1
|
A simple and rapid HPLC-MS/MS method for therapeutic drug monitoring of amikacin in dried matrix spots. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1220:123592. [PMID: 36890098 DOI: 10.1016/j.jchromb.2023.123592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/22/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
Individualized treatment of amikacin under the guidance of therapeutic drug monitoring (TDM) is important to reduce the occurrence of toxicity and improve clinical efficacy. In the present study, we developed and validated a simple and high-throughput liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to determine the concentration of amikacin in dried matrix spots (DMS) which the matrix is serum. DMS samples were obtained by spotting volumetric blood onto Whatman 903® cards. Samples were punched into 3 mm diameter discs and extracted with 0.2 % formic acid in water. The HILIC column (2.1 mm × 100 mm, 3.0 µm) under gradient elution was applied, and the analysis time was 3 min per injection. The mass spectrometry transitions were m/z 586.3 → 163.0 for amikacin and m/z 591.4 → 163.1 for D5-amikacin. Full validation was conducted for DMS method, and the method was applied for the amikacin TDM and compared with serum method. The linearity was ranged from 0.5 to 100 mg/L. Both within-run and between-run accuracy and precision of DMS ranged from 91.8 % to 109.6 % and 3.6 % to 14.2 %, respectively. The matrix effect was 100.5 %-106.5 % of DMS method. Amikacin remained stable in DMS for at least 6 days at room temperature, 16 days at 4 °C, 86 days at -20 °C and -70 °C. A good agreement between the DMS method and serum method has been shown in Bland-Altman plots and Passing-Bablok regression. All of the results demonstrated that the DMS methods can be a favorable replacement for amikacin TDM.
Collapse
|
2
|
Delahaye L, Veenhof H, Koch BCP, Alffenaar JWC, Linden R, Stove C. Alternative Sampling Devices to Collect Dried Blood Microsamples: State-of-the-Art. Ther Drug Monit 2021; 43:310-321. [PMID: 33470777 DOI: 10.1097/ftd.0000000000000864] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
ABSTRACT Dried blood spots (DBS) have been used in newborn screening programs for several years. More recently, there has been growing interest in using DBS as a home sampling tool for the quantitative determination of analytes. However, this presents challenges, mainly because of the well-known hematocrit effect and other DBS-specific parameters, including spotted volume and punch site, which could add to the method uncertainty. Therefore, new microsampling devices that quantitatively collect capillary dried blood are continuously being developed. In this review, we provided an overview of devices that are commercially available or under development that allow the quantitative (volumetric) collection of dried blood (-based) microsamples and are meant to be used for home or remote sampling. Considering the field of therapeutic drug monitoring (TDM), we examined different aspects that are important for a device to be implemented in clinical practice, including ease of patient use, technical performance, and ease of integration in the workflow of a clinical laboratory. Costs related to microsampling devices are briefly discussed, because this additionally plays an important role in the decision-making process. Although the added value of home sampling for TDM and the willingness of patients to perform home sampling have been demonstrated in some studies, real clinical implementation is progressing at a slower pace. More extensive evaluation of these newly developed devices, not only analytically but also clinically, is needed to demonstrate their real-life applicability, which is a prerequisite for their use in the field of TDM.
