1
|
Zhang R, Singh S, Pan C, Xu B, Kindblom J, Eng KH, Krolewski JJ, Nastiuk KL. Rate of castration-induced prostate stroma regression is reduced in a mouse model of benign prostatic hyperplasia. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2023; 11:12-26. [PMID: 36923722 PMCID: PMC10009314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023]
Abstract
Benign prostatic hyperplasia (BPH) is a non-neoplastic proliferative disease producing lower urinary tract symptoms related to the resulting enlarged prostate. BPH is pathologically characterized by hyperplastic growth in both epithelial and stromal compartments. Androgen signaling is essential for prostate function and androgen blockade is the second-line medical therapy to relieve symptoms of BPH. Here we examined the prostates of probasin promoter-driven prolactin (Pb-PRL) transgenic mice, a robust model of BPH that spontaneously develops prostate enlargement, to investigate prostate regression in response to surgical castration. Serial ultrasound imaging demonstrated very uniform self-limited growth of Pb-PRL prostate volume that is consistent with the benign, limited cellular proliferation characteristic of BPH and that contrasts with the highly variable, exponential growth of murine prostate cancer models. Castration elicited only a partial reduction in prostate volume, relative to castration-induced regression of the normal prostate gland. The anti-androgen finasteride induced a diminished reduction of Pb-PRL prostate volume versus castration. The limited extent of Pb-PRL mouse prostate volume regression correlated with the initial volume of the stromal compartment, suggesting a differential sensitivity of the epithelial and stromal compartments to androgen withdrawal. Indeed, two-dimensional morphometric analyses revealed a distinctly reduced rate of regression for the stromal compartment in Pb-PRL mice. The myofibroblast component of the Pb-PRL prostate stroma appeared normal, but the stromal compartment contained more fibroblasts and extracellular collagen deposition. Like normal prostate, the rate of regression of the Pb-PRL prostate was partially dependent on TGFß and TNF signaling, but unlike the normal prostate, the extent of castration-induced regression was not affected by TGFß or TNF blockade. Our studies show that androgen deprivation can effectively reduce the overall volume of hyperplastic prostate, but the stromal compartment is relatively resistant, suggesting additional therapies might be required to offer an effective treatment for the clinical manifestations of BPH.
Collapse
Affiliation(s)
- Renyuan Zhang
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
| | - Shalini Singh
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
| | - Chunliu Pan
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
| | - Bo Xu
- Pathology and Laboratory Medicine, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
| | - Jon Kindblom
- Department of Oncology, University of GothenburgGoteborg 41345, Sweden
| | - Kevin H Eng
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
- Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
- Bristol Myers SquibbPrinceton, NJ, USA
| | - John J Krolewski
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
- Department of Biology and Interdisciplinary Unit, Data Science and Analytics, Buffalo State College, State University of New YorkNew York, NY 14263, USA
| | - Kent L Nastiuk
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263 USA
- Urology, Roswell Park Comprehensive Cancer CenterBuffalo, NY 14263, USA
| |
Collapse
|
2
|
Muacevic A, Adler JR, Nachiappa Ganesh R. Cleistanthins A and B Ameliorate Testosterone-Induced Benign Prostatic Hyperplasia in Castrated Rats by Regulating Apoptosis and Cell Differentiation. Cureus 2022; 14:e32141. [PMID: 36601166 PMCID: PMC9805890 DOI: 10.7759/cureus.32141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 12/04/2022] Open
Abstract
Background The aging male population is at higher risk for benign prostatic hyperplasia (BPH) wherein increased proliferation of stromal and epithelial cells of the prostate is observed. In this study, we investigated the effect of cleistanthins A and B on the inhibition of testosterone-induced BPH in castrated rats. Methodology Male Wistar rats were divided into eight groups (n = 6) and surgical castration was performed. BPH was induced by the administration of testosterone propionate in corn oil at 5 mg/kg for four weeks. The control group received corn oil, and the model group received testosterone propionate. The standard treatment group received finasteride orally along with testosterone. Cleistanthins A and B at 0.3, 1, and 3 mg/kg were administered by oral gavage along with testosterone. After four weeks, rats were sacrificed, and prostates were weighed and assessed for histomorphological, inflammatory, apoptotic, and proliferative markers. Results Cleistanthins A and B decreased prostatic enlargement and histopathological abnormalities. Elevated serum dihydrotestosterone levels were lowered significantly in both the cleistanthin A and cleistanthin B groups compared to the BPH model group. Cleistanthins A and B significantly lowered the serum interleukin (IL)-1β and tumor necrosis factor-alpha inflammatory markers in the test groups. Western blot analysis revealed cleistanthin A downregulated the IL-6, signal transducer and activator of transcription 3/cyclin D1 signaling pathway. Both cleistanthins A and B upregulated the apoptotic markers caspase-3 and cleaved caspase-3, whereas the cell proliferation markers cyclin D1 and proliferating cell nuclear antigen were found to be downregulated. Conclusions Both cleistanthins A and B inhibited BPH in a rat model by apoptotic induction and impeded cell proliferation.
