1
|
Ackermann BL. Two decades of immunocapture liquid chromatography tandem mass spectrometry for pharmaceutical discovery and development: reflections and recommendations for optimal deployment. Bioanalysis 2024:1-4. [PMID: 39466131 DOI: 10.1080/17576180.2024.2415763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Affiliation(s)
- Bradley L Ackermann
- Associate Vice President, Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN 46285, USA
| |
Collapse
|
2
|
Buitelaar PLM, de Jong KAM, Aardenburg L, van der Heijden MS, Huitema ADR, Beijnen JH, Rosing H. A multiplex UPLC-MS/MS method for the quantification of three PD-L1 checkpoint inhibitors, atezolizumab, avelumab, and durvalumab, in human serum. J Pharm Biomed Anal 2024; 243:116108. [PMID: 38522382 DOI: 10.1016/j.jpba.2024.116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND AIM To support pharmacokinetic studies, a multiplex UPLC-MS/MS assay was developed and validated to quantify PD-L1 checkpoint inhibitors atezolizumab, avelumab, and durvalumab in serum. METHODS A bottom-up sample pre-treatment procedure was developed to determine atezolizumab, avelumab, and durvalumab in serum. This procedure consisted of (1) precipitation of the monoclonal antibody with ammonium sulfate, (2) reduction with dithiothreitol, (3) denaturation with methanol, and (4) tryptic digestion of the protein. The unique signature peptides resulting after sample pre-treatment of the antibodies were measured using UPLC-MS/MS with a total run time of 11 minutes. The clinical application was evaluated by analyzing 114 atezolizumab patient samples. RESULTS The developed method was found to be accurate and precise for all three analytes over a concentration range of 3.00-150 µg/mL. No endogenous interference was present in serum samples. Cross-interference experiments showed no cross-analyte interference and acceptable cross-internal standard interference. In addition, no substantial carry-over was observed. The stable isotopically labeled signature peptides were most effective in compensating for matrix effects. Recovery based on back-calculated concentrations of calibration standards and quality control samples was found to be high. The analytes were stable for at least three freeze-thaw cycles, for 42 hours at processing conditions, for at least two days at 2-8°C in the final extract, for five days before re-injection analysis at 4°C, and long-term for at least 11 months at -70°C. The assay was tested for its applicability in clinical practice. For this purpose, 114 atezolizumab patient samples were measured. CONCLUSION A multiplex UPLC-MS/MS assay was developed and validated to quantify atezolizumab, avelumab, and durvalumab in human serum. The applicability of this method was demonstrated by the analysis of clinical atezolizumab samples. The method is suitable to support clinical pharmacokinetic studies involving atezolizumab, avelumab, or durvalumab.
Collapse
Affiliation(s)
- Pauline L M Buitelaar
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Karen A M de Jong
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Leon Aardenburg
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pharmacology, Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek Hospital, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Huang Y, Woolf MS, Wang CC, Naser SM, Wheeler AM, Mylott WR, Ma E, Rosenbaum AI. Comprehensive performance evaluation of ligand-binding assay-LC-MS/MS method for co-dosed monoclonal anti-SARS-CoV-2 antibodies (AZD7442). Bioanalysis 2024; 16:149-163. [PMID: 38385904 DOI: 10.4155/bio-2023-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
Aims: AZD7442 is a combination SARS-CoV-2 therapy comprising two co-dosed monoclonal antibodies. Materials & methods: The authors validated a hybrid ligand-binding assay-LC-MS/MS method for pharmacokinetic assessment of AZD7442 in human serum with nominal concentration range of each analyte of 0.300-30.0 μg/ml. Results: Validation results met current regulatory acceptance criteria. The validated method supported three clinical trials that spanned more than 17 months and ≥720 analytical runs (∼30,000 samples and ∼3000 incurred sample reanalyses per analyte). The data generated supported multiple health authority interactions, across the globe. AZD7442 (EVUSHELD) was approved in 12 countries for pre-exposure prophylaxis of COVID-19. Conclusion: The results reported here demonstrate the robust, high-throughput capability of the hybrid ligand-binding assay-LC-MS/MS approach being employed to support-next generation versions of EVUSHELD, AZD3152.
