1
|
Jiang D, Li P, Yuan L. Bioanalysis of free antisense oligonucleotide payload from antibody-oligonucleotide conjugate by hybridization LC-MS/MS. Bioanalysis 2024; 16:791-800. [PMID: 39041663 DOI: 10.1080/17576180.2024.2368339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024] Open
Abstract
Background: Antisense oligonucleotides (ASOs) have been conjugated to various moieties, such as peptides, antibodies or Fab regions of antibodies, to enhance their delivery to target tissues. The quantitation of free ASO (ASO payload) is critical to characterize its pharmacokinetics/pharmacodynamics (PK/PD) properties and biodistribution after delivery of the peptide/antibody/Fab ASO conjugates.Results: We developed a hybridization-based LC-MS/MS methodology for quantification of free ASO in tissues in the presence of Fab-ASO and ASO with linker (ASO-linker).Conclusion: The developed method was applied to measure accurately the free ASO concentrations in liver and gastrocnemius in mice that were dosed with Fab-ASO. This methodology has also been applied to free ASO bioanalysis for other antibody-ASO and Fab-ASO conjugates in various tissues and plasma/serum samples.
Collapse
Affiliation(s)
- Di Jiang
- Drug Metabolism & Pharmacokinetics, Biogen, 225 Binney St, Cambridge, MA 02142, USA
- Current address: Denali Therapeutics, 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Pei Li
- Drug Metabolism & Pharmacokinetics, Biogen, 225 Binney St, Cambridge, MA 02142, USA
- Current address: Vertex Pharmaceuticals, 50 Northern Avenue, Boston, MA 02210, USA
| | - Long Yuan
- Drug Metabolism & Pharmacokinetics, Biogen, 225 Binney St, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Agrawal K, Calliste LK, Ji S, Xu S, Ayers SA, Jian W. Comparison of multiple bioanalytical assay platforms for the quantitation of siRNA therapeutics. Bioanalysis 2024; 16:651-667. [PMID: 39254503 PMCID: PMC11389733 DOI: 10.1080/17576180.2024.2350266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/29/2024] [Indexed: 09/11/2024] Open
Abstract
Aim: Oligonucleotide therapeutics can be quantified using various bioanalytical methods, and these methods have been compared extensively. However, few comparisons exist where the same analyte is evaluated by multiple assay platforms.Materials & methods: Hybrid LC-MS, SPE-LC-MS, HELISA and SL-RT-qPCR methods were developed for an siRNA analyte, and samples from a pharmacokinetic study were analyzed by all four methods.Results: All assay platforms provided comparable data, though higher concentrations were observed using the non-LC-MS assays. Hybrid LC-MS and SL-RT-qPCR were the most sensitive methodologies, and SL-RT-qPCR and HELISA demonstrated the highest throughput.Conclusion: Each assay platform is suitable for oligonucleotide bioanalysis, and the ultimate choice of methodology will depend on the prioritization of needs such as sensitivity, specificity and throughput.
Collapse
Affiliation(s)
- Karan Agrawal
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Laurelle K Calliste
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Shaofei Ji
- Translational PK/PD & Investigative Toxicology, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Shengsheng Xu
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Stephen A Ayers
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| | - Wenying Jian
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, LLC, Spring House, PA 19477, USA
| |
Collapse
|
3
|
Zhang X, Sha C, Zhang W, Zhao F, Zhu M, Leng G, Liu W. Development and validation of an HILIC/MS/MS method for determination of nusinersen in rabbit plasma. Heliyon 2024; 10:e31213. [PMID: 38799737 PMCID: PMC11126830 DOI: 10.1016/j.heliyon.2024.e31213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
A hydrophilic interaction liquid chromatography tandem mass spectrometry (HILIC/MS/MS) method was developed and validated for the quantitative analysis of the fully phosphorothioate modified oligonucleotide nusinersen. HILIC/MS/MS method is more robust and compatible with mass spectrometry than ion pair reversed-phase liquid chromatography-tandem mass spectrometry (IP-RP-LC/MS/MS). Various types and concentrations of additives and different pH of mobile phase affected the mass spectrometry response, chromatographic peak shape and retention of nusinersen. The optimized extraction method of nusinersen employs hydrophilic-lipophilic balance solid phase extraction, with a recovery of up to 80 %. Chromatographic quantification was performed using a gradient system on an amide column and the mobile phase consisted of ammonium acetate, acetonitrile and water in a certain proportion. The fully phosphorothioate modified nusinersen can obtain a high mass spectrometry response by providing greater peak symmetry and high ionization efficiency in a high-pH mobile phase. Moreover, the significant carry over interference was observed at the pH 6.3 of the mobile phase. Adjusting the pH value up to 10, and the carry over interference disappeared. The lower limit of quantitation of this developed HILIC/MS/MS assay was 30.0 ng/mL and the method was systematic methodology validated. This HILIC/MS/MS method provides an attractive and robust alternative for the quantitative analysis of nusinersen and was applied in the pharmacokinetic study of nusinersen in rabbits.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Yantai University, Yantai, 264005, China
| | - Chunjie Sha
- Department of Traditional Chinese Medicine, Shandong College of Traditional Chinese Medicine, Yantai, China
| | - Wei Zhang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Fengjuan Zhao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Mingli Zhu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Guangyi Leng
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Luye Pharmaceutical Group, Yantai, China
| | - Wanhui Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Yantai University, Yantai, 264005, China
| |
Collapse
|
4
|
Ewles M, Ledvina AR, Powers B, Thomas CE. Observations from a decade of oligonucleotide bioanalysis by LC-MS. Bioanalysis 2024; 16:615-629. [PMID: 38634379 PMCID: PMC11352704 DOI: 10.4155/bio-2024-0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
There is a growing need for efficient bioanalysis of oligonucleotide therapeutics. This broad class of molecules presents numerous challenges relative to traditional small molecule therapeutics. Methodologies including ligand-binding assays or polymerase chain reaction may be fit-for-purpose in many instances, but liquid chromatography coupled to mass spectrometry (LC-MS) often delivers the best balance of sensitivity and selectivity. Over the last decade, we have engaged with many such molecules and derived insights into challenges and solutions. Herein, we provide four case studies illustrating challenges we have encountered. These issues include low or variable analyte recovery, poor resolution from related species, chromatographic abnormalities or challenging sensitivity. We present a summary of considerations, based on these experiences, to assist others working in the area.
