1
|
Kristeleit R, Plummer R, Jones R, Carter L, Blagden S, Sarker D, Arkenau T, Evans TRJ, Danson S, Symeonides SN, Veal GJ, Klencke BJ, Kowalski MM, Banerji U. A Phase 1/2 trial of SRA737 (a Chk1 inhibitor) administered orally in patients with advanced cancer. Br J Cancer 2023; 129:38-45. [PMID: 37120671 PMCID: PMC10307885 DOI: 10.1038/s41416-023-02279-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND This was a first-in-human Phase 1/2 open-label dose-escalation study of the novel checkpoint kinase 1 (Chk1) inhibitor SRA737. METHODS Patients with advanced solid tumours enrolled in dose-escalation cohorts and received SRA737 monotherapy orally on a continuous daily (QD) dosing schedule in 28-day cycles. Expansion cohorts included up to 20 patients with prospectively selected, pre-specified response predictive biomarkers. RESULTS In total, 107 patients were treated at dose levels from 20-1300 mg. The maximum tolerated dose (MTD) of SRA737 was 1000 mg QD, the recommended Phase 2 dose (RP2D) was 800 mg QD. Common toxicities of diarrhoea, nausea and vomiting were generally mild to moderate. Dose-limiting toxicity at daily doses of 1000 and 1300 mg QD SRA737 included gastrointestinal events, neutropenia and thrombocytopenia. Pharmacokinetic analysis at the 800 mg QD dose showed a mean Cmin of 312 ng/mL (546 nM), exceeding levels required to cause growth delay in xenograft models. No partial or complete responses were seen. CONCLUSIONS SRA737 was well tolerated at doses that achieved preclinically relevant drug concentrations but single agent activity did not warrant further development as monotherapy. Given its mechanism of action resulting in abrogating DNA damage repair, further clinical development of SRA737 should be as combination therapy. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov NCT02797964.
Collapse
Affiliation(s)
| | - Ruth Plummer
- Newcastle University and Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, UK
| | - Robert Jones
- Velindre School of Medicine, Cardiff University, and Velindre University NHS Trust, Cardiff, UK
| | - Louise Carter
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, UK
| | - Sarah Blagden
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford University Hospital NHS Trust, Oxford, UK
| | | | | | - Thomas R Jeffry Evans
- The Beatson West of Scotland Cancer Centre and the University of Glasgow, Glasgow, UK
| | - Sarah Danson
- Sheffield ECMC, Department of Oncology and Metabolism, University of Sheffield, and Sheffield Teaching Hospital NHS Foundation Trust, Sheffield, UK
| | - Stefan N Symeonides
- Edinburgh ECMC, Institute of Genetics & Cancer, University of Edinburgh, Edinburgh Cancer Centre, Edinburgh, UK
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | | | | | - Udai Banerji
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
2
|
Jones R, Plummer R, Moreno V, Carter L, Roda D, Garralda E, Kristeleit R, Sarker D, Arkenau T, Roxburgh P, Walter HS, Blagden S, Anthoney A, Klencke BJ, Kowalski MM, Banerji U. A Phase I/II Trial of Oral SRA737 (a Chk1 Inhibitor) Given in Combination with Low-Dose Gemcitabine in Patients with Advanced Cancer. Clin Cancer Res 2023; 29:331-340. [PMID: 36378548 PMCID: PMC10539020 DOI: 10.1158/1078-0432.ccr-22-2074] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/21/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE This was a Phase I/II trial of the novel checkpoint kinase 1 (Chk1) inhibitor SRA737 given in combination with gemcitabine. Its objectives were to establish the safety profile, recommended Phase 2 dose (RP2D), pharmacokinetics profile, and clinical activity of SRA737. PATIENTS AND METHODS Patients with advanced solid tumors were enrolled into dose-escalation cohorts and treated in 28-day cycles with oral SRA737 on days 2, 3, 9, 10, 16, and 17, and intravenous gemcitabine on days 1, 8, and 15. Treatment was continued until progression. Each expansion cohort included up to 20 patients with specific genetically defined tumors. RESULTS The RP2D was determined to be 500 mg SRA737 combined with low-dose (250 mg/m2) gemcitabine. Of 143 enrolled patients, 77 were treated at doses of at least 500 mg SRA737 combined with 250 mg/m2 gemcitabine. Common toxicities of nausea, vomiting, fatigue, and diarrhea were primarily mild to moderate, and rarely led to treatment discontinuation. Anemia, neutropenia, and thrombocytopenia were grade ≥3 in 11.7%, 16.7%, and 10% of patients treated at the RP2D, respectively. The objective response rate (ORR) was 10.8% overall and notably the ORR in anogenital cancer was 25%. Partial tumor responses were observed in anogenital cancer, cervical cancer, high-grade serous ovarian cancer, rectal cancer, and small cell lung cancer. CONCLUSIONS SRA737 in combination with low-dose gemcitabine was well tolerated with lower myelotoxicity than has been seen at standard doses of gemcitabine or with other combinations of Chk1 inhibitors with gemcitabine. Tumor responses were observed in anogenital and other solid tumors.