Collapse
Affiliation(s)
- Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Michael Shane Woolf
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Chun-Chi Wang
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Sami M Naser
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Aaron M Wheeler
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - William R Mylott
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Eric Ma
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of Thermo Fisher Scientific), Richmond, VA 23229, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, South San Francisco, CA 94080, USA
| |
Collapse
|
4
|
Werth EG, Roos D, Philip ET. Immunocapture LC-MS methods for pharmacokinetics of large molecule drugs. Bioanalysis 2024; 16:165-177. [PMID: 38348660 DOI: 10.4155/bio-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Implementation of immunocapture LC-MS methods to characterize the pharmacokinetic profile of large molecule drugs has become a widely used technique over the past decade. As the pharmaceutical industry strives for speediness into clinical development without jeopardizing quality, robust assays with generic application across the pipeline are becoming instrumental in bioanalysis, especially in early-stage development. This review highlights the capabilities and challenges involved in hybrid immunocapture LC-MS techniques and its continued applications in nonclinical and clinical pharmacokinetic assay design. This includes a comparison of LC-MS-based approaches to conventional ligand-binding assays and the driving demands in large molecule drug portfolios including growing sensitivity requirements and the unique challenges of new modalities requiring innovation in the bioanalytical laboratory.
Collapse
Affiliation(s)
- Emily G Werth
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - David Roos
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| | - Elsy T Philip
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT 06877, USA
| |
Collapse
|
5
|
Lakis R, Sauvage FL, Pinault E, Marquet P, Saint-Marcoux F, El Balkhi S. Absolute Quantification of Human Serum Albumin Isoforms by Internal Calibration Based on a Top-Down LC-MS Approach. Anal Chem 2024; 96:746-755. [PMID: 38166371 DOI: 10.1021/acs.analchem.3c03933] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Well-characterized biomarkers using reliable quantitative methods are essential for the management of various pathologies such as diabetes, kidney, and liver diseases. Human serum albumin (HSA) isoforms are gaining interest as biomarkers of advanced liver pathologies. In view of the structural alterations observed for HSA, insights into its isoforms are required to establish them as reliable biomarkers. Therefore, a robust absolute quantification method seems necessary. In this study, we developed and validated a far more advanced top-down liquid chromatography-mass spectrometry (LC-MS) method for the absolute quantification of HSA isoforms, using myoglobin (Mb) as an internal standard for quantification and for mass recalibration. Two different quantification approaches were investigated based on peak integration from the deconvoluted spectrum and extracted ion chromatogram (XIC). The protein mixture human serum albumin/myoglobin eluted in well-shaped separated peaks. Mb allowed a systematic mass recalibration for every sample, resulting in extremely low mass deviations compared to conventional deconvolution-based methods. In total, eight HSA isoforms of interest were quantified. Specific-isoform calibration curves showing good linearity were obtained by using the deconvoluted peaks. Noticeably, the HSA ionization behavior appeared to be isoform-dependent, suggesting that the use of an enriched isoform solution as a calibration standard for absolute quantification studies of HSA isoforms is necessary. Good repeatability, reproducibility, and accuracy were observed, with better sensitivity for samples with low albumin concentrations compared to routine biochemical assays. With a relatively simple workflow, the application of this method for absolute quantification shows great potential, especially for HSA isoform studies in a clinical context, where a high-throughput method and sensitivity are needed.
Collapse
Affiliation(s)
- Roy Lakis
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - François-Ludovic Sauvage
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Emilie Pinault
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
| | - Pierre Marquet
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Franck Saint-Marcoux
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| | - Souleiman El Balkhi
- Pharmacology & Transplantation (P&T), Université de Limoges, INSERM U1248, Limoges 87000, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, Limoges 87000, France
| |
Collapse
|
6
|
Schneck NA, Mehl JT, Kellie JF. Protein LC-MS Tools for the Next Generation of Biotherapeutic Analyses from Preclinical and Clinical Serum. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1837-1846. [PMID: 37478497 DOI: 10.1021/jasms.3c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
LC-MS analysis of therapeutic antibodies and other biotherapeutics from in-life studies (e.g., serum/plasma) has evolved from simple peptide digestion to peptide mapping and intact mass monitoring. From more advanced analytical approaches, a deeper understanding as to the fate of the biotherapeutic in vivo is gained. Here, we examine the next generation of approaches to facilitate the most comprehensive understanding of large molecule drug fate in circulation. Three case studies are presented: (1) use of relative and absolute calibration curves for biotherapeutic quantitation from the same sample set; (2) top-down mass spectrometry applied to bioanalytical assays; (3) biotherapeutic protein complexes from serum analyzed by native protein MS. We anticipate that these approaches will be further adapted and applied by other research groups.