Collapse
Affiliation(s)
- Matthew Ewles
- Labcorp Early Development Laboratories Limited; Otley Road, Harrogate; North Yorkshire, HG3 1PY, UK
| | - Aaron R Ledvina
- Labcorp Early Development Laboratories, Inc.; 3301 Kinsman Blvd., Madison, WI 53704, USA
| | - Brendan Powers
- Labcorp Early Development Laboratories, Inc.; 3301 Kinsman Blvd., Madison, WI 53704, USA
| | - C Eric Thomas
- Labcorp Central Laboratory Services Limited Partnership; 8211 SciCor Drive, Indianapolis, IN 46214, USA
| |
Collapse
|
5
|
Studzińska S, Szymarek J, Mazurkiewicz-Bełdzińska M. Improvement of serum sample preparation and chromatographic analysis of nusinersen used for the treatment of spinal muscular atrophy. Talanta 2024; 267:125173. [PMID: 37690419 DOI: 10.1016/j.talanta.2023.125173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
The present investigation showed that each of the three different liquid chromatography modes may be successfully used for the qualitative analysis of nusinersen metabolites in a patient's serum sample extract. However, the smallest number was detected by the hydrophilic interaction liquid chromatography. Furthermore, the response of the mass spectrometry is several times greater for ion pair chromatography compared to reversed-phase one. Various extraction methods were applied for the extraction of nusinersen metabolites from serum. Silica with bonded capture strand for hybridization was applied, as well as silica modified with amino and carboxyl groups for dispersive solid phase extraction. The hybridization allows selective extraction of nusinersen analogs, however, it fails in extraction of short metabolites. On the contrary, the efficiency of weak ion exchange-based extraction was high, even in the case of the direct extraction of nusinersen metabolites from diluted serum samples without a protein removal step. The new material is a great alternative to liquid-liquid extraction and hybridization for the isolation of nusinersen metabolites from the serum of patients with spinal muscular atrophy (SMA). It is a very simple method that uses a low concentration of organic salt and desorption occurs after changing its pH. Such complex studies were performed for the first time for nusinersen metabolites extracted from the serum of SMA patients treated with Spinraza.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, 4 Wilenska St., 87-100, Toruń, Poland.
| | - Jakub Szymarek
- Department of Developmental Neurology, Medical University of Gdansk, 7 Dębinki Str., PL-80-952, Gdańsk, Poland
| | | |
Collapse
|
6
|
Agrawal K, Kang L, Ji S, Tena J, Jian W. Evaluating the use of locked nucleic acid capture probes in hybrid LC-MS/MS analysis of siRNA analytes. Bioanalysis 2023; 15:1129-1146. [PMID: 37638814 DOI: 10.4155/bio-2023-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Background: Hybrid LC-MS assays for oligonucleotides rely on capture probes to develop assays with high sensitivity and specificity. Locked nucleic acid (LNA) probes are thermodynamically superior to existing capture probes, but are not currently used for hybrid LC-MS assays. Materials & methods: Using two lipid-conjugated double-stranded siRNA compounds as model analytes, hybrid LC-MS/MS assays using LNA probes were developed. Results: The workflows demonstrated the superiority of the LNA probes, optimized sample preparation conditions to maximize analyte recovery, evaluated the need for analyte-specific internal standards, and demonstrated that advanced mass spectrometric technology can increase assay sensitivity by up to 20-fold. Conclusion: The workflow can be used in future bioanalytical studies to develop effective hybrid LC-MS/MS methods for siRNA analytes.