Collapse
|
3
|
Zhao AN, Yang Z, Wang DD, Shi B, Zhang H, Bai Y, Yan BW, Zhang Y, Wen JK, Wang XL, Qu CB. Disturbing NLRP3 acetylation and inflammasome assembly inhibits androgen receptor-promoted inflammatory responses and prostate cancer progression. FASEB J 2022; 36:e22602. [PMID: 36250925 DOI: 10.1096/fj.202200673rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Chronic inflammation is one of the definite factors leading to the occurrence and development of tumors, including prostate cancer (PCa). The androgen receptor (AR) pathway is essential for PCa tumorigenesis and inflammatory response. However, little is known about the AR-regulated NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome pathway in human PCa. In this study, we explored the expression of inflammatory cytokine and AR in high-grade PCa and observed that NLRP3 inflammasome-associated genes were upregulated in high-grade PCa compared with that in low-grade PCa and benign prostatic hyperplasia and were associated with AR expression. In addition, we identified circAR-3-a circRNA derived from the AR gene-which is involved in the AR-regulated inflammatory response and cell proliferation by activating the NLRP3 inflammatory pathway. While circAR-3 overexpression promoted cell proliferation and the inflammatory response, its depletion induced opposite effects. Mechanistically, we noted that circAR-3 mediated the acetylation modification of NLRP3 by KAT2B and then promoted NLRP3 inflammasome complex subcellular distribution and assembly. Disturbing NLRP3 acetylation or blocking inflammasome assembly with an inhibitor suppressed the progression of PCa xenograft tumors. Our findings provide the first evidence that targeting NLRP3 acetylation or inflammasome assembly may be effective in inhibiting PCa progression.
Collapse
Affiliation(s)
- An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Bai
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Yan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Zhang
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Exploring the Role of Testosterone Replacement Therapy in Benign Prostatic Hyperplasia and Prostate Cancer: A Review of Safety. URO 2022. [DOI: 10.3390/uro2010005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increased risk of prostate diseases triggered by testosterone replacement therapy (TRT) remains a worldwide concern. That said, we reviewed the safety of TRT in the spheres of benign prostatic hyperplasia (BPH) and prostate cancer (PCa), exploring clinical findings in this regard. Compelling evidence based on meta-analyses of randomized and observational studies indicates safety for TRT in patients suffering from prostate disorders such as BPH and PCa, at the same time improving lower tract urinary symptoms. Thus, the harmful relationship geared toward androgens and BPH seems to be overestimated as TRT has sufficient safety and, if properly prescribed, may counteract several metabolic problems. Even after PCa treatment, the benefits of TRT could outweigh the risk of recurrence, but further long-term randomized clinical trials are needed to elucidate unresolved questions.
Collapse
|
5
|
Prostate luminal progenitor cells: from mouse to human, from health to disease. Nat Rev Urol 2022; 19:201-218. [DOI: 10.1038/s41585-021-00561-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/11/2022]
|
6
|
Chemical characterization and 5α-reductase inhibitory activity of phenolic compounds in goji berries. J Pharm Biomed Anal 2021; 201:114119. [PMID: 33989994 DOI: 10.1016/j.jpba.2021.114119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/28/2021] [Accepted: 05/02/2021] [Indexed: 12/14/2022]
Abstract
Lycium fruits have a high content of phenolics as bioactive constituents with various pharmacological effects, but there is a lack of comparative analysis and chemical profiling of phenolics in Lycium fruit varieties. An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MSE) combined with chemometrics was developed to characterize the phenolics in fruits from four Lycium species, including Lycium barbarum L. (LBL), L. chinense Mill. (LCM), L. barbarum var. auranticarpum (LBA) and L. ruthenicun Murr. (LRM). 63 phenolics were identified according to reported tandem mass fragmentation patterns and the UNIFI scientific informatics platform. Nine phenolics (5, 18, 20, 29, 31, 37, 41, 43, 60) were common and predominant components among four types of Lycium fruit. The partial least squares discriminant analysis (PLS-DA) and the orthogonal partial least squares discriminant analysis (OPLS-DA) were analyzed on the basis of a matrix created from 653 sets of data, and 20 Lycium fruits were classified into four groups. Further analysis identified that phenolics profiles were characteristic for each Lycium species, and five markers (13, 29, 31, 35, 99) could be utilized for fruit identification. Subsequently, inhibitory activity against 5α-reductase of phenolic extracts of Lycium fruits showed that LBL extract was the relative better effective, followed by LCM, whereas LBA and LRM showed no activity, which might be associated with the high contents of marker compounds (29, 31, 35, 43, 71, 99) in LBL. These findings will provide guidance for the development of Lycium phenolics with beneficial properties for the prevention and treatment of Benign prostatic hyperplasia (BPH).