Collapse
Affiliation(s)
- Lisa Delahaye
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| | - Herman Veenhof
- University of Groningen, Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Birgit C P Koch
- Department of Hospital Pharmacy, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Jan-Willem C Alffenaar
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia; and
| | - Rafael Linden
- Laboratory of Analytical Toxicology, Institute of Health Sciences, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Belgium
| |
Collapse
|
3
|
Loo RL, Lu Q, Carter EM, Liu S, Clark S, Wang Y, Baumgartner J, Tang H, Chan Q. A feasibility study of metabolic phenotyping of dried blood spot specimens in rural Chinese women exposed to household air pollution. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:328-344. [PMID: 32709935 DOI: 10.1038/s41370-020-0252-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/01/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Exposure-response studies and policy evaluations of household air pollution (HAP) are limited by current methods of exposure assessment which are expensive and burdensome to participants. METHODS We collected 152 dried blood spot (DBS) specimens during the heating and non-heating seasons from 53 women who regularly used biomass-burning stoves for cooking and heating. Participants were enrolled in a longitudinal study in China. Untargeted metabolic phenotyping of DBS were generated using ultra-high performance liquid chromatography coupled with mass spectrometry to exemplify measurement precision and assessment for feasibility to detect exposure to HAP, evaluated by season (high pollution vs. low pollution) and measured personal exposure to fine particulate matter <2.5 μm diameters (PM2.5) and black carbon (BC) in the 48-h prior to collecting the DBS specimen. RESULTS Metabolites e.g., amino acids, acyl-carnitines, lyso-phosphorylcholines, sphinganine, and choline were detected in the DBS specimens. Our approach is capable of detecting the differences in personal exposure to HAP whilst showing high analytical reproducibility, coefficient of variance (CV) <15%, meeting the U.S. Food and Drug Administration criteria. CONCLUSIONS Our results provide a proof of principle that high-resolution metabolic phenotypic data can be generated using a simple DBS extraction method thus suitable for exposure studies in remote, low-resource settings where the collection of serum and plasma is logistically challenging or infeasible. The analytical run time (19 min/specimen) is similar to most global phenotyping methods and therefore suitable for large-scale application.
Collapse
Affiliation(s)
- Ruey Leng Loo
- Centre for Computational and Systems Medicine, Institute of Health Futures, Murdoch University, Perth, WA, Australia
- Australian National Phenome Centre, Murdoch University, Perth, WA, Australia
| | - Qinwei Lu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
| | - Ellison M Carter
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
| | - Si Liu
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, China
| | - Sierra Clark
- Institute for Health and Social Policy and Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Yulan Wang
- Singapore Phenome Centre, Lee Kong Chian School of Medicine, Nanyang Technological University, Experimental Medicine Building, Singapore, Singapore
| | - Jill Baumgartner
- Institute for Health and Social Policy and Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montreal, QC, Canada
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, Zhongshan Hospital and School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Fudan University, Shanghai, China.
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan, China.
| | - Queenie Chan
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK.
- MRC Centre for Environment and Health, Imperial College London, London, UK.
| |
Collapse
|
4
|
Protti M, Mandrioli R, Mercolini L. Quantitative microsampling for bioanalytical applications related to the SARS-CoV-2 pandemic: Usefulness, benefits and pitfalls. J Pharm Biomed Anal 2020; 191:113597. [PMID: 32927419 PMCID: PMC7456588 DOI: 10.1016/j.jpba.2020.113597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022]
Abstract
The multiple pathological effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and its total novelty, mean that currently a lot of diagnostic and therapeutic tools, established and tentative alike, are needed to treat patients in a timely, effective way. In order to make these tools more reliable, faster and more feasible, biological fluid microsampling techniques could provide many advantages. In this review, the most important microsampling techniques are considered (dried matrix spots, volumetric absorptive microsampling, microfluidics and capillary microsampling, solid phase microextraction) and their respective advantages and disadvantages laid out. Moreover, currently available microsampling applications of interest for SARS-CoV-2 therapy are described, in order to make them as much widely known as possible, hopefully providing useful information to researchers and clinicians alike.
