1
|
Ghafari N, Sleno L. Challenges and recent advances in quantitative mass spectrometry-based metabolomics. ANALYTICAL SCIENCE ADVANCES 2024; 5:e2400007. [PMID: 38948317 PMCID: PMC11210748 DOI: 10.1002/ansa.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/03/2024] [Accepted: 06/08/2024] [Indexed: 07/02/2024]
Abstract
The field of metabolomics has gained tremendous interest in recent years. Whether the goal is to discover biomarkers related to certain pathologies or to better understand the impact of a drug or contaminant, numerous studies have demonstrated how crucial it is to understand variations in metabolism. Detailed knowledge of metabolic variabilities can lead to more effective treatments, as well as faster or less invasive diagnostics. Exploratory approaches are often employed in metabolomics, using relative quantitation to look at perturbations between groups of samples. Most metabolomics studies have been based on metabolite profiling using relative quantitation, with very few studies using an approach for absolute quantitation. Using accurate quantitation facilitates the comparison between different studies, as well as enabling longitudinal studies. In this review, we discuss the most widely used techniques for quantitative metabolomics using mass spectrometry (MS). Various aspects will be addressed, such as the use of external and/or internal standards, derivatization techniques, in vivo isotopic labelling, or quantitative MS imaging. The principles, as well as the associated limitations and challenges, will be described for each approach.
Collapse
Affiliation(s)
- Nathan Ghafari
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| | - Lekha Sleno
- Chemistry Department/CERMO‐FCUniversity of Quebec in Montreal (UQAM)MontrealCanada
| |
Collapse
|
2
|
Wang H, Ni X, Clark N, Randall K, Boeglin L, Chivukula S, Woo C, DeRosa F, Sun G. Absolute quantitation of human wild-type DNAI1 protein in lung tissue using a nanoLC-PRM-MS-based targeted proteomics approach coupled with immunoprecipitation. Clin Proteomics 2024; 21:8. [PMID: 38311768 PMCID: PMC10840268 DOI: 10.1186/s12014-024-09453-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024] Open
Abstract
BACKGROUND Dynein axonemal intermediate chain 1 protein (DNAI1) plays an essential role in cilia structure and function, while its mutations lead to primary ciliary dyskinesia (PCD). Accurate quantitation of DNAI1 in lung tissue is crucial for comprehensive understanding of its involvement in PCD, as well as for developing the potential PCD therapies. However, the current protein quantitation method is not sensitive enough to detect the endogenous level of DNAI1 in complex biological matrix such as lung tissue. METHODS In this study, a quantitative method combining immunoprecipitation with nanoLC-MS/MS was developed to measure the expression level of human wild-type (WT) DNAI1 protein in lung tissue. To our understanding, it is the first immunoprecipitation (IP)-MS based method for absolute quantitation of DNAI1 protein in lung tissue. The DNAI1 quantitation was achieved through constructing a standard curve with recombinant human WT DNAI1 protein spiked into lung tissue matrix. RESULTS This method was qualified with high sensitivity and accuracy. The lower limit of quantitation of human DNAI1 was 4 pg/mg tissue. This assay was successfully applied to determine the endogenous level of WT DNAI1 in human lung tissue. CONCLUSIONS The results clearly demonstrate that the developed assay can accurately quantitate low-abundance WT DNAI1 protein in human lung tissue with high sensitivity, indicating its high potential use in the drug development for DNAI1 mutation-caused PCD therapy.
Collapse
Affiliation(s)
- Hui Wang
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA.
| | - Xiaoyan Ni
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | - Nicholas Clark
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | | | - Lianne Boeglin
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | | | - Caroline Woo
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | - Frank DeRosa
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA
| | - Gang Sun
- Translate Bio, a Sanofi Company, Lexington, MA, 02421, USA.