Collapse
|
7
|
Akanni OO, Owumi SE, Olowofela OG, Adeyanju AA, Abiola OJ, Adaramoye OA. Protocatechuic acid ameliorates testosterone-induced benign prostatic hyperplasia through the regulation of inflammation and oxidative stress in castrated rats. J Biochem Mol Toxicol 2020; 34:e22502. [PMID: 32227675 DOI: 10.1002/jbt.22502] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 03/13/2020] [Indexed: 12/15/2022]
Abstract
Protocatechuic acid (PA) is a polyphenol-recognized for its efficacy as an antioxidant-possesses anticancer, anti-inflammatory, antioxidant properties. The efficacy of PA in the management of benign prostatic hyperplasia (BPH) has not been investigated. Forty-two castrated rats (n = 7) were treated as follows: control (corn oil), BPH only received testosterone propionate (TP) (TP 3 mg/kg intraperitoneally), BPH + PA (TP 3 mg/kg + PA 40 mg/kg), BPH + finasteride (Fin) (TP 3 mg/kg + Fin 10 mg/kg), PA only (40 mg/kg: by gavage), and Fin only (10 mg/kg: by gavage) for 4 weeks. In BPH rats, there were significant (P < .05) increases in prostatic (250%) and organosomatic (280%) weights compared with controls. Cotreatment decreased prostatic weights by 19% (PA) and 21% (Fin). Markers of inflammation: myeloperoxidase activities increased in serum (148%) and prostate (70%), as well as nitric oxide levels serum (92%) and prostatic (95%). Proinflammatory cytokines interleukin-1β and tumor necrosis factor-α increased by 3.6- and 2.8-fold. Furthermore, prostatic malondialdehyde, superoxide dismutase, and serum total acid phosphatase increased by 97%, 25%, and 48%, respectively. Histology revealed poor architecture and severe proliferation of the prostate in BPH rats. Inflammation and oxidative stress markers, as well as the histological alteration in BPH rats, was attenuated (P < .05) upon cotreatment with PA and comparable with Fin cotreatment. These results suggest that PA mitigates oxido-inflammatory responses and restored prostatic cytoarchitecture to levels comparable with control in rats induced with BPH.
Collapse
Affiliation(s)
- Olubukola O Akanni
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Biological Sciences, McPherson University, Lagos, Nigeria
| | - Solomon E Owumi
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Olusoji J Abiola
- Department of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwatosin A Adaramoye
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
8
|
A Role of the Heme Degradation Pathway in Shaping Prostate Inflammatory Responses and Lipid Metabolism. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:830-843. [PMID: 32035059 DOI: 10.1016/j.ajpath.2019.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/22/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023]
Abstract
The molecular mechanisms of prostate inflammation are unclear. We hypothesized that heme oxygenase 1 (HMOX1; HO-1), an enzyme responsible for degradation of heme to carbon monoxide, bilirubin, and iron, is an important regulator of inflammation and epithelial responses in the prostate. Injection of non-uropathogenic Escherichia coli (MG1655 strain) or phosphate-buffered saline into the urethra of mice led to increased numbers of CD45+ leukocytes and mitotic markers (phosphorylated histone H3 and phosphorylated ERK1/2) in the prostate glands. Leukocyte infiltration was elevated in the prostates harvested from mice lacking HO-1 in myeloid compartment. Conversely, exogenous carbon monoxide (250 ppm) increased IL-1β levels and suppressed cell proliferation in the prostates. Carbon monoxide did not affect the number of infiltrating CD45+ cells in the prostates of E. coli- or phosphate-buffered saline-treated mice. Interestingly, immunomodulatory effects of HO-1 and/or carbon monoxide correlated with early induction of the long-chain acyl-CoA synthetase 1 (ACSL1). ACSL1 levels were elevated in response to E. coli treatment, and macrophage-expressed ACSL1 was in part required for controlling of IL-1β expression and prostate cancer cell colony growth in soft agar. These results suggest that HO-1 and/or carbon monoxide might play a distinctive role in modulating prostate inflammation, cell proliferation, and IL-1β levels in part via an ACSL1-mediated pathway.