Collapse
Affiliation(s)
- Michele Protti
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Roberto Mandrioli
- Department for Life Quality Studies, Alma Mater Studiorum - University of Bologna, Corso d'Augusto 237, 47921 Rimini, Italy
| | - Laura Mercolini
- Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
5
|
Veenhof H, Koster RA, Brinkman R, Senturk E, Bakker SJL, Berger SP, Akkerman OW, Touw DJ, Alffenaar JWC. Performance of a web-based application measuring spot quality in dried blood spot sampling. Clin Chem Lab Med 2020; 57:1846-1853. [PMID: 31373896 DOI: 10.1515/cclm-2019-0437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023]
Abstract
Background The dried blood spot (DBS) method allows patients and researchers to collect blood on a sampling card using a skin-prick. An important issue in the application of DBSs is that samples for therapeutic drug monitoring are frequently rejected because of poor spot quality, leading to delayed monitoring or missing data. We describe the development and performance of a web-based application (app), accessible on smartphones, tablets or desktops, capable of assessing DBS quality at the time of sampling by means of analyzing a picture of the DBS. Methods The performance of the app was compared to the judgment of experienced laboratory technicians for samples obtained in a trained and untrained setting. A robustness- and user test were performed. Results In a trained setting the app yielded an adequate decision in 90.0% of the cases with 4.1% false negatives (insufficient quality DBSs incorrectly not rejected) and 5.9% false positives (sufficient quality DBSs incorrectly rejected). In an untrained setting this was 87.4% with 5.5% false negatives and 7.1% false positives. A patient user test resulted in a system usability score of 74 out of 100 with a median time of 1 min and 45 s to use the app. Robustness testing showed a repeatability of 84%. Using the app in a trained and untrained setting improves the amount of sufficient quality samples from 80% to 95.9% and 42.2% to 87.9%, respectively. Conclusions The app can be used in trained and untrained setting to decrease the amount of insufficient quality DBS samples.
Collapse
Affiliation(s)
- Herman Veenhof
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Remco A Koster
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Science Department - LC-MS/MS, PRA Health Sciences, Assen, The Netherlands
| | | | - Enes Senturk
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Stefan P Berger
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Onno W Akkerman
- Department of Pulmonary Diseases and Tuberculosis, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jan-Willem C Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Faculty of Medicine and Health, School of Pharmacy, University of Sydney, Sydney, Australia.,Westmead Hospital, Sydney, Australia
| |
Collapse
|
6
|
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 2019; 20:1957-1971. [PMID: 29304189 PMCID: PMC6954408 DOI: 10.1093/bib/bbx170] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Precision medicine is rapidly emerging as a strategy to tailor medical treatment to a small group or even individual patients based on their genetics, environment and lifestyle. Precision medicine relies heavily on developments in systems biology and omics disciplines, including metabolomics. Combination of metabolomics with sophisticated bioinformatics analysis and mathematical modeling has an extreme power to provide a metabolic snapshot of the patient over the course of disease and treatment or classifying patients into subpopulations and subgroups requiring individual medical treatment. Although a powerful approach, metabolomics have certain limitations in technology and bioinformatics. We will review various aspects of metabolomics technology and bioinformatics, from data generation, bioinformatics analysis, data fusion and mathematical modeling to data management, in the context of precision medicine.
Collapse
Affiliation(s)
| | - Vladimir Shulaev
- Corresponding author: Vladimir Shulaev, Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76210, USA. Tel.: 940-369-5368; Fax: 940-565-3821; E-mail:
| |
Collapse
|
7
|
Freeman JD, Rosman LM, Ratcliff JD, Strickland PT, Graham DR, Silbergeld EK. State of the Science in Dried Blood Spots. Clin Chem 2017; 64:656-679. [PMID: 29187355 DOI: 10.1373/clinchem.2017.275966] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/25/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.