| |
Collapse
|
3
|
Afshar M, van Hall G. LC-MS/MS method for quantitative profiling of ketone bodies, α-keto acids, lactate, pyruvate and their stable isotopically labelled tracers in human plasma: An analytical panel for clinical metabolic kinetics and interactions. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1230:123906. [PMID: 37925904 DOI: 10.1016/j.jchromb.2023.123906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/31/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023]
Abstract
An important area within clinical research is in vivo metabolism of ketone bodies (β-hydroxybutyrate and acetoacetate) and in connection metabolites that may affect their production and/or cellular transport such as the keto-acids from the branched-chain amino acids, lactate and pyruvate. To determine in vivo metabolite turnover, availability of accurate and sensitive methods for analyzing the plasma concentrations of these metabolites and their stable isotopically labeled enrichments is mandatory. Therefore, the present study describes a high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous analysis of ketone bodies, α-keto acids, lactate, pyruvate, and their tracer enrichments in humans using 2 different derivatization techniques with 4-bromo-N-methylbenzylamine and O-benzylhydroxylamine as derivatization reagents, and 1-ethyl-3-dimethylaminopropyl carbodiimide as coupling compound followed by a single LC-MS/MS run. The method was validated for matrix effects, linearity, accuracy, precision, recovery, stability, and enrichment (ratio) analysis of a stable isotopically labelled analytes (tracers) continuously infused in humans divided by the unlabeled endogenous analyte (tracee) that makes it possible to quantify the analyte in vivo synthesis and degradation rates. The applied parallel derivatization procedure yielded good sensitivity for all analytes of interest and their tracers. Despite the double derivatization method, mixing the ethyl acetate portions at the final stage made it possible to simultaneously analyze all compounds in a single LC-MS/MS run. Moreover, the liquid chromatography method was optimized to robustly quantify the keto acids derived from leucine (α-keto-isocaproic acid) and isoleucine (α-keto-β-methylvaleric acid), the compounds with similar chemical structure and identical molecular weights. The presented method is designed and validated for human plasma. However, care should be taken in blood sampling and processing procedures as well as quick freezing and storage at -80 °C due to the instability of especially acetoacetate.
Collapse
Affiliation(s)
- Minoo Afshar
- Clinical Metabolomics Core Facility (CMCF), Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Gerrit van Hall
- Clinical Metabolomics Core Facility (CMCF), Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Tang Y, Van Parys M, Walker A, Drelick A, Liang X, Dean B, Chen L. A universal surrogate matrix assay for urea measurement in clinical pharmacokinetic studies of respiratory diseases. Biomed Chromatogr 2023; 37:e5713. [PMID: 37544926 DOI: 10.1002/bmc.5713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
In pharmacokinetic studies for respiratory diseases, urea is a commonly used dilution marker for volume normalization of various biological matrices, owing to the fact that urea diffuses freely throughout the body and is minimally affected by disease states. In this study, we developed a convenient liquid chromatography-tandem mass spectrometry (LC-MS/MS) surrogate matrix assay for accurate urea quantitation in plasma, serum and epithelial lining fluid. Different mass spectrometer platforms and ionization modes were compared in parallel. The LC method and mass spectrometer parameters were comprehensively optimized to reduce interferences, to smooth the baseline and to maximize the signal-to-noise ratio. Saline was selected as the surrogate matrix, and its suitability was confirmed by good parallelism and accurate quality control sample measurements. Reliable and robust assay performance was demonstrated by precision and accuracy, dilution integrity, sensitivity, recovery and stability, all of which met bioanalysis requirements to support clinical studies. The assay performance was also verified and better understood by comparing it with a colorimetric assay and to a surrogate analyte assay. The newly developed surrogate matrix assay has the potential to be further expanded for urea quantitation in numerous physiological matrices.