Collapse
|
9
|
Fully automated chip-based nanoelectrospray ionization-mass spectrometry as an effective tool for rapid and high-throughput screening of 5α-reductase inhibitors. Anal Bioanal Chem 2020; 412:1685-1692. [DOI: 10.1007/s00216-020-02408-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 01/21/2023]
|
10
|
Vásquez-Velásquez C, Gasco M, Fano-Sizgorich D, Gonzales GF. Inflammatory pathway employed by Red Maca to treat induced benign prostatic hyperplasia in rats. Andrologia 2020; 52:e13516. [PMID: 31989657 DOI: 10.1111/and.13516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/10/2019] [Accepted: 12/17/2019] [Indexed: 12/13/2022] Open
Abstract
Benign prostatic hyperplasia (BPH) is a pathology characterised by an increase in prostate size associated with low urinary tract symptoms. Finasteride (F), a 5a-reductase inhibitor, is the standard treatment for BPH reducing prostate weight but also sexual desire. The Peruvian plant known as Red Maca (RM) (Lepidium meyenii) inhibits BPH in rats and mice. The aim of the study was to assess the inflammatory effect of RM and finasteride in rats with testosterone enanthate (TE)-induced BPH. Thirty rats were divided into 5 groups: Control, TE (50 mg/rat), TE + F (0.6 mg/kg), and two groups of TE + RM 40/80 (40 or 80 mg). After treatments, tumour necrosis factor alpha (TNFa), interleukin 4 (IL4) and interferon gamma (INFg) as well as testosterone and oestradiol were evaluated and inflammatory cells (neutrophils, mast cells and lymphocytes) in prostate were quantified. Red Maca and finasteride treatments decreased inflammatory cells counts in prostate, inhibiting TNFa by different pathways. Finasteride increased IL4 whereas Red Maca increased INFg. In conclusion, data suggest that finasteride acts on Th2 response by increasing IL4 in prostate, while Red Maca acts on Th1 response mediated by INFg.
Collapse
Affiliation(s)
- Cinthya Vásquez-Velásquez
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Manuel Gasco
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Diego Fano-Sizgorich
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Gustavo F Gonzales
- Laboratory of Endocrinology and Reproduction, Faculty of Sciences and Philosophy, Universidad Peruana Cayetano Heredia, Lima, Peru.,Altitude Research Institute, Universidad Peruana Cayetano Heredia, Lima, Peru
| |
Collapse
|
11
|
Yang M, Xu Z, Zhuang Z. Macrophages affect immune inflammation and proliferation in benign prostatic hyperplasia via androgen receptor and CD40/CD40L signaling pathway. Tissue Cell 2020; 64:101343. [PMID: 32473708 DOI: 10.1016/j.tice.2020.101343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/30/2019] [Accepted: 01/22/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Considering the association of macrophage migration inhibitory factor with development of prostate diseases, this study aims to explore the effect and mechanism of macrophages (MAs) in inflammation and proliferation of benign prostate hyperplasia (BPH) cells. METHODS Totally 85 prostate tissues (75 from BPH patients and 10 from brain death patients) were collected for determination of biomarkers of T lymphocyte (CD4 and CD8), B lymphocyte (CD20) and MAs (CD68), as well as androgen receptor (AR) and CD40/CD40L. MAs stimulated by phorbol myristate acetate (PMA) were cultured with BPH cells (BPH-1), followed by AR inhibitor or anti-CD40 L antibody treatment. Proliferation and cell apoptosis were observed by MTT assay, colony formation assay and flow cytometer. Expressions of apoptotic related proteins and MAPK signaling pathway-related proteins were determined by qRT-PCR and Western blot. RESULTS BPH tissues had increased expressions of AR, CD40 and CD40 L, as well as elevated expressions of inflammation biomarkers (CD4, CD8, CD20 and CD68) in comparison to normal prostate tissues. MAs could increase the expressions of lymphocytes and inflammation biomarkers, in addition to promoting cell proliferation and inhibiting cell apoptosis. Cell proliferation and inflammation reaction could be attenuated by anti-CD40 L antibody and AR inhibitor in a concentration dependent manner through inhibiting the phosphorylation of JNK, ERK1/2 and p38. CONCLUSION MAs regulate AR and CD40/CD40L expression to promote the inflammation and proliferation as well as inhibiting apoptosis of BPH-1 cells through activation of the MAPK signaling pathway. This conclusion may provide a therapeutic strategy for BPH patients.