Collapse
Affiliation(s)
- Karan Agrawal
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, Spring House, PA 19477, USA
| | - Lijuan Kang
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, Spring House, PA 19477, USA
| | - Shaofei Ji
- Translational PK/PD & Investigative Toxicology, Janssen Research & Development, Spring House, PA 19477, USA
| | - Jennyfer Tena
- Therapeutics Discovery, Janssen Research & Development, Brisbane, CA 94005, USA
| | - Wenying Jian
- Bioanalysis Discovery & Development Sciences, Janssen Research & Development, Spring House, PA 19477, USA
| |
Collapse
|
7
|
Chen ML, Mekhssian K, Dutt M, Plomley J, Keyhani A. Volumetric absorptive microsampling coupled with hybridization LC-MS/MS for quantitation of antisense oligonucleotides. Bioanalysis 2023; 15:1115-1128. [PMID: 37681562 DOI: 10.4155/bio-2023-0092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Background: Volumetric absorptive microsampling has emerged as a less invasive alternative to venous sampling for small-molecule pharmacokinetic studies, but its application to novel therapeutics such as antisense oligonucleotides (ASOs) is not well-established. Results: A workflow was developed using Mitra microsampling coupled with hybridization LC-MS/MS for accurate determination of fomivirsen, a 21-mer ASO, in human blood. Quantitative recovery was achieved regardless of blood hematocrit level or microsample age by implementing impact-assisted extraction. A thorough method evaluation confirmed sensitivity, linearity, precision/accuracy, matrix effect, metabolite interference and four months of microsample stability. Conclusion: The combined impact-assisted extraction and hybridization LC-MS/MS workflow demonstrated the successful quantitation of fomivirsen, establishing the validity and applicability of the approach for ASO drug candidates.
Collapse
Affiliation(s)
- Ming-Luan Chen
- Altasciences, 575 Armand-Frappier Blvd., Laval, QC, H7V 4B3, Canada
| | - Kevork Mekhssian
- Altasciences, 575 Armand-Frappier Blvd., Laval, QC, H7V 4B3, Canada
| | - Muskaan Dutt
- Altasciences, 575 Armand-Frappier Blvd., Laval, QC, H7V 4B3, Canada
| | - Jeff Plomley
- Altasciences, 575 Armand-Frappier Blvd., Laval, QC, H7V 4B3, Canada
| | - Anahita Keyhani
- Altasciences, 575 Armand-Frappier Blvd., Laval, QC, H7V 4B3, Canada
| |
Collapse
|
8
|
Szapacs M, Jian W, Spellman D, Cunliffe J, Verburg E, Kaur S, Kellie J, Li W, Mehl J, Qian M, Qiu X, Sirtori FR, Rosenbaum AI, Sikorski T, Surapaneni S, Wang J, Wilson A, Zhang J, Xue Y, Post N, Huang Y, Goykhman D, Yuan L, Fang K, Casavant E, Chen L, Fu Y, Huang M, Ji A, Johnson J, Lassman M, Li J, Saad O, Sarvaiya H, Tao L, Wang Y, Zheng N, Dasgupta A, Abhari MR, Ishii-Watabe A, Saito Y, Mendes Fernandes DN, Bower J, Burns C, Carleton K, Cho SJ, Du X, Fjording M, Garofolo F, Kar S, Kavetska O, Kossary E, Lu Y, Mayer A, Palackal N, Salha D, Thomas E, Verhaeghe T, Vinter S, Wan K, Wang YM, Williams K, Woolf E, Yang L, Yang E, Bandukwala A, Hopper S, Maher K, Xu J, Brodsky E, Cludts I, Irwin C, Joseph J, Kirshner S, Manangeeswaran M, Maxfield K, Pedras-Vasconcelos J, Solstad T, Thacker S, Tounekti O, Verthelyi D, Wadhwa M, Wagner L, Yamamoto T, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: ICH M10 BMV Guideline & Global Harmonization; Hybrid Assays; Oligonucleotides & ADC; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Mass Spectrometry, Chromatography and Sample Preparation, Novel Technologies, Novel Modalities, and Novel Challenges, ICH M10 BMV Guideline & Global Harmonization Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2023; 15:955-1016. [PMID: 37650500 DOI: 10.4155/bio-2023-0167] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Mehl
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | - Yongjun Xue
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | - Yue Huang
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ola Saad
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Naiyu Zheng
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Li Yang
- US FDA, Silver Spring, MD, USA
| | - Eric Yang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
A Novel Hybridization LC-MS/MS Methodology for Quantification of siRNA in Plasma, CSF and Tissue Samples. Molecules 2023; 28:molecules28041618. [PMID: 36838605 PMCID: PMC9967190 DOI: 10.3390/molecules28041618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Therapeutic oligonucleotides, such as antisense oligonucleotide (ASO) and small interfering RNA (siRNA), are a new class of therapeutics rapidly growing in drug discovery and development. A sensitive and reliable method to quantify oligonucleotides in biological samples is critical to study their pharmacokinetic and pharmacodynamic properties. Hybridization LC-MS/MS was recently established as a highly sensitive and specific methodology for the quantification of single-stranded oligonucleotides, e.g., ASOs, in various biological matrices. However, there is no report of this methodology for the bioanalysis of double-stranded oligonucleotides (e.g., siRNA). In this work, we investigated hybridization LC-MS/MS methodology for the quantification of double-stranded oligonucleotides in biological samples using an siRNA compound, siRNA-01, as the test compound. The commonly used DNA capture probe and a new peptide nucleic acid (PNA) probe were compared for the hybridization extraction of siRNA-01 under different conditions. The PNA probe achieved better extraction recovery than the DNA probe, especially for high concentration samples, which may be due to its stronger hybridization affinity. The optimized hybridization method using the PNA probe was successfully qualified for the quantitation of siRNA-01 in monkey plasma, cerebrospinal fluid (CSF), and tissue homogenates over the range of 2.00-1000 ng/mL. This work is the first report of the hybridization LC-MS/MS methodology for the quantification of double-stranded oligonucleotides. The developed methodology will be applied to pharmacokinetic and toxicokinetic studies of siRNA-01. This novel methodology can also be used for the quantitative bioanalysis of other double-stranded oligonucleotides.
