1
|
More D, Khan N, Tekade RK, Sengupta P. An Update on Current Trend in Sample Preparation Automation in Bioanalysis: strategies, Challenges and Future Direction. Crit Rev Anal Chem 2024:1-25. [PMID: 38949910 DOI: 10.1080/10408347.2024.2362707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Automation in sample preparation improves accuracy, productivity, and precision in bioanalysis. Moreover, it reduces resource consumption for repetitive procedures. Automated sample analysis allows uninterrupted handling of large volumes of biological samples originating from preclinical and clinical studies. Automation significantly helps in management of complex testing methods where generation of large volumes of data is required for process monitoring. Compared to traditional sample preparation processes, automated procedures reduce associated expenses and manual error, facilitate laboratory transfers, enhance data quality, and better protect the health of analysts. Automated sample preparation techniques based on robotics potentially increase the throughput of bioanalytical laboratories. Robotic liquid handler, an automated sample preparation system built on a robotic technique ensures optimal laboratory output while saving expensive solvents, manpower, and time. Nowadays, most of the traditional extraction processes are being automated using several formats of online techniques. This review covered most of the automated sample preparation techniques reported till date, which accelerated and simplified the sample preparation procedure for bioanalytical sample analysis. This article critically analyzed different developmental aspects of automated sample preparation techniques based on robotics as well as conventional sample preparation methods that are accelerated using automated technologies.
Collapse
Affiliation(s)
- Dnyaneshwar More
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Nasir Khan
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Opp. Airforce Station, Palaj, Gandhinagar 382355, Gujarat, India
| |
Collapse
|
2
|
Abstract
Metabolite profiling is an indispensable part of drug discovery and development, enabling a comprehensive understanding of the drug's metabolic behavior. Liquid chromatography-mass spectrometry facilitates metabolite profiling by reducing sample complexity and providing high sensitivity. This review discusses the in vivo metabolite profiling involving LC-MS/MS and the utilization of QTOF, QQQ mass analyzers with a particular emphasis on a mass filter. Further, a summary of sample extraction procedures in biological matrices such as plasma, urine, feces, serum and hair as in vivo samples are outlined. toward the end, we present 15 case studies in biological matrices and their LC-MS/MS conditions to understand the metabolic disposition.
Collapse
|
3
|
Kleijne VD, Kohler I, C Heijboer A, Ackermans MT. Solutions for hematocrit bias in dried blood spot hormone analysis. Bioanalysis 2021; 13:1293-1308. [PMID: 34470479 DOI: 10.4155/bio-2021-0119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Over the last years, dried blood spot (DBS) sampling has gained significant interest due to development of analytical techniques combined with DBS, the simplicity and low cost of the method. Despite its wide use, DBS sampling can lead to inaccurate results due to the impact of the hematocrit (Hct) on the analysis. Some analytes have shown to be hardly impacted by Hct values. However, in other cases, a significant impact of Hct is observed, which requires the use of alternative approaches to circumvent this issue. This review describes the possible impact of Hct-related bias in DBS sampling in the context of hormone analysis and discusses the different methodologies that can be used to overcome this bias to ensure accurate results.
Collapse
Affiliation(s)
- Vera de Kleijne
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular & Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, Amsterdam, The Netherlands
| | - Annemieke C Heijboer
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, Vrije Universiteit Amsterdam, The Netherlands
| | - Mariëtte T Ackermans
- Department of Clinical Chemistry, Endocrine Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Official International Association for Therapeutic Drug Monitoring and Clinical Toxicology Guideline: Development and Validation of Dried Blood Spot-Based Methods for Therapeutic Drug Monitoring. Ther Drug Monit 2020; 41:409-430. [PMID: 31268966 DOI: 10.1097/ftd.0000000000000643] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dried blood spot (DBS) analysis has been introduced more and more into clinical practice to facilitate Therapeutic Drug Monitoring (TDM). To assure the quality of bioanalytical methods, the design, development and validation needs to fit the intended use. Current validation requirements, described in guidelines for traditional matrices (blood, plasma, serum), do not cover all necessary aspects of method development, analytical- and clinical validation of DBS assays for TDM. Therefore, this guideline provides parameters required for the validation of quantitative determination of small molecule drugs in DBS using chromatographic methods, and to provide advice on how these can be assessed. In addition, guidance is given on the application of validated methods in a routine context. First, considerations for the method development stage are described covering sample collection procedure, type of filter paper and punch size, sample volume, drying and storage, internal standard incorporation, type of blood used, sample preparation and prevalidation. Second, common parameters regarding analytical validation are described in context of DBS analysis with the addition of DBS-specific parameters, such as volume-, volcano- and hematocrit effects. Third, clinical validation studies are described, including number of clinical samples and patients, comparison of DBS with venous blood, statistical methods and interpretation, spot quality, sampling procedure, duplicates, outliers, automated analysis methods and quality control programs. Lastly, cross-validation is discussed, covering changes made to existing sampling- and analysis methods. This guideline of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology on the development, validation and evaluation of DBS-based methods for the purpose of TDM aims to contribute to high-quality micro sampling methods used in clinical practice.