Collapse
Affiliation(s)
- Yang Tang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Michael Van Parys
- Department of Bioanalytical Chemistry, LabCorp Early Drug Development, Madison, Wisconsin, USA
| | - Abigail Walker
- Department of Bioanalytical Chemistry, LabCorp Early Drug Development, Madison, Wisconsin, USA
| | - Alexandra Drelick
- Department of Bioanalytical Chemistry, LabCorp Early Drug Development, Madison, Wisconsin, USA
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Brian Dean
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
5
|
Eggertsen PP, Hansen J, Andersen ML, Nielsen JF, Olsen RKJ, Palmfeldt J. Simultaneous measurement of kynurenine metabolites and explorative metabolomics using liquid chromatography-mass spectrometry: A novel accurate method applied to serum and plasma samples from a large healthy cohort. J Pharm Biomed Anal 2023; 227:115304. [PMID: 36827735 DOI: 10.1016/j.jpba.2023.115304] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023]
Abstract
Kynurenine metabolites are emerging as promising clinical biomarkers in several diseases, especially within psychiatry. Unfortunately, they are difficult to detect, particularly the challenging neurotoxic metabolite quinolinic acid (QUIN). The aim of this study was twofold: First, to develop a liquid chromatography-mass spectrometry method (LC-MS) for simultaneous targeted quantification of key kynurenine metabolites together with untargeted metabolomics, and second, to demonstrate the feasibility of the method by exploring serum/plasma and gender differences in 120 healthy young adults between 18 and 30 years of age. A range of analytical columns (C18 and biphenyl columns) and mobile phases (acidic and alkaline) were systematically evaluated. The optimized LC-MS method was based on a biphenyl column, a water-methanol gradient with 0.2% formic acid, and authentic isotope-labeled standards for each kynurenine metabolite. Precision and accuracy of targeted quantification of the key kynurenine metabolites tryptophan (TRP), kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and QUIN were excellent, far exceeding the acceptance criteria specified by international guidelines. Median inter- and intra-day precision were < 6% in serum and plasma; the median accuracy was 2.4% in serum and 8% in plasma. Serum concentrations were ≤ 10% different from the corresponding concentrations in plasma for all kynurenine metabolites in healthy young adults. Men had higher levels (8-18%) of TRP, KYN, and KYNA than women (p ≤ 0.009), while no differences were observed for 3-HK and QUIN (p > 0.70). Incurred sample reanalysis of 10% of the samples yielded a median difference < 5% from the initial measurement, demonstrating the robustness of the method. Besides the targeted quantification of key kynurenine metabolites, our method was found to be suitable for simultaneous untargeted metabolomics analyses of hundreds of metabolites. A range of compound classes could be detected including amino acids, nucleic acids, dipeptides, antioxidants, and acylcarnitines, making explorative studies highly feasible. For example, we identified an additional kynurenine metabolite, 2-Quinolinecarboxylic acid, which was 47% higher in males than females (adjusted p-value = 0.001). In conclusion, in this study, we present a reliable and robust LC-MS method for simultaneous targeted and untargeted metabolomics ready for both research and clinical use. We show that both serum and plasma can be used for kynurenine studies, and the reported gender differences are in accordance with the literature. Future studies should consider using biphenyl-based LC-MS columns to successfully detect QUIN.
Collapse
Affiliation(s)
- Peter Preben Eggertsen
- Department of Clinical Medicine, Aarhus University, Denmark; Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Denmark; Hammel Neurorehabilitation Centre and University Research Clinic, Denmark.
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Denmark
| | - Malene Lundfold Andersen
- Department of Clinical Medicine, Aarhus University, Denmark; Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Denmark
| | - Jørgen Feldbæk Nielsen
- Department of Clinical Medicine, Aarhus University, Denmark; Hammel Neurorehabilitation Centre and University Research Clinic, Denmark
| | - Rikke Katrine Jentoft Olsen
- Department of Clinical Medicine, Aarhus University, Denmark; Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Denmark
| | - Johan Palmfeldt
- Department of Clinical Medicine, Aarhus University, Denmark; Research Unit for Molecular Medicine, Aarhus University and Aarhus University Hospital, Denmark.