Collapse
Affiliation(s)
- Minggen Yang
- Department of Urology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, PR China
| | - Zhenqiang Xu
- Department of Urology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, PR China.
| | - Zhiming Zhuang
- Department of Urology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, 363000, PR China
| |
Collapse
|
12
|
Suppressive Role of Androgen/Androgen Receptor Signaling via Chemokines on Prostate Cancer Cells. J Clin Med 2019; 8:jcm8030354. [PMID: 30871130 PMCID: PMC6463189 DOI: 10.3390/jcm8030354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/29/2023] Open
Abstract
Androgen/androgen receptor (AR) signaling is a significant driver of prostate cancer progression, therefore androgen-deprivation therapy (ADT) is often used as a standard form of treatment for advanced and metastatic prostate cancer patients. However, after several years of ADT, prostate cancer progresses to castration-resistant prostate cancer (CRPC). Androgen/AR signaling is still considered an important factor for prostate cancer cell survival following CRPC progression, while recent studies have reported dichotomic roles for androgen/AR signaling. Androgen/AR signaling increases prostate cancer cell proliferation, while simultaneously inhibiting migration. As a result, ADT can induce prostate cancer metastasis. Several C-C motif ligand (CCL)-receptor (CCR) axes are involved in cancer cell migration related to blockade of androgen/AR signaling. The CCL2-CCR2 axis is negatively regulated by androgen/AR signaling, with the CCL22-CCR4 axis acting as a further downstream mediator, both of which promote prostate cancer cell migration. Furthermore, the CCL5-CCR5 axis inhibits androgen/AR signaling as an upstream mediator. CCL4 is involved in prostate carcinogenesis through macrophage AR signaling, while the CCL21-CCR7 axis in prostate cancer cells is activated by tumor necrotic factor, which is secreted when androgen/AR signaling is inhibited. Finally, the CCL2-CCR2 axis has recently been demonstrated to be a key contributor to cabazitaxel resistance in CRPC.
Collapse
|
13
|
Koo KC, Lee JS, Ha JS, Han KS, Lee KS, Hah YS, Rha KH, Hong SJ, Chung BH. Optimal sequencing strategy using docetaxel and androgen receptor axis-targeted agents in patients with castration-resistant prostate cancer: utilization of neutrophil-to-lymphocyte ratio. World J Urol 2019; 37:2375-2384. [DOI: 10.1007/s00345-019-02658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/29/2019] [Indexed: 01/04/2023] Open
|
14
|
Cioni B, Zwart W, Bergman AM. Androgen receptor moonlighting in the prostate cancer microenvironment. Endocr Relat Cancer 2018; 25:R331-R349. [PMID: 29618577 DOI: 10.1530/erc-18-0042] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 01/03/2023]
Abstract
Androgen receptor (AR) signaling is vital for the normal development of the prostate and is critically involved in prostate cancer (PCa). AR is not only found in epithelial prostate cells but is also expressed in various cells in the PCa-associated stroma, which constitute the tumor microenvironment (TME). In the TME, AR is expressed in fibroblasts, macrophages, lymphocytes and neutrophils. AR expression in the TME was shown to be decreased in higher-grade and metastatic PCa, suggesting that stromal AR plays a protective role against PCa progression. With that, the functionality of AR in stromal cells appears to deviate from the receptor's classical function as described in PCa cells. However, the biological action of AR in these cells and its effect on cancer progression remains to be fully understood. Here, we systematically review the pathological, genomic and biological literature on AR actions in various subsets of prostate stromal cells and aim to better understand the consequences of AR signaling in the TME in relation to PCa development and progression.
Collapse
Affiliation(s)
- B Cioni
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - W Zwart
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Oncode InstituteThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - A M Bergman
- Division of OncogenomicsThe Netherlands Cancer Institute, Amsterdam, the Netherlands
- Division of Medical OncologyThe Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
15
|
Maolake A, Izumi K, Shigehara K, Natsagdorj A, Iwamoto H, Kadomoto S, Takezawa Y, Machioka K, Narimoto K, Namiki M, Lin WJ, Wufuer G, Mizokami A. Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget 2018; 8:9739-9751. [PMID: 28039457 PMCID: PMC5354767 DOI: 10.18632/oncotarget.14185] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022] Open
Abstract
Previous studies have found that tumor-associated macrophages (TAMs) promote cancer progression. We previously reported that TAMs promote prostate cancer metastasis via activation of the CCL2–CCR2 axis. The CCR4 (receptor of CCL17 and CCL22) expression level in breast cancer was reported to be associated with lung metastasis. The aim of this study was to elucidate the role of CCR2 and CCR4 in prostate cancer progression. CCR2 and CCR4 were expressed in human prostate cancer cell lines and prostate cancer tissues. In vitro co-culture of prostate cancer cells and macrophages resulted in increased CCL2 and CCR2 levels in prostate cancer cells. The addition of CCL2 induced CCL22 and CCR4 production in prostate cancer cells. The migration and invasion of prostate cancer cells via enhanced phosphorylation of Akt were promoted by CCL17 and CCL22. CCR4 may be a potential candidate for molecular-targeted therapy.