Collapse
|
5
|
Microsampling: considerations for its use in pharmaceutical drug discovery and development. Bioanalysis 2019; 11:1015-1038. [PMID: 31218897 DOI: 10.4155/bio-2019-0041] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
There is growing interest in the implementation of microsampling approaches for the quantitation of circulating concentrations of analytes in biological samples derived from nonclinical and clinical studies involved in drug development. This interest is partly due to the ethical advantages of taking smaller blood volumes, particularly for studies in rodents, children and the critically ill. In addition, these technologies facilitate sampling to be performed in previously intractable locations and occasions. Further, they enable the collection of samples for additional purposes (extra time points, biomarkers, sampling during a clinical event, etc). This article gives a comprehensive insight to the utilization of these approaches in drug discovery and development, and provides recommendations for best practice for nonclinical, clinical and bioanalytical aspects.
Collapse
|
6
|
The Use of Dried Blood Spots for the Quantification of Antihypertensive Drugs. Int J Anal Chem 2018; 2018:3235072. [PMID: 30154849 PMCID: PMC6093062 DOI: 10.1155/2018/3235072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/09/2018] [Accepted: 07/02/2018] [Indexed: 12/16/2022] Open
Abstract
Hypertension or high blood pressure is a harbinger of cardiovascular diseases. There are several classes of drugs used to treat hypertension. This review discusses the use of dried blood spots (DBSs) for the quantification by mass spectrometry (MS), tandem mass spectrometry (MS/MS), or, in some cases, by fluorescence detection methods the following antihypertensive medications: angiotensin-converting enzyme inhibitors (ramipril, ramiprilat, captopril, and lisinopril); angiotensin II receptor antagonists (valsartan, irbesartan, losartan, and losartan carboxylic acid); calcium channel blockers (verapamil, amlodipine, nifedipine, pregabalin, and diltiazem); α blockers (guanfacine, doxazosin, and prazosin); β blockers (propranolol, bisoprolol, atenolol, and metoprolol); endothelin receptor antagonists (bosentan and ambrisentan); and statins (simvastatin, atorvastatin, and rosuvastatin).
Collapse
|
7
|
Alexovič M, Dotsikas Y, Bober P, Sabo J. Achievements in robotic automation of solvent extraction and related approaches for bioanalysis of pharmaceuticals. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:402-421. [DOI: 10.1016/j.jchromb.2018.06.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/11/2018] [Accepted: 06/17/2018] [Indexed: 12/27/2022]
|
8
|
Martial LC, van den Hombergh E, Tump C, Halmingh O, Burger DM, van Maarseveen EM, Brüggemann RJ, Aarnoutse RE. Manual punch versus automated flow-through sample desorption for dried blood spot LC-MS/MS analysis of voriconazole. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1089:16-23. [DOI: 10.1016/j.jchromb.2018.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 03/19/2018] [Accepted: 04/23/2018] [Indexed: 11/17/2022]
|
9
|
Shaner RL, Schulze ND, Seymour C, Hamelin EI, Thomas JD, Johnson RC. Quantitation of Fentanyl Analogs in Dried Blood Spots by Flow-Through Desorption Coupled to Online Solid Phase Extraction Tandem Mass Spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:3876-3883. [PMID: 29181095 PMCID: PMC5701286 DOI: 10.1039/c7ay00532f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An automated dried blood spot (DBS) elution coupled with solid phase extraction and tandem mass spectrometric analysis for multiple fentanyl analogs was developed and assessed. This method confirms human exposures to fentanyl, sufentanil, carfentanil, alfentanil, lofentanil, α-methyl fentanyl, and 3-methyl fentanyl in blood with minimal sample volume and reduced shipping and storage costs. Seven fentanyl analogs were detected and quantitated from DBS made from venous blood. The calibration curve in matrix was linear in the concentration range of 1.0 ng/mL to 100 ng/mL with a correlation coefficient greater than 0.98 for all compounds. The limit of detection varied from 0.15 ng/mL to 0.66 ng/mL depending on target analyte. Analysis of the entire DBS minimized the effects of hematocrit on quantitation. All quality control materials evaluated resulted in <15% error; analytes with isotopically labeled internal standards had <15% RSD, while analytes without matching standards had 15-24% RSD. This method provides an automated means to detect seven fentanyl analogs, and quantitate four fentanyl analogs with the benefits of DBS at levels anticipated from an overdose of these potent opioids.