| |
Collapse
|
6
|
Mu R, Yuan J, Huang Y, Meissen JK, Mou S, Liang M, Rosenbaum AI. Bioanalytical Methods and Strategic Perspectives Addressing the Rising Complexity of Novel Bioconjugates and Delivery Routes for Biotherapeutics. BioDrugs 2022; 36:181-196. [PMID: 35362869 PMCID: PMC8972746 DOI: 10.1007/s40259-022-00518-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2022] [Indexed: 12/20/2022]
Abstract
In recent years, an increase in the discovery and development of biotherapeutics employing new modalities, such as bioconjugates or novel routes of delivery, has created bioanalytical challenges. The inherent complexity of conjugated molecular structures means that quantification of the bioconjugate and its multiple components is critical for preclinical/clinical studies to inform drug discovery and development. Moreover, bioconjugates involve additional multifactorial complexity because of the potential for in vivo catabolism and biotransformation, which may require thorough investigations in multiple biological matrices. Furthermore, excipients that enhance absorption are frequently evaluated and employed for the development of oral and inhaled biotherapeutics. Risk-benefit assessments are required for novel or existing excipients that utilize dosages above previously approved levels. Bioanalytical methods that can measure both excipients and potential drug metabolites in biological matrices are highly relevant to these emerging bioanalysis challenges. We discuss the bioanalytical strategies for analyzing bioconjugates such as antibody-drug conjugates and antibody-oligonucleotide conjugates and review recent advances in bioanalytical methods for the quantification and characterization of novel bioconjugates. We also discuss bioanalytical considerations for both biotherapeutics and excipients through novel administration routes and review analyses in various biological matrices, from the extensively studied serum or plasma to tissue biopsy in the context of preclinical and clinical studies from both technical and regulatory perspectives.
Collapse
Affiliation(s)
- Ruipeng Mu
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Jiaqi Yuan
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Yue Huang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - John K Meissen
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Si Mou
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA
| | - Anton I Rosenbaum
- Integrated Bioanalysis, Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, South San Francisco, CA, USA.
| |
Collapse
|
7
|
Mishra S, Rajput N, Jadav T, Sahu AK, Tekade RK, Sengupta P. Advancement in Analytical Strategies for Quantification of Biomarkers with a Special Emphasis on Surrogate Approaches. Crit Rev Anal Chem 2022; 53:1515-1530. [PMID: 35138951 DOI: 10.1080/10408347.2022.2035210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Accurate quantification of biomarkers has always been a challenge for many bioanalytical scientists due to their endogenous nature and low concentration in biological matrices. Different analytical approaches have been developed for quantifying biomarkers including enzyme-linked immunosorbent assay, immunohistochemistry, western blotting, and chromatographic techniques assisted with mass spectrometry. Liquid chromatography-tandem mass spectrometry-based quantification of biomarkers has gained more attention over other traditional techniques due to its higher sensitivity and selectivity. However, the primary challenge lies with this technique includes the unavailability of a blank matrix for method development. To overcome this challenge, different analytical approaches are being developed including surrogate analyte and surrogate matrix approach. Such approaches include quantification of biomarkers in a surrogate matrix or quantification of an isotopically labeled surrogate analyte in an authentic matrix. To demonstrate the authenticity of the surrogate approach, it is mandatory to establish quantitative parallelism through validation employing respective surrogate analytes and surrogate matrices. In this review, different bioanalytical approaches for biomarker quantification and recent advancements in the field aiming for improvement in the specificity of the techniques have been discussed. Liquid chromatography-tandem mass spectrometry-based surrogate approaches for biomarker quantification and significance of parallelism establishment in both surrogate matrix and surrogate analyte-based approaches have been critically discussed. In addition, different methods for demonstrating parallelism in the surrogate method have been explained.