Collapse
Affiliation(s)
- Nicole A Schneck
- Analytical Development, GSK, 1250 S. Collegeville Rd., Collegeville, Pennsylvania 19426, United States
| | - John T Mehl
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, Pennsylvania 19426, United States
| | - John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GSK, 1250 S. Collegeville Rd., Collegeville, Pennsylvania 19426, United States
| |
Collapse
|
7
|
Yin F, Adhikari D, Peay M, Cortes D, Garada M, Shane Woolf M, Ma E, Lebarbenchon D, Mylott W, Dyszel M, Harriman S, Pinkas J. Development and validation of a hybrid immunoaffinity LC-MS/MS assay for quantitation of total antibody (TAb) from an antibody drug conjugate (ADC) PYX-201 in human plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1228:123844. [PMID: 37579604 DOI: 10.1016/j.jchromb.2023.123844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/16/2023]
Abstract
A hybrid immunoaffinity LC-MS/MS assay was developed and validated for the quantitation of total antibody (TAb) from an antibody drug conjugate (ADC) PYX-201 in human plasma. PYX-201 was proteolyzed using trypsin, and a characteristic peptide fragment PYX-201 P1 with ten amino acids IPPTFGQGTK from the complementarity-determining regions (CDRs) was used as a surrogate for the quantitation of the TAb from PYX-201. Stable isotope labelled (SIL) peptide I(13C6, 15N)PPTFG(13C9, 15N)QGTK was used as the internal standard (IS). We performed chromatographic analysis using a Waters Acquity BEH Phenyl column (2.1 mm × 50 mm, 1.7 µm). Quantification of PYX-201 TAb was carried out on a Sciex triple quadrupole mass spectrometer API 6500 using multiple reaction monitoring (MRM) mode with positive electrospray ionization. To validate PYX-201 TAb, a concentration range of 0.0500 µg/mL to 20.0 µg/mL was used, yielding a correlation coefficient (r) of ≥ 0.9947. For intra-assay measurements, the percent relative error (%RE) ranged from -23.2% to 1.0%, with a coefficient of variation (%CV) of ≤ 14.2%. In terms of inter-assay measurements, the %RE was between -10.5% and -5.7%, with a %CV of ≤ 12.7%. The average recovery of the analyte was determined to be 81.4%, while the average recovery of the internal standard (IS) was 97.2%. Furthermore, PYX-201 TAb demonstrated stability in human plasma and human whole blood under various tested conditions. This assay has been successfully applied to human sample analysis to support a clinical study.
Collapse
Affiliation(s)
- Feng Yin
- Department of Nonclinical Research, Pyxis Oncology, Inc, 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Diana Adhikari
- Department of Nonclinical Research, Pyxis Oncology, Inc, 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Marlking Peay
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of ThermoFisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Diego Cortes
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of ThermoFisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Mohammed Garada
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of ThermoFisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - M Shane Woolf
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of ThermoFisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Eric Ma
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of ThermoFisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Diane Lebarbenchon
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of ThermoFisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - William Mylott
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services (a part of ThermoFisher Scientific), 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Mike Dyszel
- Department of Project Management, Pyxis Oncology, Inc, 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Shawn Harriman
- Department of Nonclinical Research, Pyxis Oncology, Inc, 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA.
| | - Jan Pinkas
- Department of Nonclinical Research, Pyxis Oncology, Inc, 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA.
| |
Collapse
|
8
|
Suh MJ, Powers JB, Daniels CM, Wu Y. Enhanced Pharmacokinetic Bioanalysis of Antibody-drug Conjugates using Hybrid Immunoaffinity Capture and Microflow LC-MS/MS. AAPS J 2023; 25:68. [PMID: 37386323 DOI: 10.1208/s12248-023-00835-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
The increasing complexity and diversity of antibody-drug conjugates (ADCs) have led to a need for comprehensive and informative bioanalytical methods to enhance pharmacokinetic (PK) understanding. This study aimed to evaluate the feasibility of a hybrid immunoaffinity (IA) capture microflow LC-MS/MS (μLC-MS/MS) method for ADC analysis, utilizing a minimal sample volume for PK assessments in a preclinical study. A robust workflow was established for the quantitative analysis of ADCs by the implementation of solid-phase extraction (SPE) and semi-automation in µLC-MS/MS. Utilizing the µLC-MS/MS approach in conjunction with 1 µL of ADC-dosed mouse plasma sample volume, standard curves of two representative surrogate peptides for total antibody (heavy chain, HC) and intact antibody (light chain, LC) ranged from 1.00 ng/mL (LLOQ) to 5000 ng/mL with correlation coefficients (r2) values of > 0.99. The linear range of the standard curve for payload as a surrogate for the concentration of total ADC was from 0.5 ng/mL (LLOQ) to 2000 ng/mL with high accuracy and precision (< 10% CV at all concentrations). Moreover, a high correlation of concentrations of total antibody between two assay approaches (µLC-MS and ELISA) was achieved with less than 20% difference at all time points, indicating that the two methods are comparable in quantitation of total antibody in plasma samples. The µLC-MS platform demonstrated a greater dynamic range, sensitivity, robustness, and good reproducibility. These findings demonstrated that the cost-effective µLC-MS method can reduce reagent consumption and minimize the use of mice plasma samples while providing more comprehensive information about ADCs being analyzed, including the total antibody, intact antibody, and total ADC.