Collapse
Affiliation(s)
- Jeffrey D Freeman
- National Health Mission Area, Johns Hopkins University Applied Physics Laboratory, Laurel, MD;
| | - Lori M Rosman
- Welch Medical Library, Johns Hopkins University, Baltimore, MD
| | - Jeremy D Ratcliff
- Public Health Studies Program, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD
| | - Paul T Strickland
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - David R Graham
- Department of Molecular and Comparative Pathobiology, School of Medicine, Johns Hopkins University, Baltimore, MD
| | - Ellen K Silbergeld
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
8
|
Clinical Validation of Simultaneous Analysis of Tacrolimus, Cyclosporine A, and Creatinine in Dried Blood Spots in Kidney Transplant Patients. Transplantation 2017; 101:1727-1733. [DOI: 10.1097/tp.0000000000001591] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Lu J, Spasic D, Delport F, Van Stappen T, Detrez I, Daems D, Vermeire S, Gils A, Lammertyn J. Immunoassay for Detection of Infliximab in Whole Blood Using a Fiber-Optic Surface Plasmon Resonance Biosensor. Anal Chem 2017; 89:3664-3671. [DOI: 10.1021/acs.analchem.6b05092] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Jiadi Lu
- BIOSYST-MeBioS, KU Leuven, 3001 Leuven, Belgium
| | | | - Filip Delport
- BIOSYST-MeBioS, KU Leuven, 3001 Leuven, Belgium
- Fox Diagnostics, 9140 Temse, Belgium
| | - Thomas Van Stappen
- Laboratory
for Therapeutic and Diagnostic Antibodies, KU Leuven, 3000 Leuven, Belgium
| | - Iris Detrez
- Laboratory
for Therapeutic and Diagnostic Antibodies, KU Leuven, 3000 Leuven, Belgium
| | - Devin Daems
- BIOSYST-MeBioS, KU Leuven, 3001 Leuven, Belgium
| | | | - Ann Gils
- Laboratory
for Therapeutic and Diagnostic Antibodies, KU Leuven, 3000 Leuven, Belgium
| | - Jeroen Lammertyn
- BIOSYST-MeBioS, KU Leuven, 3001 Leuven, Belgium
- Fox Diagnostics, 9140 Temse, Belgium
| |
Collapse
|
10
|
Valencia S, León M, Losada I, Sequera VG, Fernández Quevedo M, García-Basteiro AL. How do we measure adherence to anti-tuberculosis treatment? Expert Rev Anti Infect Ther 2016; 15:157-165. [DOI: 10.1080/14787210.2017.1264270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Salome Valencia
- Preventive Medicine and Epidemiology Service, Hospital Clínic of Barcelona, Barcelona, Spain
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Montserrat León
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Victor G Sequera
- Preventive Medicine and Epidemiology Service, Hospital Clínic of Barcelona, Barcelona, Spain
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | | | - Alberto L García-Basteiro
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
- Tuberculosis Research Area, Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, The Netherlands
| |
Collapse
|
11
|
|
12
|
Opening the toolbox of alternative sampling strategies in clinical routine: A key-role for (LC-)MS/MS. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.01.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Dorofaeff T, Bandini RM, Lipman J, Ballot DE, Roberts JA, Parker SL. Uncertainty in Antibiotic Dosing in Critically Ill Neonate and Pediatric Patients: Can Microsampling Provide the Answers? Clin Ther 2016; 38:1961-75. [PMID: 27544661 DOI: 10.1016/j.clinthera.2016.07.093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/20/2016] [Accepted: 07/22/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE With a decreasing supply of antibiotics that are effective against the pathogens that cause sepsis, it is critical that we learn to use currently available antibiotics optimally. Pharmacokinetic studies provide an evidence base from which we can optimize antibiotic dosing. However, these studies are challenging in critically ill neonate and pediatric patients due to the small blood volumes and associated risks and burden to the patient from taking blood. We investigate whether microsampling, that is, obtaining a biologic sample of low volume (<50 μL), can improve opportunities to conduct pharmacokinetic studies. METHODS We performed a literature search to find relevant articles using the following search terms: sepsis, critically ill, severe infection, intensive care AND antibiotic, pharmacokinetic, p(a)ediatric, neonate. For microsampling, we performed a search using antibiotics AND dried blood spots OR dried plasma spots OR volumetric absorptive microsampling OR solid-phase microextraction OR capillary microsampling OR microsampling. Databases searched include Web of Knowledge, PubMed, and EMbase. FINDINGS Of the 32 antibiotic pharmacokinetic studies performed on critically ill neonate or pediatric patients in this review, most of the authors identified changes to the pharmacokinetic properties in their patient group and recommended either further investigations into this patient population or therapeutic drug monitoring to ensure antibiotic doses are suitable. There remain considerable gaps in knowledge regarding the pharmacokinetic properties of antibiotics in critically ill pediatric patients. Implementing microsampling in an antibiotic pharmacokinetic study is contingent on the properties of the antibiotic, the pathophysiology of the patient (and how this can affect the microsample), and the location of the patient. A validation of the sampling technique is required before implementation. IMPLICATIONS Current antibiotic regimens for critically ill neonate and pediatric patients are frequently suboptimal due to a poor understanding of altered pharmacokinetic properties. An assessment of the suitability of microsampling for pharmacokinetic studies in neonate and pediatric patients is recommended before wider use. The method of sampling, as well as the method of bioanalysis, also requires validation to ensure the data obtained reflect the true result.