Collapse
Affiliation(s)
- Sonam Mishra
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Niraj Rajput
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Tarang Jadav
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Amit Kumar Sahu
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Rakesh K Tekade
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| | - Pinaki Sengupta
- National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, Gujarat, India
| |
Collapse
|
8
|
Analysing intracellular isoprenoid metabolites in diverse prokaryotic and eukaryotic microbes. Methods Enzymol 2022; 670:235-284. [DOI: 10.1016/bs.mie.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Alt J, Gori SS, Lemberg KM, Pal A, Veeravalli V, Wu Y, Aguilar JM, Dash RP, Tenora L, Majer P, Sun Q, Slusher BS, Rais R. Glutamine Antagonist GA-607 Causes a Dramatic Accumulation of FGAR which can be used to Monitor Target Engagement. Curr Drug Metab 2021; 22:735-745. [PMID: 34488583 PMCID: PMC8684803 DOI: 10.2174/1389200222666210831125041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/06/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors. OBJECTIVE Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors. METHODS Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors. RESULTS GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10- fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment. CONCLUSION These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Barbara S. Slusher
- Address correspondence to these authors at the Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA; Tel: 410-614-0662; Fax: 410-614-0659; E-mail: and Tel: 410-502-0497; E-mail:
| | - Rana Rais
- Address correspondence to these authors at the Johns Hopkins Drug Discovery, 855 North Wolfe Street, Baltimore, Maryland, 21205, USA; Tel: 410-614-0662; Fax: 410-614-0659; E-mail: and Tel: 410-502-0497; E-mail:
| |
Collapse
|
10
|
Quantification and assessment of detection capability in imaging mass spectrometry using a revised mimetic tissue model. Bioanalysis 2019; 11:1099-1116. [PMID: 31251106 DOI: 10.4155/bio-2019-0035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: A revised method of preparing the mimetic tissue model for quantitative imaging mass spectrometry (IMS) is evaluated. Concepts of assessing detection capability are adapted from other imaging or mass spectrometry (MS)-based technologies to improve upon the reliability of IMS quantification. Materials & methods: The mimetic tissue model is prepared by serially freezing spiked-tissue homogenates into a cylindrical mold to create a plug of tissue with a stepped concentration gradient of matrix-matched standards. Weighted least squares (WLS) linear regression is applied due to the heteroscedastisity (change in variance with intensity) of most MS data. Results & conclusions: Imaging poses several caveats for quantification which are unique compared with other MS-based methods. Aspects of the design, construction, application, and evaluation of the matrix-matched standard curve for the mimetic tissue model are discussed. In addition, the criticality of the ion distribution in the design of a purposeful liquid chromatography coupled to mass spectrometry (LC-MS) validation is reviewed.
Collapse
|
11
|
KUBOTA AYANO, MATSUKAWA TAKEHISA, YANAGIE HIRONOBU, YANAGAWA MASASHI, HIRATA TAKAFUMI, SHINOHARA ATSUKO, YOKOYAMA KAZUHITO. Quantitative Bio-imaging of Gadolinium-157 in Tissues Through Laser-ablation ICP-MS for Neutron Capture Therapy. JUNTENDO IJI ZASSHI 2019. [DOI: 10.14789/jmj.2019.65.jmj19-oa12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- AYANO KUBOTA
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
| | - TAKEHISA MATSUKAWA
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
- Department of Forensic Medicine, Juntendo University Faculty of Medicine
| | - HIRONOBU YANAGIE
- Department of Nuclear Engineering and Management, The University of Tokyo
| | - MASASHI YANAGAWA
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine
| | | | - ATSUKO SHINOHARA
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
- Research Institute for Cultural Studies, Seisen University
| | - KAZUHITO YOKOYAMA
- Department of Epidemiology and Environmental Health, Juntendo University Faculty of Medicine
- Department of Epidemiology and Social Medicine, International University of Health and Welfare Graduate School of Public Health
| |
Collapse
|
12
|
Wang R, Tiosano D, Sánchez-Guijo A, Hartmann MF, Wudy SA. Characterizing the steroidal milieu in amniotic fluid of mid-gestation: A LC-MS/MS study. J Steroid Biochem Mol Biol 2019; 185:47-56. [PMID: 30031148 DOI: 10.1016/j.jsbmb.2018.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/06/2018] [Accepted: 07/08/2018] [Indexed: 10/28/2022]