Collapse
Affiliation(s)
- Rebecca L Shaner
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F44, Atlanta, GA 30341
| | - Nicholas D Schulze
- ORISE Fellow, Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA 30341
| | - Craig Seymour
- ORISE Fellow, Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, GA 30341
| | - Elizabeth I Hamelin
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F44, Atlanta, GA 30341
| | - Jerry D Thomas
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F44, Atlanta, GA 30341
| | - Rudolph C Johnson
- Centers for Disease Control and Prevention, 4770 Buford Hwy, MS F44, Atlanta, GA 30341
| |
Collapse
|
10
|
Verplaetse R, Henion J. Hematocrit-Independent Quantitation of Stimulants in Dried Blood Spots: Pipet versus Microfluidic-Based Volumetric Sampling Coupled with Automated Flow-Through Desorption and Online Solid Phase Extraction-LC-MS/MS Bioanalysis. Anal Chem 2016; 88:6789-96. [DOI: 10.1021/acs.analchem.6b01190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ruth Verplaetse
- Q2 Solutions, 19
Brown Road, Ithaca, New York 14850, United States
| | - Jack Henion
- Q2 Solutions, 19
Brown Road, Ithaca, New York 14850, United States
| |
Collapse
|
11
|
Wagner M, Tonoli D, Varesio E, Hopfgartner G. The use of mass spectrometry to analyze dried blood spots. MASS SPECTROMETRY REVIEWS 2016; 35:361-438. [PMID: 25252132 DOI: 10.1002/mas.21441] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Dried blood spots (DBS) typically consist in the deposition of small volumes of capillary blood onto dedicated paper cards. Comparatively to whole blood or plasma samples, their benefits rely in the fact that sample collection is easier and that logistic aspects related to sample storage and shipment can be relatively limited, respectively, without the need of a refrigerator or dry ice. Originally, this approach has been developed in the sixties to support the analysis of phenylalanine for the detection of phenylketonuria in newborns using bacterial inhibition test. In the nineties tandem mass spectrometry was established as the detection technique for phenylalanine and tyrosine. DBS became rapidly recognized for their clinical value: they were widely implemented in pediatric settings with mass spectrometric detection, and were closely associated to the debut of newborn screening (NBS) programs, as a part of public health policies. Since then, sample collection on paper cards has been explored with various analytical techniques in other areas more or less successfully regarding large-scale applications. Moreover, in the last 5 years a regain of interest for DBS was observed and originated from the bioanalytical community to support drug development (e.g., PK studies) or therapeutic drug monitoring mainly. Those recent applications were essentially driven by improved sensitivity of triple quadrupole mass spectrometers. This review presents an overall view of all instrumental and methodological developments for DBS analysis with mass spectrometric detection, with and without separation techniques. A general introduction to DBS will describe their advantages and historical aspects of their emergence. A second section will focus on blood collection, with a strong emphasis on specific parameters that can impact quantitative analysis, including chromatographic effects, hematocrit effects, blood effects, and analyte stability. A third part of the review is dedicated to sample preparation and will consider off-line and on-line extractions; in particular, instrumental designs that have been developed so far for DBS extraction will be detailed. Flow injection analysis and applications will be discussed in section IV. The application of surface analysis mass spectrometry (DESI, paper spray, DART, APTDCI, MALDI, LDTD-APCI, and ICP) to DBS is described in section V, while applications based on separation techniques (e.g., liquid or gas chromatography) are presented in section VI. To conclude this review, the current status of DBS analysis is summarized, and future perspectives are provided.
Collapse
Affiliation(s)
- Michel Wagner
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - David Tonoli
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Emmanuel Varesio
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| | - Gérard Hopfgartner
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Life Sciences Mass Spectrometry, Quai Ernest-Ansermet 30, 1211, Geneva, Switzerland
| |
Collapse
|
12
|
Tretzel L, Thomas A, Piper T, Hedeland M, Geyer H, Schänzer W, Thevis M. Fully automated determination of nicotine and its major metabolites in whole blood by means of a DBS online-SPE LC-HR-MS/MS approach for sports drug testing. J Pharm Biomed Anal 2016; 123:132-40. [DOI: 10.1016/j.jpba.2016.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 01/06/2023]
|
13
|
Verplaetse R, Henion J. Quantitative determination of opioids in whole blood using fully automated dried blood spot desorption coupled to on-line SPE-LC-MS/MS. Drug Test Anal 2015; 8:30-8. [DOI: 10.1002/dta.1927] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/11/2022]
Affiliation(s)
| | - Jack Henion
- Q Solutions; 19 Brown Rd Ithaca NY 14850 USA
| |
Collapse
|
14
|
Abstract
Online and automated sample extraction is widely used to increase the throughput and improve the quality of LC-MS/MS analysis. In this article, we review the most commonly used online sample extraction methodologies including online SPE, turbulent flow chromatography, online DBS extraction and online immunoaffinity extraction. We also review the offline automated sample extraction platforms, including custom robot scripts for the automation of individual steps during sample extraction, the robot scripts for the automation of individual assays, and the platform for integrated multiple sample extraction. The most recent developments and future trends in this area are also discussed.