Collapse
|
10
|
Takakusa H, Iwazaki N, Nishikawa M, Yoshida T, Obika S, Inoue T. Drug Metabolism and Pharmacokinetics of Antisense Oligonucleotide Therapeutics: Typical Profiles, Evaluation Approaches, and Points to Consider Compared with Small Molecule Drugs. Nucleic Acid Ther 2023; 33:83-94. [PMID: 36735616 PMCID: PMC10066781 DOI: 10.1089/nat.2022.0054] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Oligonucleotide therapeutics are attracting attention as a new treatment modality for a range of diseases that have been difficult to target using conventional approaches. Technical advances in chemical modification and drug delivery systems have led to the generation of compounds with excellent profiles as pharmaceuticals, and 16 oligonucleotide therapeutics have been marketed to date. There is a growing need to develop optimal and efficient approaches to evaluate drug metabolism and pharmacokinetics (DMPK) and drug-drug interactions (DDIs) of oligonucleotide therapeutics. The DMPK/DDI profiles of small molecule drugs are highly diverse depending on their structural and physicochemical characteristics, whereas oligonucleotide therapeutics share similar DMPK profiles within each chemistry type. Most importantly, the mechanisms and molecules involved in the distribution and metabolism of oligonucleotides differ from those of small molecules. In addition, there are considerations regarding experimental approaches in the evaluation of oligonucleotides, such as bioanalytical challenges, the use of radiolabeled tracers, materials for in vitro metabolism/DDI studies, and methods to study biodistribution. In this review, we attempt to summarize the DMPK characteristics of antisense oligonucleotide (ASO) therapeutics and discuss some of the issues regarding how to optimize the evaluation and prediction of the DMPK and DDI of ASOs.
Collapse
Affiliation(s)
- Hideo Takakusa
- Drug Metabolism & Pharmacokinetics Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Norihiko Iwazaki
- Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corp., Yokohama, Japan
| | - Makiya Nishikawa
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan
| | - Tokuyuki Yoshida
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takao Inoue
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Kawasaki, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| |
Collapse
|
11
|
Bioanalysis of Oligonucleotide by LC-MS: Effects of Ion Pairing Regents and Recent Advances in Ion-Pairing-Free Analytical Strategies. Int J Mol Sci 2022; 23:ijms232415474. [PMID: 36555119 PMCID: PMC9779676 DOI: 10.3390/ijms232415474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/12/2022] Open
Abstract
Oligonucleotides (OGNs) are relatively new modalities that offer unique opportunities to expand the therapeutic targets. Reliable and high-throughput bioanalytical methods are pivotal for preclinical and clinical investigations of therapeutic OGNs. Liquid chromatography-mass spectrometry (LC-MS) is now evolving into being the method of choice for the bioanalysis of OGNs. Ion paring reversed-phase liquid chromatography (IP-RPLC) has been widely used in sample preparation and LC-MS analysis of OGNs; however, there are technical issues associated with these methods. IP-free methods, such as hydrophilic interaction liquid chromatography (HILIC) and anion-exchange techniques, have emerged as promising approaches for the bioanalysis of OGNs. In this review, the state-of-the-art IP-RPLC-MS bioanalytical methods of OGNs and their metabolites published in the past 10 years (2012-2022) are critically reviewed. Recent advances in IP-reagent-free LC-MS bioanalysis methods are discussed. Finally, we describe future opportunities for developing new methods that can be used for the comprehensive bioanalysis of OGNs.