Abstract
Growth and development of an embryo or fetus during human pregnancy mainly depend on intact hormone biosynthesis and metabolism in maternal amniotic fluid (AF). We investigated the hormonal milieu in AF and developed a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of 14 sulfated and 6 unconjugated steroids in AF. 65 A F samples (male: female = 35: 30) of mid-gestation ranging from 16th week of gestation to 25th week of gestation were analyzed. Reference data of 20 steroid levels in AF of healthy women were provided. 13 sulfated and 3 unconjugated steroids were for the first time quantified in AF by LC-MS/MS. Highest concentrations were found for pregnenolone sulfate (PregS: mean ± SD, 8.6 ± 3.7 ng/mL), 17α-hydroxypregnenolone sulfate (17OHPregS: 4.9 ± 2.0 ng/mL), epitestosterone sulfate (eTS: 7.3 ± 3.6 ng/mL), 16α-hydroxydehydroepiandrosterone sulfate (16OH-DHEAS: 21.5 ± 10.7 ng/mL), androsterone sulfate (AnS: 9.2 ± 7.4 ng/mL), estrone sulfate (E1S: 3.0 ± 3.0 ng/mL), estriol 3-sulfate (E3S: 8.1 ± 4.0 ng/mL) and estriol (E3: 1.2 ± 0.4 ng/mL). Only testosterone (T) showed a significant sex difference (p < 0.0001). Correlations between AF steroids mirrored the steroid metabolism of the feto-placental unit, and not only confirmed the classical steroid pathway, but also pointed to a sulfated steroid pathway.
Collapse
Affiliation(s)
- R Wang
- Steroid Research & Mass Spectrometry Unit, Pediatric Endocrinology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - D Tiosano
- Division of Pediatric Endocrinology, Ruth Children's Hospital, Rambam Medical Center, Haifa 30196, Israel
| | - A Sánchez-Guijo
- Steroid Research & Mass Spectrometry Unit, Pediatric Endocrinology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - M F Hartmann
- Steroid Research & Mass Spectrometry Unit, Pediatric Endocrinology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany
| | - S A Wudy
- Steroid Research & Mass Spectrometry Unit, Pediatric Endocrinology, Center of Child and Adolescent Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
13
|
Gil A, van der Pol A, van der Meer P, Bischoff R. LC-MS analysis of key components of the glutathione cycle in tissues and body fluids from mice with myocardial infarction. J Pharm Biomed Anal 2018; 160:289-296. [DOI: 10.1016/j.jpba.2018.08.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/11/2022]
|
14
|
A novel LC-MS/MS assay to quantify dermatan sulfate in cerebrospinal fluid as a biomarker for mucopolysaccharidosis II. Bioanalysis 2018; 10:825-838. [PMID: 29863901 DOI: 10.4155/bio-2018-0025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIM The study aimed to develop an LC-MS/MS assay to measure dermatan sulfate (DS) in human cerebrospinal fluid (CSF). METHODS & RESULTS DS was quantified by ion pairing LC-MS/MS analysis of the major disaccharides derived from chondroitinase B digestion. Artificial CSF was utilized as a surrogate for calibration curve preparation. The assay was fully validated, with a linear range of 20.0-4000 ng/ml, accuracy within ±20%, and precision of ≤20%. CSF samples from mucopolysaccharidoses (MPS) II patients showed an average of 11-fold increase in DS levels compared with controls. CONCLUSION The described assay is capable of differentiating DS levels in the CSF of MPS II patients from controls and can be used to monitor disease progression and therapeutic responses.
Collapse
|
15
|
Ocular bioanalysis: challenges and advancements in recent years for these rare matrices. Bioanalysis 2017; 9:1997-2014. [DOI: 10.4155/bio-2017-0175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There are many ocular diseases still presenting unmet medical needs. Therefore, new ophthalmologic drugs are being developed. Bioanalysis of eye compartments (along with plasma and other tissues) is important to determine exposure of the target organ to the drug and to help interpret local pharmacological or toxic effects. This review article identifies several challenges that occur within ocular bioanalysis. They include sample collection and preparation, analytical issues, sourcing control matrix, data interpretation and regulatory requirements. It summarizes how these challenges have been recently addressed, how research has advanced and which questions remain unanswered. Recommendations are made based on the literature and our practical experience within ocular bioanalysis and future perspectives are discussed.
Collapse
|