Collapse
|
15
|
DBS direct elution: optimizing performance in high-throughput quantitative LC–MS/MS analysis. Bioanalysis 2015; 7:2003-17. [DOI: 10.4155/bio.15.120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Automated DBS direct elution techniques eliminate the manual extraction burden of DBS bioanalysis, offer good quantitative performance, the ability to eliminate hematocrit-based assay bias, and, previous reports have demonstrated that significant increases in assay sensitivity compared with manual DBS extraction are possible. Results: An investigation into elucidating parameters for optimized generic DBS direct elution for high sample throughput quantitative bioanalytical applications is presented for the first time. Generic direct elution conditions were identified that enabled LC–MS/MS assay sensitivity to be maximized while retaining acceptable chromatographic performance. Conclusion: Compared with generic conventional DBS manual extraction, assay sensitivity was demonstrated to be increased up to 33-fold across four representative small molecule compounds, using the recommended direct elution conditions.
Collapse
|
16
|
Hematocrit-independent recovery of immunosuppressants from DBS using heated flow-through desorption. Bioanalysis 2015; 7:2019-29. [DOI: 10.4155/bio.15.97] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: We applied our concept for automated flow-through desorption of DBS to investigate the effect of desorption temperature on recovery. For this purpose, a method has been developed for the determination of four immunosuppressants in DBS. Results: We compared recoveries of four immunosuppressants for measurements with and without temperature-enhanced desorption at different hematocrit (Ht) levels. Temperature-enhanced desorption increased recovery substantially for tacrolimus, sirolimus and everolimus at all Ht values and for cyclosporine At high Ht. In addition, recovery became largely independent from Ht variations. Under the optimized conditions, a brief validation using spiked blood samples showed that the method complies with acceptance criteria for quantitative bioanalysis. Conclusion: This method enables a quantitative analysis of immunosuppressants in DBS independent from the Ht.
Collapse
|
17
|
A new DBS card with spot sizes independent of the hematocrit value of blood. Bioanalysis 2015; 7:2095-104. [DOI: 10.4155/bio.15.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: DBS cards have been a big promise for decades. However, blood with low hematocrit (Ht) values results on regular cellulose-based DBS cards in larger spot sizes, compared with blood with high Ht-values. A new material has been developed to solve this problem. Results: This material, based on hydrophilic-coated woven polyester fibers, shows spot sizes independent of the Ht-value of blood. Homogeneity over the spot is within 10% RSD. Conclusion: Quantitative measurements over a broad Ht range show nonbiased results compared with whole spot analysis. The cards are experienced as reproducible, robust and easy to use on aspects of punchability and extractability.
Collapse
|
18
|
Yuan L, Schuster A, Shen JX, Garrison-Borowski P, Aubry AF. Dried blood spot analysis without dilution: Application to the LC-MS/MS determination of BMS-986001 in rat dried blood spot. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1002:201-9. [PMID: 26340763 DOI: 10.1016/j.jchromb.2015.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 01/07/2023]
Abstract
Sample dilution is one major challenge in dried blood spot (DBS) bioanalysis. To resolve this issue, we applied a no-dilution strategy for DBS analysis by using a calibration curve with very wide linear range. We developed an LC-MS/MS DBS assay with a linear range of 5 orders of magnitude (50-5000,000ng/mL) for BMS-986001, an HIV drug under development, by simultaneously monitoring two selective reaction monitoring transitions of different intensity. The assay was validated and successfully applied to the analysis of DBS samples collected in a toxicology study in rats dosed with BMS-986001. All samples were analyzed without any dilution. We also compared the concentration data generated from the DBS method and a validated plasma assay for the same study. The two sets of data agreed well with each other, demonstrating the validity of this strategy for DBS analysis. This approach provides an effective and convenient way to eliminate complicated dilution for DBS and other sample collection techniques.
Collapse
Affiliation(s)
- Long Yuan
- Analytical and Bioanalytical Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA.
| | - Alan Schuster
- Analytical and Bioanalytical Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | - Jim X Shen
- Analytical and Bioanalytical Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| | | | - Anne-Françoise Aubry
- Analytical and Bioanalytical Development, Bristol-Myers Squibb, Princeton, NJ 08543, USA
| |
Collapse
|
19
|
Abstract
Older adults represent a substantial number of the world population, which is set to grow considerably in the coming years. The health challenges faced by the older adults are unique. Several age-related changes in them make phlebotomy difficult. Application of dried blood has been demonstrated to be useful in the other similarly vulnerable population, the neonates. Similar approach of standardization and demonstration of use of dried blood spots (DBS) for analytes of interest in older adult population would be highly appreciated. There are very few reports of use of DBS in older adults. There are several potential areas of interest for older adults in which DBS assays are available but have not been applied for screening in them. This review describes a brief general overview of DBS, its advantages and disadvantages and potential use in disease diagnosis in older adults.