Collapse
|
12
|
Microflow LC-MS/MS to improve sensitivity for antisense oligonucleotides bioanalysis: critical role of sample cleanness. Bioanalysis 2022; 14:1365-1376. [PMID: 36625771 DOI: 10.4155/bio-2022-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Background: Quantitative bioanalysis of antisense oligonucleotides (ASOs) is crucial to study their pharmacokinetic properties. An ultrasensitive bioanalytical method is often desired for quantifying low-concentration ASOs. Results: Effects of microflow LC and sample cleanness on sensitivity improvement of ASOs were evaluated. Sixfold sensitivity improvement of ASO-001 was achieved using microflow LC-MS/MS compared with conventional analytical flow method. Different sample extracts (hybridization, SPE and protein precipitation) were evaluated for sensitivity improvement by microflow LC. More sensitivity improvement was observed in the cleaner sample extract. Conclusion: Microflow LC increases sensitivity for ASO bioanalysis. The cleaner the sample extract, the better the sensitivity improvement. An ultrasensitive hybridization microflow LC-MS/MS method with lower limit of quantification of 0.100 ng/ml was developed and qualified for quantifying ASO-001 in plasma.
Collapse
|
13
|
Oligonucleotides Isolation and Separation—A Review on Adsorbent Selection. Int J Mol Sci 2022; 23:ijms23179546. [PMID: 36076941 PMCID: PMC9455468 DOI: 10.3390/ijms23179546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotides have many important applications, including as primers in polymerase chain reactions and probes for DNA sequencing. They are proposed as a diagnostic and prognostic tool for various diseases and therapeutics in antisense therapy. Accordingly, it is necessary to develop liquid chromatography and solid phase extraction methods to separate oligonucleotides and isolate them from biological samples. Many reviews have been written about the determination of these compounds using the separation technique or sample preparation for their isolation. However, presumably, there are no articles that critically review the adsorbents used in liquid chromatography or solid phase extraction. The present publication reviews the literature from the last twenty years related to supports (silica, polymers, magnetic nanoparticles) and their modifications. The discussed issues concern reversed phase (alkyl, aromatic, cholesterol, mixed ligands), ion-exchange (strong and weak ones), polar (silica, polyhydroxy, amide, zwitterionic), and oligonucleotide-based adsorbents.
Collapse
|
14
|
Validation and application of hybridization liquid chromatography-tandem mass spectrometry methods for quantitative bioanalysis of antisense oligonucleotides. Bioanalysis 2022; 14:589-601. [PMID: 35545949 DOI: 10.4155/bio-2022-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Antisense oligonucleotide (ASO), an emerging modality in drug research and development, demands accurate and sensitive bioanalysis to understand its pharmacokinetic and pharmacodynamic properties. Results: By combining the advantages of both ligand binding and liquid chromatography-mass spectrometry/tandem mass (LC-MS/MS), hybridization LC-MS/MS methods were successfully developed and validated/qualified in a good lab practice (GLP) environment for the quantitation of an ASO drug candidate in monkey serum, cerebrospinal fluid (CSF) and tissues in the range of 0.5-500 ng/ml. Special treatment of CSF samples was employed to mitigate nonspecific binding, improve long-term storage stability and enable the usage of artificial CSF as a more accessible surrogate matrix. The method was also qualified and applied to ASO quantitation in various monkey tissue samples using a cocktail tissue homogenate as a surrogate matrix. Conclusion: This work was the first reported GLP validation and application of ASO bioanalysis using the hybridization LC-MS/MS platform.
Collapse
|
15
|
Haegele JA, Boyanapalli R, Goyal J. Improvements to Hybridization-Ligation Enzyme-Linked Immunosorbent Assay Methods to Overcome Bioanalytical Challenges Posed by Novel Oligonucleotide Therapeutics. Nucleic Acid Ther 2022; 32:350-359. [PMID: 35404142 PMCID: PMC9416565 DOI: 10.1089/nat.2021.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
As oligonucleotides (ONs) and similar nucleic acid therapeutic modalities enter development pipelines, there is continual need to develop bioanalytical methodologies addressing unique challenges they pose. Novel ONs back bone chemistries, especially those enabling stereochemical control, and base modifications are being exploited to improve pharmacological properties, potency, and increase half-lives. These changes have strained established methods, oftentimes precluding development of assays sensitive and specific enough to meet the needs of preclinical programs. For stereopure ONs representing a single molecular species, nontrivial presence of chain-shortened metabolites in biological samples necessitate assays with high specificity. To meet these needs, this report presents a toolbox of novel techniques, easy to implement for existing hybridization-ligation enzyme-linked immunosorbent assay formats, which address this challenge and yield significant sensitivity and specificity enhancements. Ligation efficiency was improved up to 61-fold through addition of polyethylene glycol, betaine, or dimethylsulfoxide, mitigating major differences among sequence-matched ONs of varying stereopurity, enabling sensitivities below 0.100 ng/mL for quantitation. These improvements enabled further refinement of capture probe designs engendering sufficient specificity to discriminate N-1 chain-shortened metabolites at both the 5′ and 3′ end of the ONs. These generalizable methods advance the performance of mainstay bioanalytical assays, facilitating research and development of innovative ONs therapeutics.