Collapse
Affiliation(s)
- Moo-Jin Suh
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA.
| | - Joshua B Powers
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA
| | - Casey M Daniels
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA
| | - Yuling Wu
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, 20878, USA.
| |
Collapse
|
9
|
Yin F, Adhikari D, Sun M, Shane Woolf M, Ma E, Mylott W, Shaheen E, Harriman S, Pinkas J. Bioanalysis of an antibody drug conjugate (ADC) PYX-201 in human plasma using a hybrid immunoaffinity LC-MS/MS approach. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1223:123715. [PMID: 37094503 DOI: 10.1016/j.jchromb.2023.123715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/26/2023]
Abstract
PYX-201 is an anti-extra domain B splice variant of fibronectin (EDB + FN) antibody drug conjugate (ADC) composed of a fully human IgG1 antibody, a cleavable mcValCitPABC linker, and four Auristatin 0101 (Aur0101, PF-06380101) payload molecules. To better understand the pharmacokinetic (PK) profile of PYX-201 after it is administered to cancer patients, the development of a reliable bioanalytical assay to accurately and precisely quantitate PYX-201 in human plasma is required. In this manuscript, we present a hybrid immunoaffinity LC-MS/MS assay used to successfully analyze PYX-201 in human plasma. PYX-201 was enriched by MABSelect beads coated with protein A in human plasma samples. The bound proteins were subjected to "on-bead" proteolysis with papain to release the payload Aur0101. The stable isotope labelled internal standard (SIL-IS) Aur0101-d8 was added and the released Aur0101 was quantified as a surrogate for the total ADC concentration. The separation was performed on a UPLC C18 column coupled with tandem mass spectrometry. The LC-MS/MS assay was validated over the range 0.0250 to 25.0 µg/mL with excellent accuracy and precision. The overall accuracy (%RE) was between -3.8% and -0.1% and the inter-assay precision (%CV) was <5.8%. PYX-201 was found to be stable in human plasma for at least 24 h on ice, 15 days after being stored at -80 °C, as well as after five freeze/thaw cycles of being frozen at -25 °C or -80 °C and thawed on ice. The assay this paper reports on, has been successfully applied to human sample analysis to support clinical studies.
Collapse
Affiliation(s)
- Feng Yin
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Diana Adhikari
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Minghao Sun
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - M Shane Woolf
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Eric Ma
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - William Mylott
- Chromatographic Services - Research & Development, Biologics by LC-MS/MS, PPD Laboratory Services, 8700 Quioccasin Road, Henrico, VA 23229, USA
| | - Elizabeth Shaheen
- Department of Project Management, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA
| | - Shawn Harriman
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA.
| | - Jan Pinkas
- Department of Nonclinical Research, Pyxis Oncology, Inc., 321 Harrison Avenue, Suite 1, Boston, MA 02118, USA.
| |
Collapse
|
10
|
Bioanalytical strategy for the characterization and bioanalysis of biologics: a global, nonregulated bioanalytical lab perspective. Bioanalysis 2023; 15:133-148. [PMID: 36891956 DOI: 10.4155/bio-2022-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
Over the past two decades, we have seen an increase in the complexity and diversity of biotherapeutic modalities pursued by biopharmaceutical companies. These biologics are multifaceted and susceptible to post-translational modifications and in vivo biotransformation that could impose challenges for bioanalysis. It is vital to characterize the functionality, stability and biotransformation products of these molecules to enable screening, identify potential liabilities at an early stage and devise a bioanalytical strategy. This article highlights our perspective on characterization and bioanalysis of biologics using hybrid LC-MS in our global nonregulated bioanalytical laboratories. AbbVie's suite of versatile, stage-appropriate characterization assays and quantitative bioanalytical approaches are discussed, along with guidance on their utility in answering project-specific questions to aid in decision-making.