Collapse
|
20
|
De Kesel PMM, Lambert WE, Stove CP. Alternative Sampling Strategies for Cytochrome P450 Phenotyping. Clin Pharmacokinet 2015; 55:169-84. [DOI: 10.1007/s40262-015-0306-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
21
|
Oliveira RV, Henion J, Wickremsinhe ER. Automated high-capacity on-line extraction and bioanalysis of dried blood spot samples using liquid chromatography/high-resolution accurate mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:2415-2426. [PMID: 25303470 DOI: 10.1002/rcm.7033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE Pharmacokinetic data to support clinical development of pharmaceuticals are routinely obtained from liquid plasma samples. The plasma samples require frozen shipment and storage and are extracted off-line from the liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems. In contrast, the use of dried blood spot (DBS) sampling is an attractive alternative in part due to its benefits in microsampling as well as simpler sample storage and transport. However, from a practical aspect, sample extraction from DBS cards can be challenging as currently performed. The goal of this report was to integrate automated serial extraction of large numbers of DBS cards with on-line liquid chromatography/high-resolution accurate mass spectrometry (LC/HRAMS) bioanalysis. METHODS An automated system for direct DBS extraction coupled to a LC/HRAMS was employed for the quantification of midazolam (MDZ) and α-hydroxymidazolam (α-OHMDZ) in human blood. The target analytes were directly extracted from the DBS cards onto an on-line chromatographic guard column followed by HRAMS detection. No additional sample treatment was required. The automated DBS LC/HRAMS method was developed and validated, based on the measurement at the accurate mass-to-charge ratio of the target analytes to ensure specificity for the assay. RESULTS The automated DBS LC/HRAMS method analyzed a DBS sample within 2 min without the need for punching or additional off-line sample treatment. The fully automated analytical method was shown to be sensitive and selective over the concentration range of 5 to 2000 ng/mL. Intra- and inter-day precision and accuracy was less than 15% (less than 20% at the LLOQ). The validated method was successfully applied to measure MDZ and α-OHMDZ in an incurred human sample after a single 7.5 mg dose of MDZ. CONCLUSIONS The direct DBS LC/HRAMS method demonstrated successful implementation of automated DBS extraction and bioanalysis for MDZ and α-OHMDZ. This approach has the potential to promote workload reduction and sample throughput increase.
Collapse
Affiliation(s)
- Regina V Oliveira
- Quintiles Bioanalytical and ADME Laboratories, 19 Brown Rd., Ithaca, NY, 14850, USA
| | | | | |
Collapse
|
22
|
Wilhelm AJ, den Burger JCG, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet 2014; 53:961-73. [PMID: 25204403 PMCID: PMC4213377 DOI: 10.1007/s40262-014-0177-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article discusses dried blood spot (DBS) sampling in therapeutic drug monitoring (TDM). The most important advantages of DBS sampling in TDM are the minimally invasive procedure of a finger prick (home sampling), the small volume (children), and the stability of the analyte. Many assays in DBS have been reported in the literature over the previous 5 years. These assays and their analytical techniques are reviewed here. Factors that may influence the accuracy and reproducibility of DBS methods are also discussed. Important issues are the correlation with plasma/serum concentrations and the influence of hematocrit on spot size and recovery. The different substrate materials are considered. DBS sampling can be a valid alternative to conventional venous sampling. However, patient correlation studies are indispensable to prove this. Promising developments are dried plasma spots using membrane and hematocrit correction using the potassium concentration.
Collapse
Affiliation(s)
- Abraham J Wilhelm
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, de Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands,
| | | | | |
Collapse
|
23
|
CYP1A2 phenotyping in dried blood spots and microvolumes of whole blood and plasma. Bioanalysis 2014; 6:3011-24. [DOI: 10.4155/bio.14.149] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Phenotyping, using caffeine as probe substrate, is a proper method to assess CYP1A2 activity. We evaluated the utility of dried blood spots (DBS) for CYP1A2 phenotyping. Results: LC–MS/MS methods were developed and validated for quantitation of caffeine and its metabolite paraxanthine in DBS, whole blood and plasma. All parameters met the pre-established criteria. While recovery, matrix effects and precision were unaffected by hematocrit (Hct), there was a Hct effect on accuracy, although for the evaluated Hct interval (0.36–0.50) it remained within acceptable limits. The phenotyping methods were successfully applied in healthy volunteers. Conclusion: Excellent method performance and highly comparable phenotyping indices in DBS, whole blood and plasma, combined with the benefits of DBS sampling, illustrate the suitability of DBS-based CYP1A2 phenotyping.