Collapse
Affiliation(s)
- Tavey Dorofaeff
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Paediatric Intensive Care, Lady Cilento Children's Hospital, Brisbane, Australia
| | - Rossella M Bandini
- School of Physiology, University of the Witwatersrand, Johannesburg, South Africa; Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa
| | - Jeffrey Lipman
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa; Department of Intensive Care Medicine, Royal Brisbane Hospital, Brisbane, Australia; Faculty of Health, Brisbane, Queensland University of Technology, Brisbane, Australia
| | - Daynia E Ballot
- Wits UQ Critical Care Infection Collaboration, Johannesburg, South Africa; Department of Paediatrics and Child Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Jason A Roberts
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia; Department of Intensive Care Medicine, Royal Brisbane Hospital, Brisbane, Australia; Department of Pharmacy, Royal Brisbane Hospital, Brisbane, Australia; School of Pharmacy, The University of Queensland, Brisbane, Australia
| | - Suzanne L Parker
- Burns, Trauma and Critical Care Research Centre, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
14
|
Ghimire S, van't Boveneind-Vrubleuskaya N, Akkerman OW, de Lange WCM, van Soolingen D, Kosterink JGW, van der Werf TS, Wilffert B, Touw DJ, Alffenaar JWC. Pharmacokinetic/pharmacodynamic-based optimization of levofloxacin administration in the treatment of MDR-TB. J Antimicrob Chemother 2016; 71:2691-703. [DOI: 10.1093/jac/dkw164] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
15
|
Cattaneo D, Alffenaar JW, Neely M. Drug monitoring and individual dose optimization of antimicrobial drugs: oxazolidinones. Expert Opin Drug Metab Toxicol 2016; 12:533-44. [DOI: 10.1517/17425255.2016.1166204] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dario Cattaneo
- Unit of Clinical Pharmacology, Department of Laboratory Medicine, Luigi Sacco University Hospital, Milan, Italy
| | - Jan-Willem Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Michael Neely
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angels, CA, USA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angels, CA, USA
| |
Collapse
|
16
|
Zuur MA, Bolhuis MS, Anthony R, den Hertog A, van der Laan T, Wilffert B, de Lange W, van Soolingen D, Alffenaar JWC. Current status and opportunities for therapeutic drug monitoring in the treatment of tuberculosis. Expert Opin Drug Metab Toxicol 2016; 12:509-21. [DOI: 10.1517/17425255.2016.1162785] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Marlanka A. Zuur
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathieu S. Bolhuis
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Richard Anthony
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Alice den Hertog
- Royal Tropical Institute (KIT), KIT Biomedical Research, Amsterdam, The Netherlands
| | - Tridia van der Laan
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Bob Wilffert
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pharmacy, section Pharmacotherapy and Pharmaceutical Care, University of Groningen, Groningen, The Netherlands
| | - Wiel de Lange
- University of Groningen, University Medical Center Groningen, Tuberculosis Centre Beatrixoord, Haren, The Netherlands
- Department of Pulmonary Diseases and Tuberculosis, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dick van Soolingen
- National Tuberculosis Reference Laboratory, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Departments of Pulmonary Diseases and Medical Microbiology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan-Willem C. Alffenaar
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
17
|
Ghimire S, Bolhuis MS, Sturkenboom MG, Akkerman OW, de Lange WC, van der Werf TS, Alffenaar JWC. Incorporating therapeutic drug monitoring into the World Health Organization hierarchy of tuberculosis diagnostics. Eur Respir J 2016; 47:1867-9. [DOI: 10.1183/13993003.00040-2016] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/28/2016] [Indexed: 01/14/2023]
|