Collapse
Affiliation(s)
- Aerken Maolake
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ariunbold Natsagdorj
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yuta Takezawa
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuaki Machioka
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazutaka Narimoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Mikio Namiki
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Guzailinuer Wufuer
- Hematology Department of The People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
16
|
Urata S, Izumi K, Hiratsuka K, Maolake A, Natsagdorj A, Shigehara K, Iwamoto H, Kadomoto S, Makino T, Naito R, Kadono Y, Lin WJ, Wufuer G, Narimoto K, Mizokami A. C-C motif ligand 5 promotes migration of prostate cancer cells in the prostate cancer bone metastasis microenvironment. Cancer Sci 2018; 109:724-731. [PMID: 29288523 PMCID: PMC5834783 DOI: 10.1111/cas.13494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/18/2017] [Accepted: 12/25/2017] [Indexed: 12/30/2022] Open
Abstract
Chemokines and their receptors have key roles in cancer progression. The present study investigated chemokine activity in the prostate cancer bone metastasis microenvironment. Growth and migration of human prostate cancer cells were assayed in cocultures with bone stromal cells. The migration of LNCaP cells significantly increased when co‐cultured with bone stromal cells isolated from prostate cancer bone metastases. Cytokine array analysis of conditioned medium from bone stromal cell cultures identified CCL5 as a concentration‐dependent promoter of LNCaP cell migration. The migration of LNCaP cells was suppressed when C‐C motif ligand 5 (CCL5) neutralizing antibody was added to cocultures with bone stromal cells. Knockdown of androgen receptor with small interfering RNA increased the migration of LNCaP cells compared with control cells, and CCL5 did not promote the migration of androgen receptor knockdown LNCaP. Elevated CCL5 secretion in bone stromal cells from metastatic lesions induced prostate cancer cell migration by a mechanism consistent with CCL5 activity upstream of androgen receptor signaling.
Collapse
Affiliation(s)
- Satoko Urata
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kouji Izumi
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kaoru Hiratsuka
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Aerken Maolake
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Ariunbold Natsagdorj
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Kazuyoshi Shigehara
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Hiroaki Iwamoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Suguru Kadomoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Tomoyuki Makino
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Renato Naito
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Yoshifumi Kadono
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Wen-Jye Lin
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guzailinuer Wufuer
- Hematology Department of the People's Hospital of Xinjiang Uyghur Autonomous Region, Xinjiang, China
| | - Kazutaka Narimoto
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| | - Atsushi Mizokami
- Department of Integrative Cancer Therapy and Urology, Kanazawa University Graduate School of Medical Science, Kanazawa, Japan
| |
Collapse
|
17
|
Li J, Dai L, Lei N, Xing M, Li P, Luo C, Casiano CA, Zhang JY. Evaluation and characterization of anti-RalA autoantibody as a potential serum biomarker in human prostate cancer. Oncotarget 2017; 7:43546-43556. [PMID: 27286458 PMCID: PMC5190043 DOI: 10.18632/oncotarget.9869] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/05/2016] [Indexed: 01/24/2023] Open
Abstract
Autoantibodies against intracellular tumor-associated antigens (TAAs) are commonly found in human cancers. In this study, we characterized the serum autoantibody response to the RalA, Ras-like GTPase, in patients with prostate cancer (PCa). The autoantibodies were detected by immunofluorescence assay in PCa cell lines, ELISA, and immunoblotting in 339 serum samples from patients with PCa and benign prostatic hyperplasia (BPH), and in normal human sera (NHS). The expression of RalA in prostate tumor tissues was evaluated by immunohistochemistry (IHC) in tumor microarrays. The autoantibody level to RalA (median) in NHS was significantly lower than in PCa (0.053 vs 0.138; P < 0.001) and BPH (0.053 vs 0.132; P < 0.005) groups. The circulating anti-RalA autoantibody could distinguish PCa patients from normal individuals with the area under the receiver operating characteristic (ROC) curve (AUC) performing at 0.861, with sensitivity of 52.9% and specificity of 91.0%. Elevation in serum immunoreactivity was observed in PCa patients after radical prostatectomy. The combined use of both anti-RalA autoantibody and PSA showed a significantly higher discriminatory ability compared with either of those markers alone. RalA protein expression was detected by IHC in 85.3% of tumor tissues from PCa patients, but without significant difference compared to BPH or normal control tissues. Together, our study shows the additional benefits of anti-RalA autoantibody as a potential serological biomarker for PCa, particularly in patients with normal PSA, and further demonstrate the utility of biomarker combinations in the immunodiagnosis of PCa.