Collapse
|
24
|
Automated direct extraction and analysis of dried blood spots employing on-line SPE high-resolution accurate mass bioanalysis. Bioanalysis 2014; 6:2027-41. [DOI: 10.4155/bio.14.162] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Background: Online automated extraction of dried blood spots (DBS) via direct extraction to a solid-phase extraction (SPE) cartridge and bioanalysis by high-resolution accurate mass spectrometry was examined. The methodology was validated and used to investigate the effect of hematocrit on assay bias using partial and whole spot extractions from accurately dispensed blood samples. Results: The completed analysis of a DBS sample was accomplished within 2 to 3 min using the online DBS-SPE platform. Hematocrit related bias was observed (>15%) for the partial DBS extractions, but not when the whole DBS was eluted. Conclusion: Results demonstrate successful implementation of automated online DBS-SPE high-resolution accurate mass spectrometry analysis and the remediation of hematocrit bias using a capillary micro dispenser for accurate spotting of blood samples.
Collapse
|
25
|
Alternative strategies for mass spectrometer-based sample dilution of bioanalytical samples, with particular reference to DBS and plasma analysis. Bioanalysis 2014; 6:773-84. [DOI: 10.4155/bio.13.320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The analysis of bioanalytical samples has required a physical dilution of high-concentration samples to bring concentrations into the validated calibration range of an assay. Results: A reversed phase ultra-high performance liquid chromatography–tandem mass spectrometry method for the quantitative analysis of pioglitazone in dried blood spots has been used to partially validate two novel techniques to analyze sample concentrations that lie above a particular calibration range. The first of the two techniques is mass spectrometer signal dilution, which consists of lowering the signal that reaches the detector. The second technique designated isotope signal ratio monitoring looks at [M+2]+1 ions (caused by naturally occurring isotopes) for samples above the upper limit of quantification. Conclusions: The newly developed methods have the potential to simplify the analysis of bioanalytical samples for which previously a physical dilution of the sample was required to bring analytes within the calibration range of an assay.
Collapse
|
26
|
Simultaneous LC–MS/MS quantification of P-glycoprotein and cytochrome P450 probe substrates and their metabolites in DBS and plasma. Bioanalysis 2014; 6:151-64. [DOI: 10.4155/bio.13.289] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: An LC–MS/MS method has been developed for the simultaneous quantification of P-glycoprotein (P-gp) and cytochrome P450 (CYP) probe substrates and their Phase I metabolites in DBS and plasma. P-gp (fexofenadine) and CYP-specific substrates (caffeine for CYP1A2, bupropion for CYP2B6, flurbiprofen for CYP2C9, omeprazole for CYP2C19, dextromethorphan for CYP2D6 and midazolam for CYP3A4) and their metabolites were extracted from DBS (10 µl) using methanol. Analytes were separated on a reversed-phase LC column followed by SRM detection within a 6 min run time. Results: The method was fully validated over the expected clinical concentration range for all substances tested, in both DBS and plasma. The method has been successfully applied to a PK study where healthy male volunteers received a low dose cocktail of the here described P-gp and CYP probes. Good correlation was observed between capillary DBS and venous plasma drug concentrations. Conclusion: Due to its low-invasiveness, simple sample collection and minimal sample preparation, DBS represents a suitable method to simultaneously monitor in vivo activities of P-gp and CYP.
Collapse
|
27
|
Abstract
The use of DBS is an appealing approach to employing microsampling techniques for the bioanalysis of samples, as has been demonstrated for the past 50 years in the metabolic screening of metabolites and diseases. In addition to its minimally invasive sample collection procedures and its economical merits, DBS microsampling benefits from the very high sensitivity, selectivity and multianalyte capabilities of LC–MS, which has been especially well demonstrated in newborn screening applications. Only a few microliters of a biological fluid are required for analysis, which also translates to significantly reduced demands on clinical samples from patients or from animals. Recently, the pharmaceutical industry and other arenas have begun to explore the utility and practicality of DBS microsampling. This review discusses the basis for why DBS techniques are likely to be part of the future, as well as offering insights into where these benefits may be realized.
Collapse
|
28
|
State-of-the-art dried blood spot analysis: an overview of recent advances and future trends. Bioanalysis 2013; 5:2187-208. [DOI: 10.4155/bio.13.175] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dried blood spots have become a popular method in a variety of micro blood-sampling techniques in the life sciences sector, consequently competing with the field of conventional, invasive blood sampling by venepuncture. Dried blood spots are widely applied in numerous bioanalytical assays and have gained a significant role in the screening of inherited metabolic diseases, in PK and PD modeling; in the treatment and diagnosis of infectious diseases; and in therapeutic drug monitoring. Recent technological developments such as automation, online extraction, mass spectrometric direct analysis and also conventional dried blood spot bioanalysis, as well as future developments in dried blood spot bioanalysis are highlighted and presented in this article.
