and NC groups. All above parameters showed an opposite trend in the miR-383 inhibitor group when compared with the blank and NC groups. This study demonstrates that miR-383 could down-regulate PARP2 to protect against CC by inhibiting PI3K-AKT-MTOR signaling pathway.
Collapse
Affiliation(s)
- Peng Teng
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, P. R. China
| | - Yan Jiao
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, P. R. China
| | - Min Hao
- Department of Gynecology and Obstetrics, The Second Hospital of Shanxi Medical University, Taiyuan, P. R. China
| | - Xin Tang
- Department of Gynecology and Obstetrics, Xuzhou Central Hospital, Xuzhou, P. R. China
| |
Collapse
|
49
|
He Y, Chen X, Yu Y, Li J, Hu Q, Xue C, Chen J, Shen S, Luo Y, Ren F, Li C, Bao J, Yan J, Qian G, Ren Z, Sun R, Cui G. LDHA is a direct target of miR-30d-5p and contributes to aggressive progression of gallbladder carcinoma. Mol Carcinog 2018; 57:772-783. [PMID: 29569755 DOI: 10.1002/mc.22799] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/06/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Yuting He
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Xiaolong Chen
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Yan Yu
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Juan Li
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Qiuyue Hu
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Chen Xue
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Jianan Chen
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Shen Shen
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Yonggang Luo
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Fang Ren
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Chao Li
- Department of Bone and Soft Tissue; The Affiliated Cancer Hospital of Zhengzhou University; Henan Cancer Hospital; Zhengzhou China
| | - Jie Bao
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Jingya Yan
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Guowu Qian
- Department of General Surgery; The Affiliated Nanyang Central Hospital of Zhengzhou University; Nanyang China
| | - Zhigang Ren
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Ranran Sun
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| | - Guangying Cui
- Precision Medicine Center; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
- Key Laboratory of Clinical Medicine; The First Affiliated Hospital of Zhengzhou University; Zhengzhou China
| |
Collapse
|
50
|
Peng C, Song Y, Chen W, Wang X, Liu X, Wang F, Wu D, Ma S, Wang X, Gao C. FLVCR1 promotes the proliferation and tumorigenicity of synovial sarcoma through inhibiting apoptosis and autophagy. Int J Oncol 2018. [PMID: 29532854 DOI: 10.3892/ijo.2018.4312] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Feline leukemia virus subgroup C receptor 1 (FLVCR1) has been reported to have a crucial role in variety of biological processes, including cell proliferation, cell death, apoptosis, oxidative stress response, cellular differentiation and metabolism. However, little is known about its role in synovial sarcoma (SS). In the current study, FLVCR1 expression was analyzed in two SS cell lines (SW982 and HS-SY-II), and in eight SS tissues and paired adjacent non-tumor tissues using reverse transcription-quantitative polymerase chain reaction, western blot analysis and immunohistochemistry. Lentivirus-mediated short hairpin RNAs were used to knock down FLVCR1 expression in SW982 and HS-SY-II cells. The effects of FLVCR1 knockdown on the cell proliferation, clonogenicity, cell cycle and apoptosis in SS cells were evaluated by MTT, colony formation assay, flow cytometry analysis, western blotting and in vivo tumorigenesis in nude mice. In the current study, gene expression of FLVCR1 was upregulated in SS cell lines (SW982 and HS-SY-II) and SS tissues from patients. The protein levels of FLVCR1 in SS tissues were also significantly higher than in adjacent non-tumor tissues. Furthermore, suppressing the expression of FLVCR1 in SS cells using short hairpin RNA effectively attenuated cell proliferation, colony formation and impaired the cell cycle, and also significantly induced apoptosis and autophagy. In accordance with this, an in vivo tumorigenicity assay in mice demonstrated that suppression of FLVCR1 expression inhibited the growth of SS tumors implanted subcutaneously. Collectively, these results demonstrated that FLVCR1 may act as an oncoprotein, and have key roles in promoting proliferation and tumorigenicity of SS, and this may shed new light on finding novel therapeutic strategies against SS.
Collapse
Affiliation(s)
- Changliang Peng
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yan Song
- Department of Nephrology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, P.R. China
| | - Xiaoying Wang
- Department of Pathology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiaoli Liu
- Department of Hematology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Fang Wang
- Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Dongjin Wu
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Shengzhong Ma
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xiuwen Wang
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Chunzheng Gao
- Department of Orthopaedics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|