Collapse
|
11
|
Kellie JF, Schneck NA, Causon JC, Baba T, Mehl JT, Pohl KI. Top-Down Characterization and Intact Mass Quantitation of a Monoclonal Antibody Drug from Serum by Use of a Quadrupole TOF MS System Equipped with Electron-Activated Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:17-26. [PMID: 36459688 DOI: 10.1021/jasms.2c00206] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Time-of-flight MS systems for biopharmaceutical and protein characterization applications may play an even more pivotal role in the future as biotherapeutics increase in drug pipelines and as top-down MS approaches increase in use. Here, a recently developed TOF MS system is examined for monoclonal antibody (mAb) characterization from serum samples. After immunocapture, purified drug material spiked into monkey serum or dosed for an in-life study is analyzed by top-down MS. While characterization aspects are a distinct advantage of the MS platform, MS system and software capabilities are also shown regarding intact protein quantitation. Such applications are demonstrated to help enable comprehensive protein molecule quantitation and characterization by use of TOF MS instrumentation.
Collapse
Affiliation(s)
- John F Kellie
- GSK, Collegeville, Pennsylvania 19426, United States
| | | | | | | | - John T Mehl
- GSK, Collegeville, Pennsylvania 19426, United States
| | | |
Collapse
|
12
|
Mu R, Huang Y, Bouquet J, Yuan J, Kubiak RJ, Ma E, Naser S, Mylott WR, Ismaiel OA, Wheeler AM, Burkart R, Cortes DF, Bruton J, Arends RH, Liang M, Rosenbaum AI. Multiplex Hybrid Antigen-Capture LC-MRM Quantification in Sera and Nasal Lining Fluid of AZD7442, a SARS-CoV-2-Targeting Antibody Combination. Anal Chem 2022; 94:14835-14845. [PMID: 36269894 DOI: 10.1021/acs.analchem.2c01320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AZD7442 (tixagevimab [AZD8895]/cilgavimab [AZD1061]) is a monoclonal antibody (mAb) combination in development for the prevention and treatment of coronavirus disease 2019. Traditionally, bioanalysis of mAbs is performed using ligand binding assays (LBAs), which offer sensitivity, robustness, and ease of implementation. However, LBAs frequently require generation of critical reagents that typically take several months. Instead, we developed a highly sensitive (5 ng/mL limit of quantification) method using a hybrid LBA-liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) approach for quantification of the two codosed antibodies in serum and nasal lining fluid (NLF), a rare matrix. The method was optimized by careful selection of multiple reaction monitoring, capture reagents, magnetic beads, chromatographic conditions, evaluations of selectivity, and matrix effect. The final assay used viral spike protein receptor-binding domain as capture reagent and signature proteotypic peptides from the complementarity-determining region of each mAb for detection. In contrast to other methods of similar/superior sensitivity, our approach did not require multidimensional separations and can be operated in an analytical flow regime, ensuring high throughput and robustness required for clinical analysis at scale. The sensitivity of this method significantly exceeds typical sensitivity of ∼100 ng/mL for analytical flow 1D LBA-LC-MS/MS methods for large macromolecules, such as antibodies. Furthermore, infection and vaccination status did not impact method performance, ensuring method robustness and applicability to a broad patient population. This report demonstrated the general applicability of the hybrid LBA-LC-MS/MS approach to platform quantification of antibodies with high sensitivity and reproducibility, with specialized extension to matrices of increasing interest, such as NLF.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jerome Bouquet
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Robert J Kubiak
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Eric Ma
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Sami Naser
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - William R Mylott
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Omnia A Ismaiel
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States.,Faculty of Pharmacy, Zagazig University, Zagazig 2, Zagazig, Egypt
| | - Aaron M Wheeler
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rebecca Burkart
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Diego F Cortes
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - James Bruton
- Research and Development Biologics by LC-MS/MS, PPD Laboratories, Richmond, Virginia 23230, United States
| | - Rosalinda H Arends
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gaithersburg, Maryland 20878, United States
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, California 94080, United States
| |
Collapse
|
13
|
Qin Q, Gong L. Current Analytical Strategies for Antibody-Drug Conjugates in Biomatrices. Molecules 2022; 27:6299. [PMID: 36234836 PMCID: PMC9572530 DOI: 10.3390/molecules27196299] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/27/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Antibody-drug conjugates (ADCs) are a new class of biotherapeutics, consisting of a cytotoxic payload covalently bound to an antibody by a linker. Ligand-binding assay (LBA) and liquid chromatography-mass spectrometry (LC-MS) are the favored techniques for the analysis of ADCs in biomatrices. The goal of our review is to provide current strategies related to a series of bioanalytical assays for pharmacokinetics (PK) and anti-drug antibody (ADA) assessments. Furthermore, the strengths and limitations of LBA and LC-MS platforms are compared. Finally, potential factors that affect the performance of the developed assays are also provided. It is hoped that the review can provide valuable insights to bioanalytical scientists on the use of an integrated analytical strategy involving LBA and LC-MS for the bioanalysis of ADCs and related immunogenicity evaluation.