Collapse
Affiliation(s)
- Jitian Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Liping Dai
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.,Henan Key Laboratory of Tumor Epidemiology and Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ningjing Lei
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mengtao Xing
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Pei Li
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Chenglin Luo
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Carlos A Casiano
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Jian-Ying Zhang
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA.,Henan Key Laboratory of Tumor Epidemiology and Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
18
|
N-Butanol and Aqueous Fractions of Red Maca Methanolic Extract Exerts Opposite Effects on Androgen and Oestrogens Receptors (Alpha and Beta) in Rats with Testosterone-Induced Benign Prostatic Hyperplasia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:9124240. [PMID: 29375645 PMCID: PMC5742461 DOI: 10.1155/2017/9124240] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/13/2017] [Indexed: 12/18/2022]
Abstract
Benign Prostatic Hyperplasia (BPH) affects, worldwide, 50% of 60-year-old men. The Peruvian plant red maca (Lepidium meyenii) inhibits BPH in rodents. This study aimed to determine the effects of methanolic red maca extract and its n-butanol and aqueous fractions on expression of androgen and oestrogen receptors in rats with testosterone enanthate-induced BPH. Thirty-six rats in six groups were studied. Control group received 2 mL of vehicle orally and 0.1 mL of propylene glycol intramuscularly. The second group received vehicle orally and testosterone enanthate (TE) (25 mg/0.1 mL) intramuscularly in days 1 and 7. The other four groups were BPH-induced with TE and received, during 21 days, 3.78 mg/mL of finasteride, 18.3 mg/mL methanol extract of red maca, 2 mg/mL of n-butanol fraction, or 16.3 mg/mL of aqueous fraction from red maca. Treatments with red maca extract and its n-butanol but not aqueous fraction reduced prostate weight similar to finasteride. All maca treated groups restored the expression of ERβ, but only the aqueous fraction increased androgen receptors and ERα. In conclusion, butanol fraction of red maca reduced prostate size in BPH by restoring expression of ERβ without affecting androgen receptors and ERα. This effect was not observed with aqueous fraction of methanolic extract of red maca.
Collapse
|
19
|
McAuley EM, Mustafi D, Simons BW, Valek R, Zamora M, Markiewicz E, Lamperis S, Williams A, Roman BB, Vezina C, Karczmar G, Oto A, Vander Griend DJ. Magnetic Resonance Imaging and Molecular Characterization of a Hormone-Mediated Murine Model of Prostate Enlargement and Bladder Outlet Obstruction. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2378-2387. [PMID: 28823870 PMCID: PMC5762949 DOI: 10.1016/j.ajpath.2017.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/04/2017] [Accepted: 07/26/2017] [Indexed: 01/25/2023]
Abstract
Urinary complications resulting from benign prostatic hyperplasia and bladder outlet obstruction continue to be a serious health problem. Novel animal model systems and imaging approaches are needed to understand the mechanisms of disease initiation, and to develop novel therapies for benign prostatic hyperplasia. Long-term administration of both estradiol and testosterone in mice can result in prostatic enlargement and recapitulate several clinical components of lower urinary tract symptoms. Herein, we use longitudinal magnetic resonance imaging and histological analyses to quantify changes in prostatic volume, urethral volume, and genitourinary vascularization over time in response to estradiol-induced prostatic enlargement. Our data demonstrate significant prostatic enlargement by 12 weeks after treatment, with no detectable immune infiltration by macrophages or T- or B-cell populations. Importantly, the percentage of cell death, as measured by terminal deoxynucleotidyl transferase dUTP nick-end labeling, was significantly decreased in the prostatic epithelium of treated animals as compared to controls. We found no significant change in prostate cell proliferation in treated mice when compared to controls. These studies highlight the utility of magnetic resonance imaging to quantify changes in prostatic and urethral volumes over time. In conjunction with histological analyses, this approach has the high potential to enable mechanistic studies of initiation and progression of clinically relevant lower urinary tract symptoms. In addition, this model is tractable for investigation and testing of therapeutic interventions to ameliorate or potentially reverse prostatic enlargement.
Collapse
Affiliation(s)
- Erin M McAuley
- Committee on Molecular Pathology and Molecular Medicine, The University of Chicago, Chicago, Illinois; Department of Comparative Biosciences, University of Wisconsin Madison School of Veterinary Medicine, Madison, Wisconsin
| | - Devkumar Mustafi
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Brian W Simons
- Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rebecca Valek
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Marta Zamora
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Erica Markiewicz
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Sophia Lamperis
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois
| | - Anthony Williams
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois
| | - Brian B Roman
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Chad Vezina
- Department of Comparative Biosciences, University of Wisconsin Madison School of Veterinary Medicine, Madison, Wisconsin
| | - Greg Karczmar
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Aytekin Oto
- Department of Radiology, The University of Chicago, Chicago, Illinois
| | - Donald J Vander Griend
- Department of Surgery, Section of Urology, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
20
|
Shirani-Boroujeni M, Heidari-Soureshjani S, Keivani Hafshejani Z. Impact of oral capsule of Peganum harmala on alleviating urinary symptoms in men with benign prostatic hyperplasia; a randomized clinical trial. J Renal Inj Prev 2016; 6:127-131. [PMID: 28497089 PMCID: PMC5423280 DOI: 10.15171/jrip.2017.25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 12/29/2016] [Indexed: 01/18/2023] Open
Abstract
Introduction: Benign prostatic hyperplasia (BPH) is considered as a major cause of lower urinary tract symptoms (LUTS) in older men and its most common sign is nocturia.