Collapse
|
29
|
Hemato-critical issues in quantitative analysis of dried blood spots: challenges and solutions. Bioanalysis 2013; 5:2023-41. [DOI: 10.4155/bio.13.156] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Dried blood spot (DBS) sampling for quantitative determination of drugs in blood has entered the bioanalytical arena at a fast pace during the last decade, primarily owing to progress in analytical instrumentation. Despite the many advantages associated with this new sampling strategy, several issues remain, of which the hematocrit issue is undoubtedly the most widely discussed challenge, since strongly deviating hematocrit values may significantly impact DBS-based quantitation. In this review, an overview is given of the different aspects of the ‘hematocrit problem’ in quantitative DBS analysis. The different strategies that try to cope with this problem are discussed, along with their potential and limitations. Implementation of some of these strategies in practice may help to overcome this important hurdle in DBS assays, further allowing DBS to become an established part of routine quantitative bioanalysis.
Collapse
|
30
|
Van Berkel GJ, Kertesz V. Continuous-flow liquid microjunction surface sampling probe connected on-line with high-performance liquid chromatography/mass spectrometry for spatially resolved analysis of small molecules and proteins. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1329-34. [PMID: 23681810 DOI: 10.1002/rcm.6580] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 05/05/2023]
Abstract
RATIONALE A continuous-flow liquid microjunction surface sampling probe extracts soluble material from surfaces for direct ionization and detection by mass spectrometry. Demonstrated here is the on-line coupling of such a probe with high-performance liquid chromatography/mass spectrometry (HPLC/MS) enabling extraction, separation and detection of small molecules and proteins from surfaces in a spatially resolved (~0.5 mm diameter spots) manner. METHODS A continuous-flow liquid microjunction surface sampling probe was connected to a six-port, two-position valve for extract collection and injection to an HPLC column. A QTRAP® 5500 hybrid triple quadrupole linear ion trap equipped with a Turbo V™ ion source operated in positive electrospray ionization (ESI) mode was used for all experiments. The system operation was tested with the extraction, separation and detection of propranolol and associated metabolites from drug dosed tissues, caffeine from a coffee bean, cocaine from paper currency, and proteins from dried sheep blood spots on paper. RESULTS Confirmed in the tissue were the parent drug and two different hydroxypropranolol glucuronides. The mass spectrometric response for these compounds from different locations in the liver showed an increase with increasing extraction time (5, 20 and 40 s). For on-line separation and detection/identification of extracted proteins from dried sheep blood spots, two major protein peaks dominated the chromatogram and could be correlated with the expected masses for the hemoglobin α and β chains. CONCLUSIONS Spatially resolved sampling, separation, and detection of small molecules and proteins from surfaces can be accomplished using a continuous-flow liquid microjunction surface sampling probe coupled on-line with HPLC/MS detection.
Collapse
Affiliation(s)
- Gary J Van Berkel
- Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6131, USA.
| | | |
Collapse
|
31
|
Internal standard application to dried blood spots by spraying: investigation of the internal standard distribution. Bioanalysis 2013; 5:711-9. [DOI: 10.4155/bio.13.21] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: The scientifically and logistically best way of application of the internal standard (IS) in the analysis of dried blood spots (DBS) analysis is still a matter of debate and investigation. Most commonly the IS is added in the solvent used for extraction of the discs punched from DBS. In this case, the recovery of the non-extracted IS is complete while the recovery of the analyte extracted from DBS is different from the IS. Results: An alternative way for addition of the IS was investigated. A homogeneous distribution and absorption of the test compound across the spots was demonstrated by spraying a solution of a radiolabeled test compound (mimicking an IS solution) onto DBS. Conclusion: This spray-on technique is convenient and easily automatable. Spraying of the solution was rapid, precise and reproducible, and therefore seems to be suitable for routine analysis of DBS by offline and online extraction.
Collapse
|
32
|
Automated dried blood spots standard and QC sample preparation using a robotic liquid handler. Bioanalysis 2012; 4:2795-804. [DOI: 10.4155/bio.12.264] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: A dried blood spot (DBS) bioanalysis assay involves many steps, such as the preparation of standard (STD) and QC samples in blood, the spotting onto DBS cards, and the cutting-out of the spots. These steps are labor intensive and time consuming if done manually, which, therefore, makes automation very desirable in DBS bioanalysis. Results: A robotic liquid handler was successfully applied to the preparation of STD and QC samples in blood and to spot the blood samples onto DBS cards using buspirone as the model compound. This automated preparation was demonstrated to be accurate and consistent. However the accuracy and precision of automated preparation were similar to those from manual preparation. The effect of spotting volume on accuracy was evaluated and a trend of increasing concentrations of buspirone with increasing spotting volumes was observed. Conclusion: The automated STD and QC sample preparation process significantly improved the efficiency, robustness and safety of DBS bioanalysis.