Collapse
Affiliation(s)
- Qiuping Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Likun Gong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Department of Immunoassay and Immunochemistry, Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| |
Collapse
|
14
|
Lu L, Liu X, Zuo C, Zhou J, Zhu C, Zhang Z, Fillet M, Crommen J, Jiang Z, Wang Q. In vitro/in vivo degradation analysis of trastuzumab by combining specific capture on HER2 mimotope peptide modified material and LC-QTOF-MS. Anal Chim Acta 2022; 1225:340199. [DOI: 10.1016/j.aca.2022.340199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/12/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
|
15
|
2021 White Paper on Recent Issues in Bioanalysis: Mass Spec of Proteins, Extracellular Vesicles, CRISPR, Chiral Assays, Oligos; Nanomedicines Bioanalysis; ICH M10 Section 7.1; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC & Part 1B - Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2022; 14:505-580. [PMID: 35578993 DOI: 10.4155/bio-2022-0078] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.
Collapse
|
16
|
de Jong KA, Rosing H, Huitema AD, Beijnen JH. Optimized sample pre-treatment procedure for the simultaneous UPLC-MS/MS quantification of ipilimumab, nivolumab, and pembrolizumab in human serum. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123215. [DOI: 10.1016/j.jchromb.2022.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/30/2022]
|
17
|
Bolleddula J, Brady K, Bruin G, Lee AJ, Martin JA, Walles M, Xu K, Yang TY, Zhu X, Yu H. Absorption, Distribution, Metabolism, and Excretion (ADME) of Therapeutic Proteins: Current Industry Practices and Future Perspectives. Drug Metab Dispos 2022; 50:837-845. [PMID: 35149541 DOI: 10.1124/dmd.121.000461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 01/05/2022] [Indexed: 11/22/2022] Open
Abstract
Therapeutics proteins (TPs) comprise a variety of modalities including antibody-based drugs, coagulation factors, recombinant cytokines, enzymes, growth factors, and hormones. TPs usually cannot traverse cellular barriers and exert their pharmacological activity by interacting with targets on the exterior membrane of cells or with soluble ligands in the tissue interstitial fluid/blood. Due to large size, lack of cellular permeability, variation in metabolic fate, and distinct physicochemical characteristics, TPs are subject to different absorption, distribution, metabolism, and excretion (ADME) processes as compared to small molecules. Limited regulatory guidance makes it challenging to determine the most relevant ADME data required for regulatory submissions. The TP ADME working group (WG) was sponsored by the Translational and ADME Sciences Leadership Group (TALG) within the Innovation and Quality (IQ) consortium with objectives to: i) better understand the current practices of ADME data generated for TPs across IQ member companies, ii) learn about their regulatory strategy and interaction experiences, and iii) provide recommendations on best practices for conducting ADME studies. To understand current ADME practices and regulatory strategies, an industry-wide survey was conducted within IQ member companies. In addition, ADME data submitted to FDA was also collated by reviewing regulatory submission packages of TPs approved between 2011-2020. This article summarizes the key learnings from the survey and an overview of ADME data presented in BLAs along with future perspectives and recommendations for conducting ADME studies for internal decision making as well as regulatory submissions for TPs. Significance Statement This article provides comprehensive assessment of the current practices of absorption, distribution, metabolism, and excretion (ADME) data generated for therapeutic proteins across the Innovation and Quality (IQ) participating companies and the utility of the data in discovery, development, and regulatory submissions. The TP ADME working group (WG) working group also recommends the best practices for conducting ADME studies for internal decision making and regulatory submissions.