Objectives: This study aimed to determine the effect of the seeds of Peganum harmala compared with tamsulosin on alleviating urinary symptoms in patients with BPH.
Patients and Methods: In this single blind clinical trial study, 90 patients diagnosed with BPH and LUTS, based on international prostate standard survey (IPSS) were divided into three groups. The first group was received oral capsule of P. harmala, the second group was administered tamsulosin with oral P. harmala seed and the third group was received tamsulosin drug and they were evaluated after 4 weeks.
Results: The results showed that the difference between mean scores of IPSS was significant after the intervention (P=0.001). Besides, the mean of IPSS in the three groups was significantly different (P=0.001) (the first group 41.9±5.3, the second group 21.0±4.4 ,the third group 16.5±3.7 respectively). However, after the intervention, patients in the second group had the lowest average on most indicators of IPSS but the difference was only significant about urinary frequency, nocturia and intermittency(P<0.05).
Conclusion: Application of Peganum harmala seed can be useful in reducing urinary symptoms in patients with BPH.
Collapse
|
21
|
Ju JY, Chung KS, Cheon SY, An HJ. Musulju improves benign prostatic hyperplasia by regulating inflammatory and apoptotic proteins. Mol Med Rep 2016; 14:4692-4698. [PMID: 27748836 PMCID: PMC5102041 DOI: 10.3892/mmr.2016.5839] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/23/2016] [Indexed: 11/24/2022] Open
Abstract
Alternative medicine is a widely accepted therapeutic approach for the management of various diseases. The Korean medicine, musulju (MSJ), has been traditionally used to improve vital energy in men with reduced physical strength and a weakened urinary system. The present study determined the mechanisms underlying the protective effect of MSJ against benign prostatic hyperplasia (BPH), a common disorder in elderly men that involves inflammation‑mediated imbalance between cell proliferation and death. MSJ treatment was demonstrated to decrease prostate weight, cell proliferation, and the protein expression of proliferating cell nuclear antigen in a rat model of BPH. In addition, MSJ markedly reduced serum testosterone levels, 5α‑reductase2 mRNA expression and BPH‑associated upregulation of inflammatory proteins, inducible nitric oxide synthase and cyclooxygenase 2. Furthermore, MSJ induced apoptosis by regulating B‑cell lymphoma (Bcl)‑2 protein expression and the Bcl‑2:Bax ratio, leading to caspase 3 activation. Taken together, MSJ demonstrated antiproliferative effects in BPH model rats by regulating the expression levels of proteins involved in inflammation and apoptosis. The effects of MSJ may be attributed to its alternative therapeutic properties.
Collapse
Affiliation(s)
- Jae-Yun Ju
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Se-Yun Cheon
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| | - Hyo-Jin An
- Department of Pharmacology, College of Korean Medicine, Sangji University, Wonju-si, Gangwon-do 220-702, Republic of Korea
| |
Collapse
|
22
|
Bushman WA, Jerde TJ. The role of prostate inflammation and fibrosis in lower urinary tract symptoms. Am J Physiol Renal Physiol 2016; 311:F817-F821. [PMID: 27440781 DOI: 10.1152/ajprenal.00602.2015] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
Lower urinary tract symptoms (LUTS) in aging men are extremely common. They have historically been attributed to benign prostatic hyperplasia (BPH), enlargement of the prostate, and bladder outlet obstruction. However, recent studies have revealed acute and chronic inflammation to be highly associated with LUTS, correlated with prostatic enlargement, and implicated as a cause of prostatic fibrosis that contributes to bladder outlet obstruction. This review examines the evidence implicating inflammation and fibrosis in BPH/LUTS. It identifies potential mechanisms by which inflammation may drive nociceptive signaling as well as hyperplastic growth and fibrosis and identifies targets for pharmacological intervention. This is a promising area for research and development of novel therapies to prevent or more effectively treat LUTS in aging men.
Collapse
Affiliation(s)
- Wade A Bushman
- Department of Urology, University of Wisconsin, Madison, Wisconsin; and
| | - Travis J Jerde
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|