Collapse
Affiliation(s)
| | | | - Jaya Goyal
- Wave Life Sciences USA, Inc., Lexington, Massachusetts, USA
| |
Collapse
|
16
|
Halloy F, Brönnimann P, Hall J, Schümperli D. Analysis of Oligonucleotide Biodistribution and Metabolization in Experimental Animals. Methods Mol Biol 2022; 2537:335-350. [PMID: 35895273 DOI: 10.1007/978-1-0716-2521-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We describe methods to follow the fate of oligonucleotides after their injection into experimental animals. The quantitation in various tissues, blood or bone marrow cells is possible by chemical ligation PCR. This method works independently of chemical modifications of the oligonucleotide and/or its conjugations to lipid or peptide moieties. Moreover, metabolization intermediates can be detected by mass spectrometry. Together with a readout assay for the biochemical or physiological effects, which will differ, depending on the particular purpose of the oligonucleotide, these methods allow for a comprehensive understanding of oligonucleotide behavior in a living organism.
Collapse
Affiliation(s)
- François Halloy
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
- Department of Paediatrics, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Paulina Brönnimann
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
- Translational Research Unit, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Jonathan Hall
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland
| | - Daniel Schümperli
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
17
|
Talap J, Zhao J, Shen M, Song Z, Zhou H, Kang Y, Sun L, Yu L, Zeng S, Cai S. Recent advances in therapeutic nucleic acids and their analytical methods. J Pharm Biomed Anal 2021; 206:114368. [PMID: 34571322 DOI: 10.1016/j.jpba.2021.114368] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/11/2022]
Abstract
Therapeutic nucleic acids are various chemically modified RNA or DNA with different functions, which mainly play roles at the gene level. Owing to its accurately targeting at pathogenic genes, nucleic acid based therapeutics have a wide range of application prospects. Recently, the improvement on chemical synthesis and delivery materials accelerated the development of therapeutic nucleic acids rapidly. Up to now, 17 nucleic acid based therapeutics approved by Food and Drug Administration (FDA) or European Medicines Agency (EMA). The development of therapeutics raised higher requirements for analytical methods, both in quality control and in clinical research. The first part of this review introduces different classes of therapeutic nucleic acids, including antisense oligonucleotide (ASO), RNA interference (RNAi) therapy, mRNA, aptamer and other classes which are under research. The second part reviews the therapeutic nucleic acids commercialized from 2019 to now. The third part discusses the analytical methods for nucleic acid based therapeutics, including liquid chromatography-based methods, capillary gel electrophoresis (CGE), hybridization enzyme-linked immunosorbent assay (ELISA) and other infrequently used methods. Finally, the advantages and shortcomings of these methods are summarized, and the future development of analysis methods are prospected.
Collapse
Affiliation(s)
- Jadera Talap
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jing Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Minzhe Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zihan Song
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hui Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yu Kang
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lianli Sun
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| | - Sheng Cai
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Cancer Center of Zhejiang University, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, Hangzhou, China.
| |
Collapse
|
18
|
Sutton JM, Kim J, El Zahar NM, Bartlett MG. BIOANALYSIS AND BIOTRANSFORMATION OF OLIGONUCLEOTIDE THERAPEUTICS BY LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:334-358. [PMID: 32588492 DOI: 10.1002/mas.21641] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/05/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Since 2016, eight new oligonucleotide therapies have been approved which has led to increased interest in oligonucleotide analysis. There is a particular need for powerful bioanalytical tools to study the metabolism and biotransformation of these molecules. This review provides the background on the biological basis of these molecules as currently used in therapies. The article also reviews the current state of analytical methodology including state of the art sample preparation techniques, liquid chromatography-mass spectrometry methods, and the current limits of detection/quantitation. Finally, the article summarizes the challenges in oligonucleotide bioanalysis and provides future perspectives for this emerging field. © 2020 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- James Michael Sutton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Jaeah Kim
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| | - Noha M El Zahar
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Cairo, 11566, Egypt
| | - Michael G Bartlett
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, 250 West Green Street, Athens, GA, 30602-2352
| |
Collapse
|
19
|
Nuckowski Ł, Dzieszkowski K, Rafiński Z, Studzińska S. Application of Magnetic Nanoparticles Coated with Crosslinked Zwitterionic Poly(ionic liquid)s for the Extraction of Oligonucleotides. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3146. [PMID: 34201146 PMCID: PMC8226603 DOI: 10.3390/ma14123146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 11/16/2022]
Abstract
Magnetic nanoparticles coated with zwitterionic poly(ionic liquid)s were applied for dispersive solid-phase extraction of oligonucleotides. The materials were synthesized by miniemulsion copolymerization of ionic liquids and divinylbenzene on magnetic nanoparticles. The functional monomers contain a positively charged imidazolium ring and one of the anionic groups: derivatives of acetate, malonate, or butyl sulfonate ions. Adsorption of unmodified DNA oligonucleotide on obtained materials was possible in ion-exchange (IE) and hydrophilic interactions (HI) mode. The adsorption in IE was possible at low pH and was almost complete. The adsorption in HI mode required the usage of appropriate addition of organic solvent but did not provide full adsorption. Studies on the desorption of the analytes included determining the impact of ammonium acetate concentration and pH and organic solvents addition on the recovery. The material containing acetic fragments as an anionic group was selected for the final procedure with the use of 10 mM ammonium acetate (pH = 9.5)/methanol (50/50, v/v) as an elution solution. The magnetic dispersive solid-phase extraction procedure was tested for the oligonucleotides with various modifications and lengths. Moreover, it was applied to extract DNA oligonucleotide and its synthetic metabolites from enriched human plasma without any pre-purification, with recoveries greater than 80%.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| | - Krzysztof Dzieszkowski
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Zbigniew Rafiński
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland; (K.D.); (Z.R.)