Collapse
Affiliation(s)
| | | | - Gerard Bruin
- Novartis Institutes for Biomedical Research, Switzerland
| | | | | | - Markus Walles
- DMPK, Novartis Institutes for Biomedical Research, Switzerland
| | | | | | | | - Hongbin Yu
- Boehringer Ingelheim Pharmaceuticals, Inc, United States
| |
Collapse
|
18
|
Sun L, Xu Y, Dube N, Anderson M, Breidinger S, Vaddady P, Thornton B, Morrow L, Matthews RP, Stoch SA, Woolf EJ. Incorporating protein precipitation to resolve hybrid IP-LC-MS assay interference for ultrasensitive quantification of intact therapeutic insulin dimer in human plasma. J Pharm Biomed Anal 2022; 212:114639. [DOI: 10.1016/j.jpba.2022.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/15/2021] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
|
19
|
Chen N, Sun K, Chemuturi NV, Cho H, Xia CQ. The Perspective of DMPK on Recombinant Adeno-Associated Virus-Based Gene Therapy: Past Learning, Current Support, and Future Contribution. AAPS J 2022; 24:31. [PMID: 35102450 PMCID: PMC8817103 DOI: 10.1208/s12248-021-00678-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022] Open
Abstract
Given the recent success of gene therapy modalities and the growing number of cell and gene-based therapies in clinical development across many different therapeutic areas, it is evident that this evolving field holds great promise for the unmet medical needs of patients. The recent approvals of Luxturna® and Zolgensma® prove that recombinant adeno-associated virus (rAAV)-based gene therapy is a transformative modality that enables curative treatment for genetic disorders. Over the last decade, Takeda has accumulated significant experience with rAAV-based gene therapies, especially in the early stage of development. In this review, based on the learnings from Takeda and publicly available information, we aim to provide a guiding perspective on Drug Metabolism and Pharmacokinetics (DMPK) substantial role in advancing therapeutic gene therapy modalities from nonclinical research to clinical development, in particular the characterization of gene therapy product biodistribution, elimination (shedding), immunogenicity assessment, multiple platform bioanalytical assays, and first-in-human (FIH) dose projection strategies. Graphical abstract ![]()
Collapse
Affiliation(s)
- Nancy Chen
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA.
| | - Kefeng Sun
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Nagendra Venkata Chemuturi
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Hyelim Cho
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| | - Cindy Q Xia
- Takeda Development Center Americas, Inc. (TDCA), 35 Landsdowne Street, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
20
|
Kramlinger VM, Dalvie D, Heck CJ, Kalgutkar AS, O'Neill J, Su D, Teitelbaum A, Totah RA. Future of Biotransformation Science in the Pharmaceutical Industry. Drug Metab Dispos 2021; 50:258-267. [PMID: 34921097 DOI: 10.1124/dmd.121.000658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/23/2021] [Indexed: 11/22/2022] Open
Abstract
Over the past decades, the number of scientists trained in departments dedicated to traditional medicinal chemistry, biotransformation and/or chemical toxicology have seemingly declined. Yet, there remains a strong demand for such specialized skills in the pharmaceutical industry, particularly within drug metabolism/pharmacokinetics (DMPK) departments. In this position paper, the members of the Biotransformation, Mechanisms, and Pathways Focus Group (BMPFG) steering committee reflect on the diverse roles and responsibilities of scientists trained in the biotransformation field in pharmaceutical companies and contract research organizations. The BMPFG is affiliated with the International Society for the Study of Xenobiotics (ISSX) and was specifically created to promote the exchange of ideas pertaining to topics of current and future interest involving the metabolism of xenobiotics (including drugs). The authors also delve into the relevant education and diverse training skills required to successfully nurture the future cohort of industry biotransformation scientists and guide them towards a rewarding career path. The ability of scientists with a background in biotransformation/organic chemistry to creatively solve complex drug metabolism problems encountered during research and development efforts on both small molecule or large molecular modalities is exemplified in five relevant case studies. Finally, the authors stress the importance and continued commitment to training the next generation of biotransformation scientists who are not only experienced in the metabolism of conventional small molecule therapeutics, but are also equipped to tackle emerging challenges associated with new drug discovery modalities including peptides, protein degraders and antibodies. Significance Statement Biotransformation and mechanistic drug metabolism scientists are critical to advancing chemical entities through discovery and development, yet the number of scientists academically trained for this role is on the decline. This position paper highlights the continuing demand for biotransformation scientists and the necessity to nurture creative ways to train them and guarantee the future growth of this field.