Collapse
Affiliation(s)
- Robert Jones
- Velindre School of Medicine, Cardiff University, and Velindre University NHS Trust, Cardiff, United Kingdom
| | - Ruth Plummer
- Newcastle University and Newcastle Hospitals NHS Trust, Newcastle Upon Tyne, United Kingdom
| | - Victor Moreno
- START Madrid-Fundación Jiménez Díaz, Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Louise Carter
- Division of Cancer Sciences, The University of Manchester and The Christie NHS Foundation Trust, Manchester, United Kingdom
| | | | - Elena Garralda
- Hospital Universitario Vall d'Hebron, Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | | | - Debashis Sarker
- King's College London and Guy's Hospital, London, United Kingdom
| | | | - Patricia Roxburgh
- University of Glasgow and Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Harriet S. Walter
- University Hospitals of Leicester and University of Leicester, Leicester, United Kingdom
| | - Sarah Blagden
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford University Hospital NHS Trust, Oxford, United Kingdom
| | - Alan Anthoney
- Leeds Institute of Medical Research, University of Leeds and St. James' University Hospital, Leeds, United Kingdom
| | | | | | - Udai Banerji
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation trust, London, United Kingdom
| |
Collapse
|
3
|
Feng X, Wu C, Yang W, Wu J, Wang P. Mechanism-Based Sonodynamic–Chemo Combinations against Triple-Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23147981. [PMID: 35887326 PMCID: PMC9315679 DOI: 10.3390/ijms23147981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022] Open
Abstract
Due to its noninvasive nature, site-confined irradiation, and high tissue penetrating capabilities, ultrasound (US)-driven sonodynamic treatment (SDT) has been proven to have broad application possibilities in neoplastic and non-neoplastic diseases. However, the inefficient buildup of sonosensitizers in the tumor site remarkably impairs SDT efficiency. The present work proposes a deep-penetrating sonochemistry nanoplatform (Pp18-lipos@SRA737&DOX, PSDL) comprising Pp18 liposomes (Pp18-lipos, Plipo), SRA737 (a CHK1 inhibitor), and doxorubicin (DOX) for the controlled formation of reactive oxygen species (ROS) and release of DOX and SRA737 upon US activation, therefore increasing chemotherapeutic effectiveness and boosting SDT efficacy. Therein, the antitumor activities of DOX have been attributed to its intercalation into the nucleus DNA and induction of cell apoptosis. CHK1 evolved to respond to DNA damage and repair the damage via cell cycle progression. SRA737 is a potent and orally bioavailable clinical drug candidate for inhibiting CHK1, demonstrating adjuvant anticancer effect in vitro and in vivo. It was interesting to find that SRA737 carried into Plipo@DOX could significantly alleviate G2/M cell cycle arrest and aggravate DNA double-strand injuries, resulting in significant cell death. The developed US-switchable nanosystem provides a promising strategy for augmenting sono-chemotherapy against breast cancer controllably and precisely.
Collapse
Affiliation(s)
- Xiaolan Feng
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Chen Wu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Wenhao Yang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Jiayi Wu
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
| | - Pan Wang
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, Xi’an 710119, China; (X.F.); (C.W.); (W.Y.); (J.W.)
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710119, China
- Correspondence: ; Tel.: +86-029-85310275
| |
Collapse
|
4
|
Booth L, Roberts J, Poklepovic A, Dent P. The CHK1 inhibitor SRA737 synergizes with PARP1 inhibitors to kill carcinoma cells. Cancer Biol Ther 2018; 19:786-796. [PMID: 30024813 DOI: 10.1080/15384047.2018.1472189] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Inhibitors of PARP1 are approved therapeutic agents in ovarian carcinomas. We determined whether the novel clinically relevant CHK1 inhibitor SRA737 interacted with PARP1 inhibitors to kill carcinoma cells. In multiple mammary and ovarian cancer lines SRA737 synergized with the PARP1 inhibitors olaparib and niraparib to cause cell death. The [SRA737 + niraparib] drug combination activated an ATM-AMPK-ULK1-mTOR pathway which resulted in the formation of autophagosomes, temporally followed by autolysosome formation. Phosphorylation of ULK1 S317 was essential for kinase activation against ATG13. The drug combination elevated eIF2α phosphorylation which was causal at increasing Beclin1 and ATG5 expression, reducing MCL-1 and BCL-XL levels, and causing CD95 activation. Knock down of CD95, eIF2α, ATM, AMPKα, ULK1, Beclin1 or ATG5 reduced drug combination lethality. Blockade of either caspase 9 function or that of AIF each partially prevented cell death. Expression of activated mTOR or of c-FLIP-s or of BCL-XL reduced cell killing. In vivo, SRA737 and niraparib interacted in an additive fashion to suppress the growth of mammary tumors. Multiplex analyses revealed that drug combination treated tumors had reduced their plasma levels of sERBB1, sERBB2, sVEGFR1, sVEGFR2, sIL-6R, HGF, PDGFAB/BB and CXCL16 and enhanced the levels of CCL26, IL-8 and MIF. Surviving tumors had activated ERK1/2 and AKT. This finding argues that IL-8/ERK/AKT signaling may be an evolutionary survival response to [SRA737 + niraparib].
Collapse
Affiliation(s)
- Laurence Booth
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Jane Roberts
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| | - Andrew Poklepovic
- b Department of Medicine , Virginia Commonwealth University , Richmond , VA , USA
| | - Paul Dent
- a Department of Biochemistry and Molecular Biology , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|