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100 Toruń, Poland;
| |
Collapse
|
20
|
The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Bioanalysis 2021; 13:931-954. [PMID: 33998268 DOI: 10.4155/bio-2021-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.
Collapse
|
21
|
Distribution and biotransformation of therapeutic antisense oligonucleotides and conjugates. Drug Discov Today 2021; 26:2244-2258. [PMID: 33862193 DOI: 10.1016/j.drudis.2021.04.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/09/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Drug properties of antisense oligonucleotides (ASOs) differ significantly from those of traditional small-molecule therapeutics. In this review, we focus on ASO disposition, mainly as characterized by distribution and biotransformation, of nonconjugated and conjugated ASOs. We introduce ASO chemistry to allow the following in-depth discussion on bioanalytical methods and determination of distribution and elimination kinetics at low concentrations over extended periods of time. The resulting quantitative data on the parent oligonucleotide, and the identification and quantification of formed metabolites define the disposition. Proper quantitative understanding of disposition is pivotal for nonclinical to clinical predictions, supports communication with health agencies, and increases the probability of delivering optimal ASO therapy to patients.
Collapse
|
22
|
Nuckowski Ł, Zalesińska E, Dzieszkowski K, Rafiński Z, Studzińska S. Poly(ionic liquid)s as new adsorbents in dispersive micro-solid-phase extraction of unmodified and modified oligonucleotides. Talanta 2020; 221:121662. [PMID: 33076172 DOI: 10.1016/j.talanta.2020.121662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/17/2022]
Abstract
Cross-linked poly(ionic liquid)s were successfully used for the first time in the preparation of oligonucleotide biological samples. The adsorbents were prepared by co-polymerization of imidazolium-based ionic liquids and divinylbenzene. Consequently, the following three adsorbents were prepared and comprehenzively characterized: poly(3-butyl-1-vinylimidazolium bromide-co-divinylbenzene), poly(3-hexyl-1-vinylimidazolium bromide-co-divinylbenzene) and poly(2-(1-vinylimidazoliumyl)acetate-co-divinylbenzene). Oligonucleotides were adsorbed onto the surface of these materials at low pH values. Preliminary studies of the desorption of the analytes included testing the influence of different types of salts, as well as their concentrations and pH, and organic solvents on the recovery. This allowed for determining the adsorbent and the desorption conditions for further optimization with the use of central composition design. The chosen adsorbent was poly(2-(1-vinylimidazoliumyl)acetate-co-divinylbenzene), and the optimal desorption conditions (5 mM ammonium acetate (pH = 9.5)/methanol (50/50, v/v)) gave a recovery of 99.7 ± 0.3%. The dispersive micro-solid-phase extraction procedure was successfully applied for the extraction of oligonucleotides with various modifications and lengths. Finally, the developed method was used to extract 2'-O-methyl oligonucleotide and its two synthetic metabolites from enriched human plasma without any pre-purification, yielding recoveries over 80%.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100, Toruń Poland
| | - Ewa Zalesińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100, Toruń Poland
| | - Krzysztof Dzieszkowski
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100, Toruń, Poland
| | - Zbigniew Rafiński
- Chair of Organic Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100, Toruń, Poland
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin Str., PL-87-100, Toruń Poland.
| |
Collapse
|
23
|
Liu R, Luo Q, Liu Z, Gong L. Optimizing sample preparation workflow for bioanalysis of oligonucleotides through liquid chromatography tandem mass spectrometry. J Chromatogr A 2020; 1629:461473. [PMID: 32841769 DOI: 10.1016/j.chroma.2020.461473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 10/23/2022]
Abstract
Liquid chromatography tandem mass spectrometry has been a widely used technique for quantifying oligonucleotides in biological samples. However, lack of simple and efficient sample cleanup approach remains a challenge. Our study aimed to evaluate the major factors during the sample pretreatment process for developing optimal sample preparation workflow for oligonucleotides. In this study, we have employed a model formed with rat plasma containing a 16 mer oligonucleotide standard in order to comprehensively optimize the sample preparation procedures. These included liquid-liquid extraction (LLE), solid-phase extraction (SPE), protein precipitation (PPT) and LLE combined with SPE. LLE with phenol: dichloromethane (2:1, v:v) was found to be the most efficient sample cleanup procedure with low cost and less toxicity. Followed by the extraction, ethanol precipitation (-80 °C, 5 min) was determined to be the optimal drying conditions. Also, mass spectrometric parameters were tuned to optimal conditions. It was found that the central composite design suite was proved to be highly practical for optimizing MS parameters. Finally, the thoroughly optimized sample preparation workflow was fully validated. The developed assay provided a quantitative range of 0.25-1000 nM, with accuracy and precision were < 7.45% and < 12.20%, respectively. Matrix effect and carryover were also evaluated and no significant effect was observed.