Collapse
Affiliation(s)
| | | | - Carley Js Heck
- Pfizer Worldwide Research and Development, United States
| | - Amit S Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism Dept., Pfizer Worldwide Research and Development, United States
| | | | - Dian Su
- Mersana Therapeutics, United States
| | - Aaron Teitelbaum
- Drug Metabolism and Pharmacokinetics, Boehringer Ingelheim Pharmaceuticals, United States
| | - Rheem A Totah
- Medicinal Chemistry, Univeristy of Washington, United States
| |
Collapse
|
21
|
Kellie JF, Tran JC, Jian W, Jones B, Mehl JT, Ge Y, Henion J, Bateman KP. Intact Protein Mass Spectrometry for Therapeutic Protein Quantitation, Pharmacokinetics, and Biotransformation in Preclinical and Clinical Studies: An Industry Perspective. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1886-1900. [PMID: 32869982 DOI: 10.1021/jasms.0c00270] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recent advancements in immunocapture methods and mass spectrometer technology have enabled intact protein mass spectrometry to be applied for the characterization of antibodies and other large biotherapeutics from in-life studies. Protein molecules have not been traditionally studied by intact mass or screened for catabolites in the same manner as small molecules, but the landscape has changed. Researchers have presented methods that can be applied to the drug discovery and development stages, and others are exploring the possibilities of the new approaches. However, a wide variety of options for assay development exists without clear recommendation on best practice, and data processing workflows may have limitations depending on the vendor. In this perspective, we share experiences and recommendations for current and future application of mass spectrometry for biotherapeutic molecule monitoring from preclinical and clinical studies.
Collapse
Affiliation(s)
- John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, GlaxoSmithKline, Collegeville, Pennsylvania 19426, United States
| | - John C Tran
- Biochemical & Cellular Pharmacology, Genentech Inc., South San Francisco, California 94080, United States
| | - Wenying Jian
- DMPK, Janssen Research & Development, Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Barry Jones
- Q Squared Solutions, 19 Brown Road, Ithaca, New York 14850, United States
| | - John T Mehl
- Bioanalytical Research, Bristol-Myers Squibb, Princeton, New Jersey 08648, United States
| | - Ying Ge
- Department of Cell and Regenerative Biology, Department of Chemistry, Human Proteomics Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Jack Henion
- Advion, Inc., 61 Brown Road, Ithaca, New York 14850, United States
| | - Kevin P Bateman
- PPDM, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
22
|
The role of ligand-binding assay and LC-MS in the bioanalysis of complex protein and oligonucleotide therapeutics. Bioanalysis 2021; 13:931-954. [PMID: 33998268 DOI: 10.4155/bio-2021-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ligand-binding assay (LBA) and LC-MS have been the preferred bioanalytical techniques for the quantitation and biotransformation assessment of various therapeutic modalities. This review provides an overview of the applications of LBA, LC-MS/MS and LC-HRMS for the bioanalysis of complex protein therapeutics including antibody-drug conjugates, fusion proteins and PEGylated proteins as well as oligonucleotide therapeutics. The strengths and limitations of LBA and LC-MS, along with some guidelines on the choice of appropriate bioanalytical technique(s) for the bioanalysis of these therapeutic modalities are presented. With the discovery of novel and more complex therapeutic modalities, there is an increased need for the biopharmaceutical industry to develop a comprehensive bioanalytical strategy integrating both LBA and LC-MS.
Collapse
|
23
|
Welcome to volume 13 of Bioanalysis. Bioanalysis 2021. [DOI: 10.4155/bio-2020-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Intact mAb LC–MS for drug concentration from pre-clinical studies: bioanalytical method performance and in-life samples. Bioanalysis 2020; 12:1389-1403. [DOI: 10.4155/bio-2020-0168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Antibody biotherapeutic measurement from pharmacokinetic studies has not been traditionally based on intact molecular mass as is the case for small molecules. However, recent advancements in protein capture and mass spectrometer technology have enabled intact mass detection and quantitation for dosed biotherapeutics. A bioanalytical method validation is part of the regulatory requirement for sample analysis to determine drug concentration from in-life study samples. Results/methodology: Here, an intact protein LC–MS assay is subjected to mock bioanalytical method validation, and unknown samples are compared between intact protein LC–MS and established bioanalytical assay formats: Ligand-binding assay and peptide LC–MS/MS. Discussion/conclusion: Results are presented from the intact and traditional bioanalytical method evaluations, where the in-life sample concentrations were comparable across method types with associated data analyses presented. Furthermore, for intact protein LC–MS, modification monitoring and evaluation of data processing parameters is demonstrated.
Collapse
|
25
|
Hybrid LC-MS as a powerful tool for supporting protein bioanalysis in gene and cell therapies. Bioanalysis 2020; 12:977-979. [PMID: 32686957 DOI: 10.4155/bio-2020-0147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Kellie JF, Pannullo KE, Li Y, Fraley K, Mayer A, Sychterz CJ, Szapacs ME, Karlinsey MZ. Antibody Subunit LC-MS Analysis for Pharmacokinetic and Biotransformation Determination from In-Life Studies for Complex Biotherapeutics. Anal Chem 2020; 92:8268-8277. [DOI: 10.1021/acs.analchem.0c00520] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|