Collapse
|
33
|
Automation in new frontiers of bioanalysis: a key for quality and efficiency. Bioanalysis 2012; 4:2759-62. [DOI: 10.4155/bio.12.270] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
34
|
Semi-automated direct elution of dried blood spots for the quantitative determination of guanfacine in human blood. Bioanalysis 2012; 4:1445-56. [DOI: 10.4155/bio.12.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Direct analysis of dried blood spot (DBS) samples was investigated using a prototype semi-automated robotic device that allows the direct elution of sample spots from a DBS paper card to an online SPE cartridge. The eluted SPE samples were analyzed with high-performance LC–MS/MS. Results: A LLOQ of 0.01 ng/ml was achieved with a linear calibration range from 0.01 to 25 ng/ml. Optimal performance data were obtained from spotting the internal standard solution on the card before blood spotting. Internal standard addition from the system injector loop produced intra-assay inaccuracy of -9.0–7.3% and precision of 1.3–8.2%, and inter-assay inaccuracy of -3.5–3.9% and precision of 4.4–8.7%. Conclusion: Results demonstrated the feasibility of a semi-automated online rapid direct elution method that avoids manual extraction for DBS sample analysis using the online DBS-SPE system coupled to LC–MS/MS.
Collapse
|
35
|
Li Y, Henion J, Abbott R, Wang P. The use of a membrane filtration device to form dried plasma spots for the quantitative determination of guanfacine in whole blood. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:1208-1212. [PMID: 22499196 DOI: 10.1002/rcm.6212] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
RATIONALE A two-layered polymeric membrane is employed for the formation of separated dried plasma spots from whole blood as an alternative to the direct analysis of whole dried blood spots (DBS). This dried plasma spot (DPS) analysis procedure precludes potential issues of hematocrit differences in whole blood samples while providing pharmokinetic data from plasma rather than whole blood. The described procedure is also semi-automated thus providing a simpler work flow for LC/MS/MS bioanalysis procedures. METHODS Molecular filtration of red blood cells (RBC) from applied microsamples of whole blood fortified with guanfacine and its stable isotope internal standard was accomplished with a two-layer polymeric membrane substrate. The lower membrane surface containing the separated plasma spot was physically separated from the upper membrane followed by semi-automated direct elution of the sample to an online solid-phase extraction (SPE) cartridge followed by liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS). RESULTS A two-layer membrane sample preparation substrate produced plasma from whole blood without centrifugation which could be directly eluted for semi-automated LC/MS/MS bioanalysis. Standard curves were constructed by plotting peak area ratios between the analyte and the stable isotope labeled internal standard (SIL-IS) versus the nominal concentration in whole blood. A weighted 1/x(2) linear regression was applied to the data from DPS samples. Standard curves were linear over the range 0.25-250 ng/mL human whole blood. The representative regression equation was y = 0.0142x + 0.00248 (R(2) = 0.995) for the described DPS assay. CONCLUSIONS The described work demonstrates proof-of-principle using membrane sample preparation techniques to form DPS samples from whole blood for subsequent bioanalysis by LC/MS/MS. This approach has the potential to eliminate the hematocrit issues from the current controversy surrounding validation of DBS assays.
Collapse
Affiliation(s)
- Yuanyuan Li
- Advion Bioanalytical Laboratories, Ithaca, NY, USA
| | | | | | | |
Collapse
|
36
|
Incurred sample reanalysis comparison of dried blood spots and plasma samples on the measurement of lopinavir in clinical samples. Bioanalysis 2012; 4:237-40. [PMID: 22303827 DOI: 10.4155/bio.11.328] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Undoubtedly, incurred sample reanalysis (ISR) will become an integral part of regulated bioanalysis of dried blood spot (DBS) samples. In this article, we report results from an ISR study on DBS specimen and their corresponding plasma samples. Incurred samples were reanalyzed on their concentration of the antiretroviral drug lopinavir (LPV). RESULTS Bland-Altman comparison plots showed a high degree of agreement between the measurements; 94.7% of observed LPV concentrations were within bias ±2 SD. Moreover, 73.7% of obtained LPV concentrations from DBS ISR were in good compliance with general acceptance criteria (4-6-20 rule) on ISR testing, while plasma ISR failed on these acceptance criteria due to the low compliance of 10.5%. CONCLUSION It was demonstrated that plasma ISR testing failed on acceptance criteria while corresponding incurred DBS specimens passed. Furthermore, the current article demonstrates that the stability of the antiretroviral drug LPV was significantly different in both biological matrices.
Collapse
|