Collapse
Affiliation(s)
- Rong Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Qing Luo
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China
| | - Lingzhi Gong
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, PR China.
| |
Collapse
|
24
|
Li P, Gong Y, Kim J, Liu X, Gilbert J, Kerns HM, Groth R, Rooney M. Hybridization Liquid Chromatography-Tandem Mass Spectrometry: An Alternative Bioanalytical Method for Antisense Oligonucleotide Quantitation in Plasma and Tissue Samples. Anal Chem 2020; 92:10548-10559. [PMID: 32628461 DOI: 10.1021/acs.analchem.0c01382] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Quantitative bioanalysis in plasma and tissues samples is required to study the pharmacokinetic and pharmacodynamic properties of antisense oligonucleotides (ASOs). To overcome intrinsic drawbacks in specificity, sensitivity, and throughput of traditional ligand-binding assay (LBA) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods, an alternative bioanalytical method was developed by combining oligonucleotide hybridization and LC-MS/MS technologies. Target ASOs were extracted from biological samples by hybridization with biotinylated sense-strand oligonucleotides coupled to streptavidin magnetic beads. Using ion-pairing chromatography and tandem mass spectrometry, this method demonstrated high sensitivity (0.5 ng/mL using 100 μL of plasma), high specificity, wide linear range, complete automation, and generic applications in tests with multiple ASOs. The typical challenge of sensitivity drop in traditional ion-pairing LC-MS/MS was for the first time overcome by the introduction of a ternary pump system. Due to the high specificity, quantitation in various biological matrixes was achieved using calibration standards in plasma, largely improving efficiency and consistency. Another major advantage was the capability of simultaneous quantitation of ASO metabolites. The hybridization LC-MS/MS was considered an improved alternative for quantitation of ASOs and metabolites in plasma and tissue samples, showing a great potential to replace traditional LBA and LC-MS/MS methods.
Collapse
Affiliation(s)
- Pei Li
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yuqing Gong
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Jaeah Kim
- Atrium Staffing, 361 Newbury Street, Fifth Floor, Boston, Massachusetts 02116, United States
| | - Xingrong Liu
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - James Gilbert
- External Innovations and New Indications, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Hannah M Kerns
- External Innovations and New Indications, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Rachel Groth
- External Innovations and New Indications, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Rooney
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
25
|
Studzińska S, Skoczylas M, Bocian S, Dembska A, Buszewski B. Attachment of hybridizable oligonucleotides to a silica support and its application for selective extraction of unmodified and antisense oligonucleotides from serum samples. RSC Adv 2020; 10:16221-16230. [PMID: 35498856 PMCID: PMC9052892 DOI: 10.1039/d0ra01620a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022] Open
Abstract
The main aim of the present study was the synthesis of an oligonucleotide-based material with high chemical stability, repeatability and specificity to complementary oligonucleotides. The oligonucleotides were attached to a silica gel surface modified with amino acids during one-step synthesis. The amount of the oligonucleotides immobilized on the support surface had an impact on adsorption effectiveness, due to steric interference. The adsorption capacity corresponds to 4.7 μg of complementary oligonucleotide per 1 mg of material, which reflects 50% of immobilized oligonucleotides. The presented results contain comprehensive studies on hybridization and release of fully complementary, partially complementary, non-complementary and antisense oligonucleotides from the newly synthesized adsorbent. The salt concentration and time period were the most influential parameters in the case of adsorption, while high temperature and low salt content were indispensable for effective desorption. Selectivity studies revealed that the adsorption percentage increases with the decreasing number of base mismatches. Consequently, the desorption of low complementarity oligonucleotides was always greater in comparison with the fully complementary sequence. Furthermore, it was shown that oligonucleotide-based materials may be successfully used for the extraction of antisense oligonucleotides and their metabolites from serum samples with recoveries ranging between 65 and 73%.
Collapse
Affiliation(s)
- Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin St. 87-100 Toruń Poland
| | - Magdalena Skoczylas
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin St. 87-100 Toruń Poland
| | - Szymon Bocian
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin St. 87-100 Toruń Poland
| | - Anna Dembska
- Laboratory of Bioanalytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznań 8 Uniwersytetu Poznanskiego St. 61-614 Poznań Poland
| | - Bogusław Buszewski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń 7 Gagarin St. 87-100 Toruń Poland
| |
Collapse
|
26
|
The exciting world of oligonucleotides: a multidisciplinary complex challenge for multitasking ingenious bioanalysts. Bioanalysis 2020; 11:1905-1908. [PMID: 31829052 DOI: 10.4155/bio-2019-0264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|